edbeeching
HF Staff
Add open-r1/Qwen2.5-Coder-7B-Instruct-SFT-v02.12-step-000003170 checkpoint
eeab430
verified
| #!/usr/bin/env python | |
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets | |
| # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in | |
| # the future. Once extracted, the weights don't require DeepSpeed and can be used in any | |
| # application. | |
| # | |
| # example: | |
| # python zero_to_fp32.py . output_dir/ | |
| # or | |
| # python zero_to_fp32.py . output_dir/ --safe_serialization | |
| import argparse | |
| import torch | |
| import glob | |
| import math | |
| import os | |
| import re | |
| import json | |
| from tqdm import tqdm | |
| from collections import OrderedDict | |
| from dataclasses import dataclass | |
| # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with | |
| # DeepSpeed data structures it has to be available in the current python environment. | |
| from deepspeed.utils import logger | |
| from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, | |
| FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, | |
| FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) | |
| class zero_model_state: | |
| buffers: dict() | |
| param_shapes: dict() | |
| shared_params: list | |
| ds_version: int | |
| frozen_param_shapes: dict() | |
| frozen_param_fragments: dict() | |
| debug = 0 | |
| # load to cpu | |
| device = torch.device('cpu') | |
| def atoi(text): | |
| return int(text) if text.isdigit() else text | |
| def natural_keys(text): | |
| ''' | |
| alist.sort(key=natural_keys) sorts in human order | |
| http://nedbatchelder.com/blog/200712/human_sorting.html | |
| (See Toothy's implementation in the comments) | |
| ''' | |
| return [atoi(c) for c in re.split(r'(\d+)', text)] | |
| def get_model_state_file(checkpoint_dir, zero_stage): | |
| if not os.path.isdir(checkpoint_dir): | |
| raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") | |
| # there should be only one file | |
| if zero_stage <= 2: | |
| file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") | |
| elif zero_stage == 3: | |
| file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") | |
| if not os.path.exists(file): | |
| raise FileNotFoundError(f"can't find model states file at '{file}'") | |
| return file | |
| def get_checkpoint_files(checkpoint_dir, glob_pattern): | |
| # XXX: need to test that this simple glob rule works for multi-node setup too | |
| ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) | |
| if len(ckpt_files) == 0: | |
| raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") | |
| return ckpt_files | |
| def get_optim_files(checkpoint_dir): | |
| return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") | |
| def get_model_state_files(checkpoint_dir): | |
| return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") | |
| def parse_model_states(files): | |
| zero_model_states = [] | |
| for file in files: | |
| state_dict = torch.load(file, map_location=device) | |
| if BUFFER_NAMES not in state_dict: | |
| raise ValueError(f"{file} is not a model state checkpoint") | |
| buffer_names = state_dict[BUFFER_NAMES] | |
| if debug: | |
| print("Found buffers:", buffer_names) | |
| # recover just the buffers while restoring them to fp32 if they were saved in fp16 | |
| buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} | |
| param_shapes = state_dict[PARAM_SHAPES] | |
| # collect parameters that are included in param_shapes | |
| param_names = [] | |
| for s in param_shapes: | |
| for name in s.keys(): | |
| param_names.append(name) | |
| # update with frozen parameters | |
| frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) | |
| if frozen_param_shapes is not None: | |
| if debug: | |
| print(f"Found frozen_param_shapes: {frozen_param_shapes}") | |
| param_names += list(frozen_param_shapes.keys()) | |
| # handle shared params | |
| shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] | |
| ds_version = state_dict.get(DS_VERSION, None) | |
| frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) | |
| z_model_state = zero_model_state(buffers=buffers, | |
| param_shapes=param_shapes, | |
| shared_params=shared_params, | |
| ds_version=ds_version, | |
| frozen_param_shapes=frozen_param_shapes, | |
| frozen_param_fragments=frozen_param_fragments) | |
| zero_model_states.append(z_model_state) | |
| return zero_model_states | |
| def parse_optim_states(files, ds_checkpoint_dir): | |
| total_files = len(files) | |
| state_dicts = [] | |
| for f in files: | |
| state_dict = torch.load(f, map_location=device) | |
| # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights | |
| # and also handle the case where it was already removed by another helper script | |
| state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) | |
| state_dicts.append(state_dict) | |
| if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: | |
| raise ValueError(f"{files[0]} is not a zero checkpoint") | |
| zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] | |
| world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] | |
| # For ZeRO-2 each param group can have different partition_count as data parallelism for expert | |
| # parameters can be different from data parallelism for non-expert parameters. So we can just | |
| # use the max of the partition_count to get the dp world_size. | |
| if type(world_size) is list: | |
| world_size = max(world_size) | |
| if world_size != total_files: | |
| raise ValueError( | |
| f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " | |
| "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." | |
| ) | |
| # the groups are named differently in each stage | |
| if zero_stage <= 2: | |
| fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS | |
| elif zero_stage == 3: | |
| fp32_groups_key = FP32_FLAT_GROUPS | |
| else: | |
| raise ValueError(f"unknown zero stage {zero_stage}") | |
| if zero_stage <= 2: | |
| fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] | |
| elif zero_stage == 3: | |
| # if there is more than one param group, there will be multiple flattened tensors - one | |
| # flattened tensor per group - for simplicity merge them into a single tensor | |
| # | |
| # XXX: could make the script more memory efficient for when there are multiple groups - it | |
| # will require matching the sub-lists of param_shapes for each param group flattened tensor | |
| fp32_flat_groups = [ | |
| torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) | |
| ] | |
| return zero_stage, world_size, fp32_flat_groups | |
| def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): | |
| """ | |
| Returns fp32 state_dict reconstructed from ds checkpoint | |
| Args: | |
| - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) | |
| """ | |
| print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") | |
| optim_files = get_optim_files(ds_checkpoint_dir) | |
| zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) | |
| print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") | |
| model_files = get_model_state_files(ds_checkpoint_dir) | |
| zero_model_states = parse_model_states(model_files) | |
| print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') | |
| if zero_stage <= 2: | |
| return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, | |
| exclude_frozen_parameters) | |
| elif zero_stage == 3: | |
| return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, | |
| exclude_frozen_parameters) | |
| def _zero2_merge_frozen_params(state_dict, zero_model_states): | |
| if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | |
| return | |
| frozen_param_shapes = zero_model_states[0].frozen_param_shapes | |
| frozen_param_fragments = zero_model_states[0].frozen_param_fragments | |
| if debug: | |
| num_elem = sum(s.numel() for s in frozen_param_shapes.values()) | |
| print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | |
| wanted_params = len(frozen_param_shapes) | |
| wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | |
| avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) | |
| print(f'Frozen params: Have {avail_numel} numels to process.') | |
| print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | |
| total_params = 0 | |
| total_numel = 0 | |
| for name, shape in frozen_param_shapes.items(): | |
| total_params += 1 | |
| unpartitioned_numel = shape.numel() | |
| total_numel += unpartitioned_numel | |
| state_dict[name] = frozen_param_fragments[name] | |
| if debug: | |
| print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | |
| print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | |
| def _has_callable(obj, fn): | |
| attr = getattr(obj, fn, None) | |
| return callable(attr) | |
| def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | |
| param_shapes = zero_model_states[0].param_shapes | |
| # Reconstruction protocol: | |
| # | |
| # XXX: document this | |
| if debug: | |
| for i in range(world_size): | |
| for j in range(len(fp32_flat_groups[0])): | |
| print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") | |
| # XXX: memory usage doubles here (zero2) | |
| num_param_groups = len(fp32_flat_groups[0]) | |
| merged_single_partition_of_fp32_groups = [] | |
| for i in range(num_param_groups): | |
| merged_partitions = [sd[i] for sd in fp32_flat_groups] | |
| full_single_fp32_vector = torch.cat(merged_partitions, 0) | |
| merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) | |
| avail_numel = sum( | |
| [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) | |
| if debug: | |
| wanted_params = sum([len(shapes) for shapes in param_shapes]) | |
| wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) | |
| # not asserting if there is a mismatch due to possible padding | |
| print(f"Have {avail_numel} numels to process.") | |
| print(f"Need {wanted_numel} numels in {wanted_params} params.") | |
| # params | |
| # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support | |
| # out-of-core computing solution | |
| total_numel = 0 | |
| total_params = 0 | |
| for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): | |
| offset = 0 | |
| avail_numel = full_single_fp32_vector.numel() | |
| for name, shape in shapes.items(): | |
| unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) | |
| total_numel += unpartitioned_numel | |
| total_params += 1 | |
| if debug: | |
| print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | |
| state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) | |
| offset += unpartitioned_numel | |
| # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and | |
| # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex | |
| # paddings performed in the code it's almost impossible to predict the exact numbers w/o the | |
| # live optimizer object, so we are checking that the numbers are within the right range | |
| align_to = 2 * world_size | |
| def zero2_align(x): | |
| return align_to * math.ceil(x / align_to) | |
| if debug: | |
| print(f"original offset={offset}, avail_numel={avail_numel}") | |
| offset = zero2_align(offset) | |
| avail_numel = zero2_align(avail_numel) | |
| if debug: | |
| print(f"aligned offset={offset}, avail_numel={avail_numel}") | |
| # Sanity check | |
| if offset != avail_numel: | |
| raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | |
| print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") | |
| def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, | |
| exclude_frozen_parameters): | |
| state_dict = OrderedDict() | |
| # buffers | |
| buffers = zero_model_states[0].buffers | |
| state_dict.update(buffers) | |
| if debug: | |
| print(f"added {len(buffers)} buffers") | |
| if not exclude_frozen_parameters: | |
| _zero2_merge_frozen_params(state_dict, zero_model_states) | |
| _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | |
| # recover shared parameters | |
| for pair in zero_model_states[0].shared_params: | |
| if pair[1] in state_dict: | |
| state_dict[pair[0]] = state_dict[pair[1]] | |
| return state_dict | |
| def zero3_partitioned_param_info(unpartitioned_numel, world_size): | |
| remainder = unpartitioned_numel % world_size | |
| padding_numel = (world_size - remainder) if remainder else 0 | |
| partitioned_numel = math.ceil(unpartitioned_numel / world_size) | |
| return partitioned_numel, padding_numel | |
| def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): | |
| if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | |
| return | |
| if debug: | |
| for i in range(world_size): | |
| num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) | |
| print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | |
| frozen_param_shapes = zero_model_states[0].frozen_param_shapes | |
| wanted_params = len(frozen_param_shapes) | |
| wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | |
| avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size | |
| print(f'Frozen params: Have {avail_numel} numels to process.') | |
| print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | |
| total_params = 0 | |
| total_numel = 0 | |
| for name, shape in zero_model_states[0].frozen_param_shapes.items(): | |
| total_params += 1 | |
| unpartitioned_numel = shape.numel() | |
| total_numel += unpartitioned_numel | |
| param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) | |
| state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) | |
| partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | |
| if debug: | |
| print( | |
| f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | |
| ) | |
| print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | |
| def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | |
| param_shapes = zero_model_states[0].param_shapes | |
| avail_numel = fp32_flat_groups[0].numel() * world_size | |
| # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each | |
| # param, re-consolidating each param, while dealing with padding if any | |
| # merge list of dicts, preserving order | |
| param_shapes = {k: v for d in param_shapes for k, v in d.items()} | |
| if debug: | |
| for i in range(world_size): | |
| print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") | |
| wanted_params = len(param_shapes) | |
| wanted_numel = sum(shape.numel() for shape in param_shapes.values()) | |
| # not asserting if there is a mismatch due to possible padding | |
| avail_numel = fp32_flat_groups[0].numel() * world_size | |
| print(f"Trainable params: Have {avail_numel} numels to process.") | |
| print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") | |
| # params | |
| # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support | |
| # out-of-core computing solution | |
| offset = 0 | |
| total_numel = 0 | |
| total_params = 0 | |
| for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'): | |
| unpartitioned_numel = shape.numel() | |
| total_numel += unpartitioned_numel | |
| total_params += 1 | |
| partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | |
| if debug: | |
| print( | |
| f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | |
| ) | |
| # XXX: memory usage doubles here | |
| state_dict[name] = torch.cat( | |
| tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), | |
| 0).narrow(0, 0, unpartitioned_numel).view(shape) | |
| offset += partitioned_numel | |
| offset *= world_size | |
| # Sanity check | |
| if offset != avail_numel: | |
| raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | |
| print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") | |
| def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, | |
| exclude_frozen_parameters): | |
| state_dict = OrderedDict() | |
| # buffers | |
| buffers = zero_model_states[0].buffers | |
| state_dict.update(buffers) | |
| if debug: | |
| print(f"added {len(buffers)} buffers") | |
| if not exclude_frozen_parameters: | |
| _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) | |
| _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | |
| # recover shared parameters | |
| for pair in zero_model_states[0].shared_params: | |
| if pair[1] in state_dict: | |
| state_dict[pair[0]] = state_dict[pair[1]] | |
| return state_dict | |
| def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False): | |
| """ | |
| Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with | |
| ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example | |
| via a model hub. | |
| Args: | |
| - ``checkpoint_dir``: path to the desired checkpoint folder | |
| - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` | |
| - ``exclude_frozen_parameters``: exclude frozen parameters | |
| Returns: | |
| - pytorch ``state_dict`` | |
| Note: this approach may not work if your application doesn't have sufficient free CPU memory and | |
| you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with | |
| the checkpoint. | |
| A typical usage might be :: | |
| from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint | |
| # do the training and checkpoint saving | |
| state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu | |
| model = model.cpu() # move to cpu | |
| model.load_state_dict(state_dict) | |
| # submit to model hub or save the model to share with others | |
| In this example the ``model`` will no longer be usable in the deepspeed context of the same | |
| application. i.e. you will need to re-initialize the deepspeed engine, since | |
| ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | |
| If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. | |
| """ | |
| if tag is None: | |
| latest_path = os.path.join(checkpoint_dir, 'latest') | |
| if os.path.isfile(latest_path): | |
| with open(latest_path, 'r') as fd: | |
| tag = fd.read().strip() | |
| else: | |
| raise ValueError(f"Unable to find 'latest' file at {latest_path}") | |
| ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) | |
| if not os.path.isdir(ds_checkpoint_dir): | |
| raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") | |
| return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) | |
| def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, | |
| output_dir, | |
| max_shard_size="5GB", | |
| safe_serialization=False, | |
| tag=None, | |
| exclude_frozen_parameters=False): | |
| """ | |
| Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be | |
| loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. | |
| Args: | |
| - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | |
| - ``output_dir``: directory to the pytorch fp32 state_dict output files | |
| - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB | |
| - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). | |
| - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | |
| - ``exclude_frozen_parameters``: exclude frozen parameters | |
| """ | |
| # Dependency pre-check | |
| if safe_serialization: | |
| try: | |
| from safetensors.torch import save_file | |
| except ImportError: | |
| print('If you want to use `safe_serialization`, please `pip install safetensors`') | |
| raise | |
| if max_shard_size is not None: | |
| try: | |
| from huggingface_hub import split_torch_state_dict_into_shards | |
| except ImportError: | |
| print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') | |
| raise | |
| # Convert zero checkpoint to state_dict | |
| state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters) | |
| # Shard the model if it is too big. | |
| weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" | |
| if max_shard_size is not None: | |
| filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") | |
| state_dict_split = split_torch_state_dict_into_shards(state_dict, | |
| filename_pattern=filename_pattern, | |
| max_shard_size=max_shard_size) | |
| else: | |
| from collections import namedtuple | |
| StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) | |
| state_dict_split = StateDictSplit(is_sharded=False, | |
| filename_to_tensors={weights_name: list(state_dict.keys())}) | |
| # Save the model | |
| filename_to_tensors = state_dict_split.filename_to_tensors.items() | |
| for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): | |
| shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors} | |
| output_path = os.path.join(output_dir, shard_file) | |
| if safe_serialization: | |
| save_file(shard, output_path, metadata={"format": "pt"}) | |
| else: | |
| torch.save(shard, output_path) | |
| # Save index if sharded | |
| if state_dict_split.is_sharded: | |
| index = { | |
| "metadata": state_dict_split.metadata, | |
| "weight_map": state_dict_split.tensor_to_filename, | |
| } | |
| save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" | |
| save_index_file = os.path.join(output_dir, save_index_file) | |
| with open(save_index_file, "w", encoding="utf-8") as f: | |
| content = json.dumps(index, indent=2, sort_keys=True) + "\n" | |
| f.write(content) | |
| def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): | |
| """ | |
| 1. Put the provided model to cpu | |
| 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` | |
| 3. Load it into the provided model | |
| Args: | |
| - ``model``: the model object to update | |
| - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | |
| - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | |
| Returns: | |
| - ``model`: modified model | |
| Make sure you have plenty of CPU memory available before you call this function. If you don't | |
| have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it | |
| conveniently placed for you in the checkpoint folder. | |
| A typical usage might be :: | |
| from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint | |
| model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) | |
| # submit to model hub or save the model to share with others | |
| Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context | |
| of the same application. i.e. you will need to re-initialize the deepspeed engine, since | |
| ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | |
| """ | |
| logger.info(f"Extracting fp32 weights") | |
| state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | |
| logger.info(f"Overwriting model with fp32 weights") | |
| model = model.cpu() | |
| model.load_state_dict(state_dict, strict=False) | |
| return model | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("checkpoint_dir", | |
| type=str, | |
| help="path to the desired checkpoint folder, e.g., path/checkpoint-12") | |
| parser.add_argument("output_dir", | |
| type=str, | |
| help="directory to the pytorch fp32 state_dict output files" | |
| "(e.g. path/checkpoint-12-output/)") | |
| parser.add_argument( | |
| "--max_shard_size", | |
| type=str, | |
| default="5GB", | |
| help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" | |
| "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" | |
| "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" | |
| "without CPU OOM issues.") | |
| parser.add_argument( | |
| "--safe_serialization", | |
| default=False, | |
| action='store_true', | |
| help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") | |
| parser.add_argument("-t", | |
| "--tag", | |
| type=str, | |
| default=None, | |
| help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") | |
| parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") | |
| parser.add_argument("-d", "--debug", action='store_true', help="enable debug") | |
| args = parser.parse_args() | |
| debug = args.debug | |
| convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, | |
| args.output_dir, | |
| max_shard_size=args.max_shard_size, | |
| safe_serialization=args.safe_serialization, | |
| tag=args.tag, | |
| exclude_frozen_parameters=args.exclude_frozen_parameters) | |