Commit
·
b970b7b
1
Parent(s):
e9ee6fb
Update README.md (#19)
Browse files- Update README.md (c11facb9fd1b1b81ebabd7c2dd5a67f8016b0c5d)
README.md
CHANGED
|
@@ -112,172 +112,238 @@ pipeline_tag: automatic-speech-recognition
|
|
| 112 |
license: apache-2.0
|
| 113 |
---
|
| 114 |
|
| 115 |
-
# Whisper
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
| 122 |
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
##
|
| 125 |
|
| 126 |
-
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
| Size | Parameters | English-only model | Multilingual model |
|
| 138 |
-
|:------:|:----------:|:------------------:|:------------------:|
|
| 139 |
-
| tiny | 39 M | ✓ | ✓ |
|
| 140 |
-
| base | 74 M | ✓ | ✓ |
|
| 141 |
-
| small | 244 M | ✓ | ✓ |
|
| 142 |
-
| medium | 769 M | ✓ | ✓ |
|
| 143 |
-
| large | 1550 M | | ✓ |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
## Model description
|
| 148 |
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
-
|
| 153 |
-
|
| 154 |
-
- No speech prediction
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
In the following example, the english only model is used. We set the `decoder_input_ids` accordingly.
|
| 166 |
|
|
|
|
| 167 |
|
| 168 |
-
### English to
|
| 169 |
-
|
|
|
|
| 170 |
|
| 171 |
```python
|
| 172 |
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 173 |
>>> from datasets import load_dataset
|
| 174 |
-
>>> import torch
|
| 175 |
|
| 176 |
>>> # load model and processor
|
| 177 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 178 |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
|
|
|
| 179 |
|
| 180 |
-
>>> # load dummy dataset and read
|
| 181 |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 182 |
-
>>>
|
|
|
|
| 183 |
|
| 184 |
-
>>> #
|
| 185 |
-
>>>
|
| 186 |
-
>>> #
|
| 187 |
-
>>>
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
| 190 |
```
|
|
|
|
| 191 |
|
| 192 |
### French to French
|
| 193 |
-
|
| 194 |
-
transcription.
|
| 195 |
|
| 196 |
```python
|
| 197 |
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 198 |
-
>>> from datasets import load_dataset
|
| 199 |
-
>>> import torch
|
| 200 |
|
| 201 |
>>> # load model and processor
|
| 202 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 203 |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
|
|
|
| 204 |
|
| 205 |
-
>>> # load
|
| 206 |
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
|
| 207 |
-
>>> ds = ds.cast_column("audio",
|
| 208 |
-
>>> input_speech = next(iter(ds))["audio"]
|
| 209 |
-
>>>
|
| 210 |
-
|
| 211 |
-
>>>
|
|
|
|
|
|
|
| 212 |
>>> transcription = processor.batch_decode(predicted_ids)
|
| 213 |
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
|
| 214 |
|
| 215 |
-
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens
|
| 216 |
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
|
| 217 |
```
|
| 218 |
|
| 219 |
## Translation
|
| 220 |
-
|
| 221 |
|
| 222 |
### French to English
|
| 223 |
|
| 224 |
```python
|
| 225 |
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 226 |
-
>>> from datasets import load_dataset
|
| 227 |
-
>>> import torch
|
| 228 |
|
| 229 |
>>> # load model and processor
|
| 230 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 231 |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
|
|
|
| 232 |
|
| 233 |
-
>>> # load
|
| 234 |
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
|
| 235 |
-
>>> ds = ds.cast_column("audio",
|
| 236 |
-
>>> input_speech = next(iter(ds))["audio"]
|
| 237 |
-
>>>
|
| 238 |
-
|
| 239 |
-
>>>
|
| 240 |
-
|
| 241 |
-
>>>
|
| 242 |
-
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens
|
| 243 |
-
[' A
|
| 244 |
```
|
| 245 |
|
| 246 |
## Evaluation
|
| 247 |
|
| 248 |
-
This code snippet shows how to evaluate
|
| 249 |
|
| 250 |
```python
|
| 251 |
>>> from datasets import load_dataset
|
| 252 |
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
| 253 |
-
>>> import soundfile as sf
|
| 254 |
>>> import torch
|
| 255 |
-
>>> from
|
| 256 |
|
|
|
|
| 257 |
|
| 258 |
-
>>> librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
| 259 |
-
|
| 260 |
-
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2").to("cuda")
|
| 261 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
|
|
|
| 262 |
|
| 263 |
>>> def map_to_pred(batch):
|
| 264 |
-
>>>
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
>>> with torch.no_grad():
|
| 267 |
-
>>>
|
| 268 |
-
|
| 269 |
-
>>>
|
| 270 |
-
>>> transcription = processor.batch_decode(predicted_ids, normalize = True)
|
| 271 |
-
>>> batch['text'] = processor.tokenizer._normalize(batch['text'])
|
| 272 |
-
>>> batch["transcription"] = transcription
|
| 273 |
>>> return batch
|
| 274 |
|
| 275 |
-
>>> result =
|
| 276 |
|
| 277 |
-
>>>
|
| 278 |
-
|
|
|
|
| 279 |
```
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
### Evaluated Use
|
| 283 |
|
|
@@ -314,12 +380,14 @@ There are also potential dual use concerns that come with releasing Whisper. Whi
|
|
| 314 |
|
| 315 |
|
| 316 |
### BibTeX entry and citation info
|
| 317 |
-
*Since no official citation was provided, we use the following in the mean time*
|
| 318 |
```bibtex
|
| 319 |
@misc{radford2022whisper,
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
| 324 |
}
|
| 325 |
```
|
|
|
|
| 112 |
license: apache-2.0
|
| 113 |
---
|
| 114 |
|
| 115 |
+
# Whisper
|
| 116 |
|
| 117 |
+
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
|
| 118 |
+
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
|
| 119 |
+
for fine-tuning.
|
| 120 |
|
| 121 |
+
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
|
| 122 |
+
by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
|
| 123 |
|
| 124 |
+
Compared to the Whisper large model, the large-v2 model is trained for 2.5x more epochs with added regularization
|
| 125 |
+
for improved performance.
|
| 126 |
|
| 127 |
+
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
|
| 128 |
+
copied and pasted from the original model card.
|
| 129 |
|
| 130 |
+
## Model details
|
| 131 |
|
| 132 |
+
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
|
| 133 |
+
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
|
| 134 |
|
| 135 |
+
The models were trained on either English-only data or multilingual data. The English-only models were trained
|
| 136 |
+
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
|
| 137 |
+
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
|
| 138 |
+
For speech translation, the model predicts transcriptions to a *different* language to the audio.
|
| 139 |
|
| 140 |
+
Whisper checkpoints come in five configurations of varying model sizes.
|
| 141 |
+
The smallest four are trained on either English-only or multilingual data.
|
| 142 |
+
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
|
| 143 |
+
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
|
| 144 |
+
checkpoints are summarised in the following table with links to the models on the Hub:
|
| 145 |
|
| 146 |
+
| Size | Parameters | English-only | Multilingual |
|
| 147 |
+
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
|
| 148 |
+
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
|
| 149 |
+
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
|
| 150 |
+
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
|
| 151 |
+
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
|
| 152 |
+
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
|
| 153 |
+
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
|
| 154 |
|
| 155 |
+
# Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
|
| 158 |
|
| 159 |
+
The `WhisperProcessor` is used to:
|
| 160 |
+
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
|
| 161 |
+
2. Post-process the model outputs (converting them from tokens to text)
|
|
|
|
| 162 |
|
| 163 |
+
The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
|
| 164 |
+
are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
|
| 165 |
+
1. The transcription always starts with the `<|startoftranscript|>` token
|
| 166 |
+
2. The second token is the language token (e.g. `<|en|>` for English)
|
| 167 |
+
3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
|
| 168 |
+
4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
|
| 169 |
|
| 170 |
+
Thus, a typical sequence of context tokens might look as follows:
|
| 171 |
+
```
|
| 172 |
+
<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
|
| 173 |
+
```
|
| 174 |
+
Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
|
| 175 |
|
| 176 |
+
These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
|
| 177 |
+
each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
|
| 178 |
+
the Whisper model will automatically predict the output langauge and task itself.
|
| 179 |
|
| 180 |
+
The context tokens can be set accordingly:
|
| 181 |
|
| 182 |
+
```python
|
| 183 |
+
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
|
| 184 |
+
```
|
| 185 |
|
| 186 |
+
Which forces the model to predict in English under the task of speech recognition.
|
|
|
|
| 187 |
|
| 188 |
+
## Transcription
|
| 189 |
|
| 190 |
+
### English to English
|
| 191 |
+
In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
|
| 192 |
+
(English) and task (transcribe).
|
| 193 |
|
| 194 |
```python
|
| 195 |
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 196 |
>>> from datasets import load_dataset
|
|
|
|
| 197 |
|
| 198 |
>>> # load model and processor
|
| 199 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 200 |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
| 201 |
+
>>> model.config.forced_decoder_ids = None
|
| 202 |
|
| 203 |
+
>>> # load dummy dataset and read audio files
|
| 204 |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 205 |
+
>>> sample = ds[0]["audio"]
|
| 206 |
+
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
| 207 |
|
| 208 |
+
>>> # generate token ids
|
| 209 |
+
>>> predicted_ids = model.generate(input_features)
|
| 210 |
+
>>> # decode token ids to text
|
| 211 |
+
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
| 212 |
+
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
|
| 213 |
+
|
| 214 |
+
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 215 |
+
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
|
| 216 |
```
|
| 217 |
+
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
|
| 218 |
|
| 219 |
### French to French
|
| 220 |
+
The following example demonstrates French to French transcription by setting the decoder ids appropriately.
|
|
|
|
| 221 |
|
| 222 |
```python
|
| 223 |
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 224 |
+
>>> from datasets import Audio, load_dataset
|
|
|
|
| 225 |
|
| 226 |
>>> # load model and processor
|
| 227 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 228 |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
| 229 |
+
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
|
| 230 |
|
| 231 |
+
>>> # load streaming dataset and read first audio sample
|
| 232 |
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
|
| 233 |
+
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 234 |
+
>>> input_speech = next(iter(ds))["audio"]
|
| 235 |
+
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
| 236 |
+
|
| 237 |
+
>>> # generate token ids
|
| 238 |
+
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 239 |
+
>>> # decode token ids to text
|
| 240 |
>>> transcription = processor.batch_decode(predicted_ids)
|
| 241 |
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
|
| 242 |
|
| 243 |
+
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 244 |
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
|
| 245 |
```
|
| 246 |
|
| 247 |
## Translation
|
| 248 |
+
Setting the task to "translate" forces the Whisper model to perform speech translation.
|
| 249 |
|
| 250 |
### French to English
|
| 251 |
|
| 252 |
```python
|
| 253 |
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 254 |
+
>>> from datasets import Audio, load_dataset
|
|
|
|
| 255 |
|
| 256 |
>>> # load model and processor
|
| 257 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 258 |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
| 259 |
+
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
|
| 260 |
|
| 261 |
+
>>> # load streaming dataset and read first audio sample
|
| 262 |
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
|
| 263 |
+
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 264 |
+
>>> input_speech = next(iter(ds))["audio"]
|
| 265 |
+
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
| 266 |
+
|
| 267 |
+
>>> # generate token ids
|
| 268 |
+
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 269 |
+
>>> # decode token ids to text
|
| 270 |
+
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 271 |
+
[' A very interesting work, we will finally be given on this subject.']
|
| 272 |
```
|
| 273 |
|
| 274 |
## Evaluation
|
| 275 |
|
| 276 |
+
This code snippet shows how to evaluate Whisper Large on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
|
| 277 |
|
| 278 |
```python
|
| 279 |
>>> from datasets import load_dataset
|
| 280 |
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
|
|
|
| 281 |
>>> import torch
|
| 282 |
+
>>> from evaluate import load
|
| 283 |
|
| 284 |
+
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
|
| 285 |
|
|
|
|
|
|
|
|
|
|
| 286 |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
| 287 |
+
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2").to("cuda")
|
| 288 |
|
| 289 |
>>> def map_to_pred(batch):
|
| 290 |
+
>>> audio = batch["audio"]
|
| 291 |
+
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
|
| 292 |
+
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
|
| 293 |
+
>>>
|
| 294 |
>>> with torch.no_grad():
|
| 295 |
+
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
|
| 296 |
+
>>> transcription = processor.decode(predicted_ids)
|
| 297 |
+
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
|
|
|
|
|
|
|
|
|
|
| 298 |
>>> return batch
|
| 299 |
|
| 300 |
+
>>> result = librispeech_test_clean.map(map_to_pred)
|
| 301 |
|
| 302 |
+
>>> wer = load("wer")
|
| 303 |
+
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
| 304 |
+
3.0003583080317572
|
| 305 |
```
|
| 306 |
|
| 307 |
+
## Long-Form Transcription
|
| 308 |
+
|
| 309 |
+
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
|
| 310 |
+
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
|
| 311 |
+
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 312 |
+
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. It can also be extended to
|
| 313 |
+
predict utterance level timestamps by passing `return_timestamps=True`:
|
| 314 |
+
|
| 315 |
+
```python
|
| 316 |
+
>>> import torch
|
| 317 |
+
>>> from transformers import pipeline
|
| 318 |
+
>>> from datasets import load_dataset
|
| 319 |
+
|
| 320 |
+
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 321 |
+
|
| 322 |
+
>>> pipe = pipeline(
|
| 323 |
+
>>> "automatic-speech-recognition",
|
| 324 |
+
>>> model="openai/whisper-large-v2",
|
| 325 |
+
>>> chunk_length_s=30,
|
| 326 |
+
>>> device=device,
|
| 327 |
+
>>> )
|
| 328 |
+
|
| 329 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 330 |
+
>>> sample = ds[0]["audio"]
|
| 331 |
+
|
| 332 |
+
>>> prediction = pipe(sample)["text"]
|
| 333 |
+
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
| 334 |
+
|
| 335 |
+
>>> # we can also return timestamps for the predictions
|
| 336 |
+
>>> prediction = pipe(sample, return_timestamps=True)["chunks"]
|
| 337 |
+
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
|
| 338 |
+
'timestamp': (0.0, 5.44)}]
|
| 339 |
+
```
|
| 340 |
+
|
| 341 |
+
## Fine-Tuning
|
| 342 |
+
|
| 343 |
+
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
|
| 344 |
+
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
|
| 345 |
+
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
|
| 346 |
+
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
|
| 347 |
|
| 348 |
### Evaluated Use
|
| 349 |
|
|
|
|
| 380 |
|
| 381 |
|
| 382 |
### BibTeX entry and citation info
|
|
|
|
| 383 |
```bibtex
|
| 384 |
@misc{radford2022whisper,
|
| 385 |
+
doi = {10.48550/ARXIV.2212.04356},
|
| 386 |
+
url = {https://arxiv.org/abs/2212.04356},
|
| 387 |
+
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
| 388 |
+
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
|
| 389 |
+
publisher = {arXiv},
|
| 390 |
+
year = {2022},
|
| 391 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
| 392 |
}
|
| 393 |
```
|