omnivinci / speech_base_projector.py
leoye's picture
Initial commit
fd01e7c
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
class SpeechMultimodalProjectorConfig(PretrainedConfig):
"""Configuration for speech multimodal projector."""
model_type = "speech_mm_projector"
def __init__(self, speech_mm_projector_type: str = None, **kwargs):
super().__init__()
self.speech_mm_projector_type = speech_mm_projector_type
class SpeechMultimodalProjector(PreTrainedModel):
"""Speech multimodal projector for mapping speech features to LLM space."""
config_class = SpeechMultimodalProjectorConfig
def __init__(self, speech_mm_projector_cfg: SpeechMultimodalProjectorConfig, config: PretrainedConfig):
super().__init__(speech_mm_projector_cfg)
if hasattr(config, "speech_mm_projector"):
speech_mm_projector_type = config.speech_mm_projector
else:
speech_mm_projector_type = speech_mm_projector_cfg.speech_mm_projector_type
if speech_mm_projector_type == "mlp":
self.layers = nn.Sequential(
nn.Linear(config.speech_hidden_size, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
elif speech_mm_projector_type == "mlp_downsample":
self.downsample_block = AudioDownSampleBlock(config.speech_hidden_size)
self.layers = nn.Sequential(
nn.Linear(config.speech_hidden_size, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
else:
raise ValueError(f"Unknown projector type: {speech_mm_projector_type}")
def forward(self, x, *args, **kwargs):
if self.speech_mm_projector_type == "mlp_downsample":
x = self.downsample_block(x)
return self.layers(x)
AutoConfig.register("speech_mm_projector", SpeechMultimodalProjectorConfig)
AutoModel.register(SpeechMultimodalProjectorConfig, SpeechMultimodalProjector)