OlivierDehaene
commited on
Commit
·
7d2ded6
1
Parent(s):
979206f
use torch.nn.functional.gelu instead
Browse files- modeling_gpt2_mq.py +2 -14
modeling_gpt2_mq.py
CHANGED
|
@@ -71,26 +71,14 @@ def prepare_attn_mask(
|
|
| 71 |
return combined_attention_mask
|
| 72 |
|
| 73 |
|
| 74 |
-
@torch.jit.script
|
| 75 |
-
def gelu_forward(x: torch.Tensor) -> torch.Tensor:
|
| 76 |
-
"""
|
| 77 |
-
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
| 78 |
-
make the model jitable.
|
| 79 |
-
|
| 80 |
-
Args:
|
| 81 |
-
x (`torch.tensor`, *required*):
|
| 82 |
-
input hidden states
|
| 83 |
-
"""
|
| 84 |
-
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
| 85 |
-
|
| 86 |
-
|
| 87 |
class LinearGPT2MLP(nn.Module):
|
| 88 |
def __init__(self, intermediate_size, config):
|
| 89 |
super().__init__()
|
| 90 |
embed_dim = config.hidden_size
|
| 91 |
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
| 92 |
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
| 93 |
-
self.act = ACT2FN[config.activation_function] if "gelu" not in config.activation_function else
|
|
|
|
| 94 |
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 95 |
|
| 96 |
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
|
|
|
| 71 |
return combined_attention_mask
|
| 72 |
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
class LinearGPT2MLP(nn.Module):
|
| 75 |
def __init__(self, intermediate_size, config):
|
| 76 |
super().__init__()
|
| 77 |
embed_dim = config.hidden_size
|
| 78 |
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
| 79 |
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
| 80 |
+
self.act = ACT2FN[config.activation_function] if "gelu" not in config.activation_function else lambda \
|
| 81 |
+
x: torch.nn.functional.gelu(x, approximate="tanh")
|
| 82 |
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 83 |
|
| 84 |
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|