Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
model_name: googlenet-12-int8.onnx
|
| 5 |
+
tags:
|
| 6 |
+
- validated
|
| 7 |
+
- vision
|
| 8 |
+
- classification
|
| 9 |
+
- inception_and_googlenet
|
| 10 |
+
- googlenet
|
| 11 |
+
---
|
| 12 |
+
<!--- SPDX-License-Identifier: BSD-3-Clause -->
|
| 13 |
+
|
| 14 |
+
# GoogleNet
|
| 15 |
+
|
| 16 |
+
|Model |Download |Download (with sample test data)| ONNX version |Opset version|Top-1 accuracy (%)|Top-5 accuracy (%)|
|
| 17 |
+
| ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- |
|
| 18 |
+
|GoogleNet| [28 MB](model/googlenet-3.onnx) | [31 MB](model/googlenet-3.tar.gz) | 1.1 | 3| | |
|
| 19 |
+
|GoogleNet| [28 MB](model/googlenet-6.onnx) | [31 MB](model/googlenet-6.tar.gz) | 1.1.2 | 6| | |
|
| 20 |
+
|GoogleNet| [28 MB](model/googlenet-7.onnx) | [31 MB](model/googlenet-7.tar.gz) | 1.2 | 7| | |
|
| 21 |
+
|GoogleNet| [28 MB](model/googlenet-8.onnx) | [31 MB](model/googlenet-8.tar.gz) | 1.3 | 8| | |
|
| 22 |
+
|GoogleNet| [28 MB](model/googlenet-9.onnx) | [31 MB](model/googlenet-9.tar.gz) | 1.4 | 9| | |
|
| 23 |
+
|GoogleNet| [27 MB](model/googlenet-12.onnx) | [25 MB](model/googlenet-12.tar.gz) | 1.9 | 12|67.78|88.34|
|
| 24 |
+
|GoogleNet-int8| [7 MB](model/googlenet-12-int8.onnx) | [5 MB](model/googlenet-12-int8.tar.gz) | 1.9 | 12|67.73|88.32|
|
| 25 |
+
|GoogleNet-qdq | [7 MB](model/googlenet-12-qdq.onnx) | [5 MB](model/googlenet-12-qdq.tar.gz) | 1.12 | 12 | 67.73 | 88.31 |
|
| 26 |
+
> Compared with the fp32 GoogleNet, int8 GoogleNet's Top-1 accuracy drop ratio is 0.07%, Top-5 accuracy drop ratio is 0.02% and performance improvement is 1.27x.
|
| 27 |
+
>
|
| 28 |
+
> **Note**
|
| 29 |
+
>
|
| 30 |
+
> The performance depends on the test hardware. Performance data here is collected with Intel® Xeon® Platinum 8280 Processor, 1s 4c per instance, CentOS Linux 8.3, data batch size is 1.
|
| 31 |
+
|
| 32 |
+
## Description
|
| 33 |
+
GoogLeNet is the name of a convolutional neural network for classification,
|
| 34 |
+
which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014.
|
| 35 |
+
|
| 36 |
+
Differences:
|
| 37 |
+
- not training with the relighting data-augmentation;
|
| 38 |
+
- not training with the scale or aspect-ratio data-augmentation;
|
| 39 |
+
- uses "xavier" to initialize the weights instead of "gaussian";
|
| 40 |
+
|
| 41 |
+
### Dataset
|
| 42 |
+
[ILSVRC2014](http://www.image-net.org/challenges/LSVRC/2014/)
|
| 43 |
+
|
| 44 |
+
## Source
|
| 45 |
+
Caffe BVLC GoogLeNet ==> Caffe2 GoogLeNet ==> ONNX GoogLeNet
|
| 46 |
+
|
| 47 |
+
## Model input and output
|
| 48 |
+
### Input
|
| 49 |
+
```
|
| 50 |
+
data_0: float[1, 3, 224, 224]
|
| 51 |
+
```
|
| 52 |
+
### Output
|
| 53 |
+
```
|
| 54 |
+
prob_0: float[1, 1000]
|
| 55 |
+
```
|
| 56 |
+
### Pre-processing steps
|
| 57 |
+
#### Necessary Imports
|
| 58 |
+
```python
|
| 59 |
+
import imageio
|
| 60 |
+
from PIL import Image
|
| 61 |
+
```
|
| 62 |
+
#### Obtain and pre-process image
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
def get_image(path):
|
| 66 |
+
'''
|
| 67 |
+
Using path to image, return the RGB load image
|
| 68 |
+
'''
|
| 69 |
+
img = imageio.imread(path, pilmode='RGB')
|
| 70 |
+
return img
|
| 71 |
+
|
| 72 |
+
# Pre-processing function for ImageNet models using numpy
|
| 73 |
+
def preprocess(img):
|
| 74 |
+
'''
|
| 75 |
+
Preprocessing required on the images for inference with mxnet gluon
|
| 76 |
+
The function takes loaded image and returns processed tensor
|
| 77 |
+
'''
|
| 78 |
+
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
|
| 79 |
+
img[:, :, 0] -= 123.68
|
| 80 |
+
img[:, :, 1] -= 116.779
|
| 81 |
+
img[:, :, 2] -= 103.939
|
| 82 |
+
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
|
| 83 |
+
img = img.transpose((2, 0, 1))
|
| 84 |
+
img = np.expand_dims(img, axis=0)
|
| 85 |
+
|
| 86 |
+
return img
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### Post-processing steps
|
| 90 |
+
```python
|
| 91 |
+
def predict(path):
|
| 92 |
+
# based on : https://mxnet.apache.org/versions/1.0.0/tutorials/python/predict_image.html
|
| 93 |
+
img = get_image(path)
|
| 94 |
+
img = preprocess(img)
|
| 95 |
+
mod.forward(Batch([mx.nd.array(img)]))
|
| 96 |
+
# Take softmax to generate probabilities
|
| 97 |
+
prob = mod.get_outputs()[0].asnumpy()
|
| 98 |
+
prob = np.squeeze(prob)
|
| 99 |
+
a = np.argsort(prob)[::-1]
|
| 100 |
+
return a
|
| 101 |
+
```
|
| 102 |
+
### Sample test data
|
| 103 |
+
random generated sample test data:
|
| 104 |
+
- test_data_set_0
|
| 105 |
+
- test_data_set_1
|
| 106 |
+
- test_data_set_2
|
| 107 |
+
- test_data_set_3
|
| 108 |
+
- test_data_set_4
|
| 109 |
+
- test_data_set_5
|
| 110 |
+
|
| 111 |
+
## Results/accuracy on test set
|
| 112 |
+
This bundled model obtains a top-1 accuracy 68.7% (31.3% error) and
|
| 113 |
+
a top-5 accuracy 88.9% (11.1% error) on the validation set, using
|
| 114 |
+
just the center crop. (Using the average of 10 crops,
|
| 115 |
+
(4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.)
|
| 116 |
+
|
| 117 |
+
## Quantization
|
| 118 |
+
GoogleNet-int8 and GoogleNet-qdq are obtained by quantizing fp32 GoogleNet model. We use [Intel® Neural Compressor](https://github.com/intel/neural-compressor) with onnxruntime backend to perform quantization. View the [instructions](https://github.com/intel/neural-compressor/blob/master/examples/onnxrt/image_recognition/onnx_model_zoo/googlenet/quantization/ptq/README.md) to understand how to use Intel® Neural Compressor for quantization.
|
| 119 |
+
|
| 120 |
+
### Environment
|
| 121 |
+
onnx: 1.9.0
|
| 122 |
+
onnxruntime: 1.8.0
|
| 123 |
+
|
| 124 |
+
### Prepare model
|
| 125 |
+
```shell
|
| 126 |
+
wget https://github.com/onnx/models/raw/main/vision/classification/inception_and_googlenet/googlenet/model/googlenet-12.onnx
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Model quantize
|
| 130 |
+
Make sure to specify the appropriate dataset path in the configuration file.
|
| 131 |
+
```bash
|
| 132 |
+
bash run_tuning.sh --input_model=path/to/model \ # model path as *.onnx
|
| 133 |
+
--config=googlenet.yaml \
|
| 134 |
+
--data_path=/path/to/imagenet \
|
| 135 |
+
--label_path=/path/to/imagenet/label \
|
| 136 |
+
--output_model=path/to/save
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
## References
|
| 140 |
+
* [Going deeper with convolutions](https://arxiv.org/pdf/1409.4842.pdf)
|
| 141 |
+
|
| 142 |
+
* [Intel® Neural Compressor](https://github.com/intel/neural-compressor)
|
| 143 |
+
|
| 144 |
+
## Contributors
|
| 145 |
+
* [mengniwang95](https://github.com/mengniwang95) (Intel)
|
| 146 |
+
* [airMeng](https://github.com/airMeng) (Intel)
|
| 147 |
+
* [ftian1](https://github.com/ftian1) (Intel)
|
| 148 |
+
* [hshen14](https://github.com/hshen14) (Intel)
|
| 149 |
+
|
| 150 |
+
## License
|
| 151 |
+
[BSD-3](LICENSE)
|
| 152 |
+
|