File size: 88,578 Bytes
fd01e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import logging
import numpy as np
import os
import os.path
import os.path as osp
import shutil
import warnings
from abc import ABC
from collections import OrderedDict, defaultdict, deque
from copy import deepcopy
from itertools import chain
from threading import Thread
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from einops import rearrange
from PIL import Image
from transformers import (
AutoConfig,
AutoModel,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
LogitsProcessor,
PretrainedConfig,
PreTrainedModel,
Qwen2Config,
Qwen2ForCausalLM,
Qwen2PreTrainedModel,
TextIteratorStreamer,
WhisperFeatureExtractor,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import ContextManagers, no_init_weights
from .auto_processor import VILAProcessor
from .base_projector import MultimodalProjector, MultimodalProjectorConfig
from .sound_base_projector import SoundMultimodalProjector, SoundMultimodalProjectorConfig
from .speech_base_projector import SpeechMultimodalProjector, SpeechMultimodalProjectorConfig
from .builder import build_llm_and_tokenizer
from .configuration_vila import VILAConfig
from .constants import *
from .conversation import SeparatorStyle, default_conversation
from .distributed import all_gather as vila_all_gather
from .media import extract_media
from .media_encoder import BasicImageEncoder, BasicVideoEncoder, TSPVideoEncoder, BasicSoundEncoder, CacheFeatures
from .mm_utils import process_image, process_images
from .model_utils_packing import set_seqlens_in_batch
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
from .tokenizer_utils import tokenize_conversation
from .utils import get_model_config, load_tokenizer_then_handle_media_tokens_and_chat_template
from .constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS_VILA, NUM_EXTRA_TOKENS_XVILA
from .qwen_audio_encoder import Qwen2AudioTower
import whisper
from .audio_encoder import AudioTower
def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
"""Build multimodal projector from path or configuration."""
if model_type_or_path is None:
return None
if config.resume_path:
assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!"
return MultimodalProjector.from_pretrained(model_type_or_path, config)
else:
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
mm_projector = MultimodalProjector(mm_projector_cfg, config)
return mm_projector
def build_speech_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
"""Build speech multimodal projector from path or configuration."""
if model_type_or_path is None:
return None
if config.resume_path:
assert os.path.exists(model_type_or_path), f"Resume speech mm projector path {model_type_or_path} does not exist!"
_model = SpeechMultimodalProjector.from_pretrained(
model_type_or_path, config, torch_dtype=eval(config.model_dtype)
)
return _model
else:
speech_mm_projector_cfg = SpeechMultimodalProjectorConfig(model_type_or_path)
speech_mm_projector = SpeechMultimodalProjector(speech_mm_projector_cfg, config).to(eval(config.model_dtype))
return speech_mm_projector
def build_sound_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
"""Build sound multimodal projector from path or configuration."""
if model_type_or_path is None:
return None
if type(config.model_dtype) == str:
model_dtype = eval(config.model_dtype)
else:
model_dtype = config.model_dtype
if config.resume_path:
assert os.path.exists(model_type_or_path), f"Resume sound mm projector path {model_type_or_path} does not exist!"
_model = SoundMultimodalProjector.from_pretrained(
model_type_or_path, config, torch_dtype=model_dtype
)
return _model
else:
sound_mm_projector_cfg = SoundMultimodalProjectorConfig(model_type_or_path)
sound_mm_projector = SoundMultimodalProjector(sound_mm_projector_cfg, config).to(model_dtype)
return sound_mm_projector
def check_dot_in_model_path(model_path: str):
"""Check if the model path contains a dot, which may affect model loading."""
if osp.isdir(model_path):
if "." in osp.abspath(model_path):
return True
else:
if "." in model_path:
return True
return False
def get_vila_version(model_path: str) -> str:
VERSIONS = ["vila1.5", "vila-u", "longvila", "nvila", "vila-m3"]
for version in VERSIONS:
if version in model_path.lower():
return version
return None
def generate_jinja_template(conv_mode: str) -> str:
if conv_mode == "vicuna_v1":
return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. " %}
{% set roles = ["user", "assistant"] %}
{% set sep = " " %}
{{ system_prompt }}
{% for message in messages %}
{% if message['role'] == roles[0] %}
{{ "USER: " }}{{ sep }}{{ message['content'] }}{{ sep }}
{% else %}
{{ "ASSISTANT: " }}{{ sep }}{{ message['content'] }}{{ sep }}
{% endif %}
{% endfor %}
{% if messages[-1]['role'] == 'user' %}
{{ "ASSISTANT:" }}
{% endif %}
"""
elif conv_mode == "llama_3":
return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|>" %}
{% set roles = ["<|start_header_id|>user<|end_header_id|>\\n\\n", "<|start_header_id|>assistant<|end_header_id|>\\n\\n"]%}
{% set sep = "<|eot_id|>" %}
{{ system_prompt }}
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ roles[0] }}{{ message['content'] }}{{ sep }}
{% else %}
{{ roles[1] }}{{ message['content'] }}{{ sep }}
{% endif %}
{% endfor %}
{% if messages[-1]['role'] == 'user' %}
{{ roles[1] }}
{% endif %}
"""
elif conv_mode == "hermes_2":
return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %}
{% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %}
{% set sep = "<|im_end|>" %}
{{ system_prompt }}{{ sep }}
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ roles[0] }}{{ message['content'] }}{{ sep }}
{% else %}
{{ roles[1] }}{{ message['content'] }}{{ sep }}
{% endif %}
{% endfor %}"""
else:
raise NotImplementedError(f"Jinja template generation is not implemented for {conv_mode}.")
def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
"""Build vision tower from path or configuration."""
# Skip vision tower instantiation if path is None
if model_name_or_path is None:
return None
vision_tower_arch = None
if config.resume_path and "radio" not in model_name_or_path:
assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!"
vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path
use_s2 = getattr(config, "s2", False)
use_dynamic_s2 = getattr(config, "dynamic_s2", False)
if "siglip" in vision_tower_name:
if use_dynamic_s2:
vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config)
elif use_s2:
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
else:
vision_tower = SiglipVisionTower(model_name_or_path, config)
else:
raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}")
config.mm_hidden_size = (
vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size
)
return vision_tower
def build_audio_tower(model_name_or_path: str, config: PretrainedConfig, encoder_type: str) -> PreTrainedModel:
"""Build audio tower for sound or speech processing."""
assert encoder_type in ["sound", "speech"]
# Skip tower instantiation if path is None
if model_name_or_path is None:
return None
model_type = "af3"
if model_type == "af3":
model = Qwen2AudioTower(model_name_or_path, config)
output_dim = 1280
else:
raise NotImplementedError(f"Not implemented for this encoder: {model_name_or_path}")
if encoder_type == "sound":
config.sound_hidden_size = output_dim
elif encoder_type == "speech":
config.speech_hidden_size = output_dim
else:
raise NotImplementedError(f"Not implemented for this encoder: {model_name_or_path}")
return model
class VILAPretrainedModel(PreTrainedModel):
config_class = VILAConfig
main_input_name = "input_embeds"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_no_split_modules = ["Qwen2DecoderLayer", "SiglipEncoderLayer"]
def __init__(self, config: VILAConfig, *args, **kwargs):
super().__init__(config)
self.config = config
cfgs = get_model_config(config)
if len(cfgs) == 7:
(
llm_cfg,
vision_tower_cfg,
speech_tower_cfg,
sound_tower_cfg,
mm_projector_cfg,
speech_mm_projector_cfg,
sound_mm_projector_cfg,
) = cfgs
else:
raise ValueError(
"`llm_cfg` `mm_projector_cfg` `speech_mm_projector_cfg` `sound_mm_projector_cfg` `vision_tower_cfg` `speech_tower_cfg` `sound_tower_cfg` not found in the config."
)
# loading on auto by default
device_map = kwargs.get("device_map", "auto")
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
if speech_tower_cfg:
self.speech_tower = build_audio_tower(speech_tower_cfg, config, encoder_type="speech")
self.speech_mm_projector = build_speech_mm_projector(speech_mm_projector_cfg, config)
if sound_tower_cfg:
self.sound_tower = build_audio_tower(sound_tower_cfg, config, encoder_type="sound")
self.sound_mm_projector = build_sound_mm_projector(sound_mm_projector_cfg, config)
if device_map in ["auto", "cuda"]:
self.mm_projector = self.mm_projector.cuda()
self.vision_tower = self.vision_tower.cuda()
self.speech_tower = self.speech_tower.cuda() if hasattr(self, "speech_tower") else None
self.sound_tower = self.sound_tower.cuda() if hasattr(self, "sound_tower") else None
self.speech_mm_projector = self.speech_mm_projector.cuda() if hasattr(self, "speech_mm_projector") else None
self.sound_mm_projector = self.sound_mm_projector.cuda() if hasattr(self, "sound_mm_projector") else None
# set device_map auto can autoamtically shard llm to different devices
self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
self.llm_model_embed_tokens = self.llm.model.embed_tokens
self.tokenizer.padding_side = "left"
self.vocab_size = len(self.tokenizer)
self.update_vocab_size = lambda: setattr(self, "vocab_size", len(self.tokenizer))
self.encoders = {}
for name in ["image", "video", "speech", "sound"]:
encoder_config = getattr(self.config, f"{name}_encoder")
if isinstance(encoder_config, str):
encoder_config = json.loads(encoder_config)
if encoder_config.get("embed_time", False) == "True":
if "trope_dim" not in encoder_config and encoder_config.get("time_embed_type", "") in ["pixel", "lang"]:
encoder_config["trope_dim"] = self.config.hidden_size // 2
print(f"Warning: trope_dim not found in config, defaulting to hidden_size // 2: {encoder_config['trope_dim']}")
encoder_config.pop('_target_')
if name == "video":
self.encoders[name] = TSPVideoEncoder(parent=self, **encoder_config)
elif name == "image":
self.encoders[name] = BasicImageEncoder(self)
else:
self.encoders[name] = BasicSoundEncoder(parent=self, **encoder_config)
self.post_config()
self.is_loaded = True
self.llm_only_need_embed = kwargs.get("llm_only_need_embed", False)
if self.llm_only_need_embed:
print("We only need the embed_tokens in llm.")
del self.llm
self.llm = None
torch.cuda.empty_cache()
assert (
self.llm is not None
or self.vision_tower is not None
or self.speech_tower is not None
or self.mm_projector is not None
or self.speech_mm_projector is not None
), "At least one of the components must be instantiated."
@classmethod
def copy_or_symlink_directory(cls, model_path, output_dir, copy=True):
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Create symlinks for all files in model_path to output_dir
for item in os.listdir(model_path):
src_path = os.path.join(model_path, item)
dst_path = os.path.join(output_dir, item)
# Remove existing file/directory at destination if it exists
if os.path.exists(dst_path):
if os.path.islink(dst_path):
os.unlink(dst_path)
elif os.path.isdir(dst_path):
shutil.rmtree(dst_path)
else:
os.remove(dst_path)
# Create symlink
if copy:
if os.path.isdir(src_path):
shutil.copytree(src_path, dst_path)
else:
shutil.copy2(src_path, dst_path)
print(f"Copied {src_path} to {dst_path}")
else:
os.symlink(src_path, dst_path)
print(f"Created symlink from {src_path} to {dst_path}")
@classmethod
def copy_remote_py_files(cls, output_dir, copy=True):
# copy .py and README for next loading
current_file_path = os.path.abspath(__file__)
current_folder = os.path.dirname(current_file_path)
for file_name in os.listdir(current_folder):
if file_name == "INSTRUCTIONS.md":
src_fname = os.path.join(current_folder, file_name)
dst_fname = os.path.join(output_dir, "README.md")
if os.path.exists(dst_fname):
old_readme = open(dst_fname).read()
else:
old_readme = ""
with open(src_fname) as src, open(dst_fname, "w") as dst:
dst.write(src.read())
dst.write(old_readme)
print("[HF] README", src_fname, "to", dst_fname)
if file_name.endswith(".py") or file_name.endswith(".jinja"):
full_file_name = os.path.join(current_folder, file_name)
if os.path.isfile(full_file_name):
if copy:
shutil.copy(full_file_name, output_dir)
print("[HF] copying", full_file_name, "to", output_dir)
else:
# symlink to ease development
if os.path.exists(os.path.join(output_dir, file_name)):
os.remove(os.path.join(output_dir, file_name))
os.symlink(full_file_name, os.path.join(output_dir, file_name))
print("[HF] linking", full_file_name, "to", output_dir)
def save_pretrained(self, output_dir, state_dict=None, **kwargs):
if state_dict is None:
# other wise fetch from deepspeed
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
state_dict = self.state_dict()
if getattr(self, "tokenizer", None):
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
if self.get_llm():
print(f"saving llm to {osp.join(output_dir, 'llm')}")
self.llm.config._name_or_path = osp.join(output_dir, "llm")
llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
self.config.llm_cfg = self.llm.config
if self.get_vision_tower():
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
vision_tower_state_dict = OrderedDict(
{k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
)
self.vision_tower.vision_tower.save_pretrained(
os.path.join(output_dir, "vision_tower"),
state_dict=vision_tower_state_dict,
)
self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
self.config.vision_tower_cfg = self.vision_tower.config
if hasattr(self.config.vision_tower_cfg, "auto_map"):
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
delattr(self.config.vision_tower_cfg, "auto_map")
if self.get_speech_tower():
print(f"saving speech_tower to {osp.join(output_dir, 'speech_tower')}")
self.speech_tower.config._name_or_path = osp.join(output_dir, "speech_tower").replace(
"tmp-checkpoint", "checkpoint"
)
speech_tower_state_dict = OrderedDict(
{k.split("speech_tower.audio_tower.")[-1]: v for k, v in state_dict.items() if "speech_tower" in k}
)
self.speech_tower.audio_tower.save_pretrained(
os.path.join(output_dir, "speech_tower"),
state_dict=speech_tower_state_dict,
)
self.config.speech_tower_cfg = self.speech_tower.config
if self.get_sound_tower():
print(f"saving sound_tower to {osp.join(output_dir, 'sound_tower')}")
self.sound_tower.config._name_or_path = osp.join(output_dir, "sound_tower").replace(
"tmp-checkpoint", "checkpoint"
)
sound_tower_state_dict = OrderedDict(
{k.split("sound_tower.audio_tower.")[-1]: v for k, v in state_dict.items() if "sound_tower" in k}
)
self.sound_tower.audio_tower.save_pretrained(
os.path.join(output_dir, "sound_tower"),
state_dict=sound_tower_state_dict,
)
self.config.sound_tower_cfg = self.sound_tower.config
if self.get_mm_projector():
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
mm_projector_state_dict = OrderedDict(
{k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
)
self.mm_projector.save_pretrained(
os.path.join(output_dir, "mm_projector"),
state_dict=mm_projector_state_dict,
)
self.config.mm_projector_cfg = self.mm_projector.config
if self.get_speech_mm_projector():
print(f"saving speech_mm_projector to {osp.join(output_dir, 'speech_mm_projector')}")
self.speech_mm_projector.config._name_or_path = osp.join(output_dir, "speech_mm_projector").replace(
"tmp-checkpoint", "checkpoint"
)
speech_mm_projector_state_dict = OrderedDict(
{k.split("speech_mm_projector.")[-1]: v for k, v in state_dict.items() if "speech_mm_projector" in k}
)
self.speech_mm_projector.save_pretrained(
os.path.join(output_dir, "speech_mm_projector"),
state_dict=speech_mm_projector_state_dict,
)
self.config.speech_mm_projector_cfg = self.speech_mm_projector.config
if self.get_sound_mm_projector():
print(f"saving sound_mm_projector to {osp.join(output_dir, 'sound_mm_projector')}")
self.sound_mm_projector.config._name_or_path = osp.join(output_dir, "sound_mm_projector").replace(
"tmp-checkpoint", "checkpoint"
)
sound_mm_projector_state_dict = OrderedDict(
{k.split("sound_mm_projector.")[-1]: v for k, v in state_dict.items() if "sound_mm_projector" in k}
)
self.sound_mm_projector.save_pretrained(
os.path.join(output_dir, "sound_mm_projector"),
state_dict=sound_mm_projector_state_dict,
)
self.config.sound_mm_projector_cfg = self.sound_mm_projector.config
# update and save top-level config
self.config._name_or_path = output_dir
self.config.architectures = [self.__class__.__name__]
self.config.save_pretrained(output_dir)
# copy .py and README for next loading
self.copy_remote_py_files(output_dir)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[str] = None,
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: Optional[bool] = None,
weights_only: bool = True,
**kwargs,
):
# print("DEBUG2", kwargs); input()
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
if kwargs.get("torch_dtype", None) is not None:
config.torch_dtype = kwargs.get("torch_dtype", None)
config.model_dtype = kwargs.get("torch_dtype", None)
if type(kwargs.get("torch_dtype", None)) == str:
kwargs["torch_dtype"] = eval(kwargs.get("torch_dtype", None))
else:
kwargs["torch_dtype"] = kwargs.get("torch_dtype", None)
return cls._from_config(config, **kwargs)
def init_llm(self, llm_config, config, *args, **kwargs):
"""Initialize language model and tokenizer."""
self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs)
self.pad_token_list = (
self.tokenizer.pad_token_id,
self.tokenizer.eos_token_id,
self.tokenizer.tokenize("<|endoftext|>")[0], # for Qwen
)
self.vocab_size = len(self.tokenizer)
self.update_vocab_size = lambda: setattr(self, "vocab_size", len(self.tokenizer))
# XGrammar tokenizer and grammar compiler
# lazy init only when specified json output during inference
self.grammar_compiler = None
# self.llm.resize_token_embeddings(len(self.tokenizer))
return self.llm, self.tokenizer
def post_config(self):
self.training = self.llm.training
if self.training:
self.train()
else:
self.eval()
# configuration
if getattr(self.config, "llm_cfg", None) is None:
self.config.llm_cfg = self.llm.config
if getattr(self.config, "vision_tower_cfg", None) is None:
self.config.vision_tower_cfg = self.vision_tower.config
if getattr(self.config, "mm_projector_cfg", None) is None:
self.config.mm_projector_cfg = self.mm_projector.config
if getattr(self.config, "speech_tower_cfg", None) is None and hasattr(self, "speech_tower"):
self.config.speech_tower_cfg = self.speech_tower.config
if getattr(self.config, "sound_tower_cfg", None) is None and hasattr(self, "sound_tower"):
self.config.sound_tower_cfg = self.sound_tower.config
if getattr(self.config, "speech_mm_projector_cfg", None) is None and hasattr(self, "speech_mm_projector"):
self.config.speech_mm_projector_cfg = self.speech_mm_projector.config
if getattr(self.config, "sound_mm_projector_cfg", None) is None and hasattr(self, "sound_mm_projector"):
self.config.sound_mm_projector_cfg = self.sound_mm_projector.config
def get_llm(self):
llm = getattr(self, "llm", None)
if type(llm) is list:
llm = llm[0]
return llm
def get_lm_head(self):
lm_head = getattr(self.get_llm(), "lm_head", None)
return lm_head
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_speech_tower(self):
speech_tower = getattr(self, "speech_tower", None)
if type(speech_tower) is list:
speech_tower = speech_tower[0]
return speech_tower
def get_sound_tower(self):
sound_tower = getattr(self, "sound_tower", None)
if type(sound_tower) is list:
sound_tower = sound_tower[0]
return sound_tower
def get_mm_projector(self):
mm_projector = getattr(self, "mm_projector", None)
if type(mm_projector) is list:
mm_projector = mm_projector[0]
return mm_projector
def get_sound_mm_projector(self):
sound_mm_projector = getattr(self, "sound_mm_projector", None)
if type(sound_mm_projector) is list:
sound_mm_projector = sound_mm_projector[0]
return sound_mm_projector
def get_speech_tower(self):
speech_tower = getattr(self, "speech_tower", None)
if type(speech_tower) is list:
speech_tower = speech_tower[0]
return speech_tower
def get_speech_mm_projector(self):
speech_mm_projector = getattr(self, "speech_mm_projector", None)
if type(speech_mm_projector) is list:
speech_mm_projector = speech_mm_projector[0]
return speech_mm_projector
def freezed_module_patch(self):
"""
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
"""
if self.training:
if self.get_llm() and not getattr(self.config, "tune_language_model", False):
pass
if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
self.get_vision_tower().eval()
if self.get_speech_tower() and not getattr(self.config, "tune_speech_tower", False):
self.get_speech_tower().eval()
if self.get_sound_tower() and not getattr(self.config, "tune_sound_tower", False):
self.get_sound_tower().eval()
if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
self.get_mm_projector().eval()
if self.get_speech_mm_projector() and not getattr(self.config, "tune_speech_mm_projector", False):
self.get_speech_mm_projector().eval()
if self.get_sound_mm_projector() and not getattr(self.config, "tune_sound_mm_projector", False):
self.get_sound_mm_projector().eval()
class VILAForCausalLM(VILAPretrainedModel):
def __init__(self, config: VILAConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
def merge_features_for_dynamic_s2(self, image_features, block_sizes):
scales = self.get_vision_tower().scales
resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx
image_features_each_image = []
new_block_sizes = []
block_cnt = 0
for block_size_each_image in block_sizes:
if block_size_each_image is None:
cur_features = image_features[block_cnt : block_cnt + 1]
cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5))
cur_features = cur_features.repeat(1, len(scales), 1, 1)
image_features_each_image.append(cur_features)
new_block_sizes.append((1, 1))
block_cnt += 1
else:
cur_features_each_scale = []
for scale in scales[:-1]:
num_blocks_this_scale = (scale // scales[0]) ** 2
cur_features_each_scale.append(
self.merge_chessboard(
image_features[block_cnt : block_cnt + num_blocks_this_scale],
num_split_h=scale // scales[0],
num_split_w=scale // scales[0],
)
) # 1 * C * H * W
block_cnt += num_blocks_this_scale
num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
cur_features_each_scale.append(
self.merge_chessboard(
image_features[block_cnt : block_cnt + num_blocks_last_scale],
num_split_h=block_size_each_image[0],
num_split_w=block_size_each_image[1],
)
) # 1 * C * H * W
block_cnt += num_blocks_last_scale
# resize and concat features from different scales
output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
cur_features = torch.cat(
[
F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
cur_features_each_scale[i].dtype
)
for i in range(len(cur_features_each_scale))
],
dim=1,
)
image_features_each_image.append(cur_features)
if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
new_block_sizes.append(block_size_each_image)
else:
new_block_sizes.append(
(
scales[resize_output_to_scale_idx] // scales[0],
scales[resize_output_to_scale_idx] // scales[0],
)
)
assert block_cnt == len(image_features)
return image_features_each_image, new_block_sizes
@staticmethod
def split_chessboard(x, num_split_h, num_split_w):
"""
x: b * c * h * w
out: b * c * h * w
Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension
"""
B, C, H, W = x.shape
assert H % num_split_h == 0 and W % num_split_w == 0
h, w = H // num_split_h, W // num_split_w
x_split = torch.cat(
[x[:, :, i * h : (i + 1) * h, j * w : (j + 1) * w] for i in range(num_split_h) for j in range(num_split_w)],
dim=0,
)
return x_split
@staticmethod
def merge_chessboard(x, num_split_h, num_split_w):
"""
x: b * n * c or b * h * w * c
out: b * c * h * w
Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square.
"""
B = x.shape[0]
if x.dim() == 3:
N = x.shape[1]
x = rearrange(x, "b (h w) c -> b c h w", h=int(N**0.5), w=int(N**0.5))
assert B % (num_split_h * num_split_w) == 0
b = B // (num_split_h * num_split_w)
x_merge = torch.cat(
[
torch.cat(
[x[(i * num_split_w + j) * b : (i * num_split_w + j + 1) * b] for j in range(num_split_w)], dim=-1
)
for i in range(num_split_h)
],
dim=-2,
)
return x_merge
def encode_video(self, inp, block_sizes: Optional[Optional[Tuple[int, ...]]] = None, mm_info: Optional[dict] = None, num_frames: Optional[List[int]] = None):
bs = len(inp)
cache_feas = []
cache_feas_index = []
inp_block_sizes = block_sizes
# handle cache features
for _idx in range(len(inp)):
if type(inp[_idx]) == CacheFeatures:
cache_feas.append(inp[_idx])
cache_feas_index.append(_idx)
raw_images = [_ for _ in inp if type(_) != CacheFeatures]
raw_videos_num_frames = [_.shape[0] for _ in raw_images]
if len(raw_images) > 0:
images = torch.cat(raw_images, dim=0)
else:
images = []
if block_sizes is None:
block_sizes = [None] * len(images)
def _load_video_features(image_features, cache_feas, cache_feas_index, raw_videos_num_frames):
# load cache features
if len(cache_feas) > 0:
if len(image_features) > 0:
image_features = torch.split(image_features, raw_videos_num_frames)
new_image_features = []
cache_feas_idx = 0
raw_fea_idx = 0
for _idx in range(bs):
if _idx in cache_feas_index:
new_image_features.append(cache_feas[cache_feas_idx].value['features'].to(self.device, self.dtype))
cache_feas_idx += 1
else:
new_image_features.append(image_features[raw_fea_idx])
raw_fea_idx += 1
assert len(new_image_features) == bs
image_features = new_image_features
image_features = torch.cat(image_features, dim=0)
return image_features
if getattr(self.config, "dynamic_s2", False):
if len(images) > 0:
image_features = self.get_vision_tower()(images)
image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)
image_features = [
self.split_chessboard(x, block_size[0], block_size[1])
for x, block_size in zip(image_features, new_block_sizes)
] # list of B * C * H * W tensors
image_features = torch.cat(
[rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
) # B * N * C
else:
image_features = []
# load cache features
image_features = _load_video_features(image_features, cache_feas, cache_feas_index, raw_videos_num_frames)
# if hasattr(self.config, "save_data") and self.config.save_data and num_frames is not None: # video
# _save_video_features(image_features, mm_info, inp)
if inp_block_sizes is None:
new_block_sizes = [(1, 1)] * len(image_features)
else:
raise ValueError(f"inp_block_sizes is not None: {inp_block_sizes}")
image_features = image_features.to(self.device, self.dtype)
image_features = self.get_mm_projector()(image_features)
image_features = list(
image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
)
image_features = [
self.merge_chessboard(x, block_size[0], block_size[1])
for x, block_size in zip(image_features, new_block_sizes)
] # list of 1 * C * H * W tensors
image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] # list of N * C tensors
if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
image_features = torch.stack(image_features, dim=0)
else:
if len(images) > 0:
image_features = self.get_vision_tower()(images)
else:
image_features = []
# load cache features
image_features = _load_video_features(image_features, cache_feas, cache_feas_index, raw_videos_num_frames)
image_features = self.get_mm_projector()(image_features)
return image_features
def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None, mm_info: Optional[dict] = None, num_frames: Optional[List[int]] = None):
if block_sizes is None:
block_sizes = [None] * len(images)
if getattr(self.config, "dynamic_s2", False):
image_features = self.get_vision_tower()(images)
image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)
image_features = [
self.split_chessboard(x, block_size[0], block_size[1])
for x, block_size in zip(image_features, new_block_sizes)
] # list of B * C * H * W tensors
image_features = torch.cat(
[rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
) # B * N * C
image_features = self.get_mm_projector()(image_features)
image_features = list(
image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
)
image_features = [
self.merge_chessboard(x, block_size[0], block_size[1])
for x, block_size in zip(image_features, new_block_sizes)
] # list of 1 * C * H * W tensors
image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] # list of N * C tensors
if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
image_features = torch.stack(image_features, dim=0)
else:
image_features = self.get_vision_tower()(images)
image_features = self.get_mm_projector()(image_features)
return image_features
def encode_sound(self, sounds, mm_info: Optional[dict] = None):
audio_features, audio_output_lengths = self.get_sound_tower()(sounds)
use_fea_downsample = False
if getattr(self.config, "sound_mm_projector", "") != "":
if "mlp_downsample" in getattr(self.config, "sound_mm_projector", ""):
use_fea_downsample = True
else:
sound_mm_projector_cfg = getattr(self.config, "sound_mm_projector_cfg", None)
if sound_mm_projector_cfg is not None:
if type(sound_mm_projector_cfg) == dict:
if "mlp_downsample" in sound_mm_projector_cfg["sound_mm_projector_type"]:
use_fea_downsample = True
elif type(sound_mm_projector_cfg) == SoundMultimodalProjectorConfig:
if "mlp_downsample" in sound_mm_projector_cfg.sound_mm_projector_type:
use_fea_downsample = True
if not use_fea_downsample:
audio_features = self.get_sound_mm_projector()(audio_features)
if audio_output_lengths is not None:
# split the batch
new_audio_features = []
start = 0
for length in audio_output_lengths:
new_audio_features.append(audio_features[start : start + length])
start += length
audio_features = new_audio_features
if use_fea_downsample:
audio_features = torch.stack(audio_features, dim=0)
audio_features = self.get_sound_mm_projector()(audio_features)
return audio_features
def train(self, mode: bool = True):
super().train(mode)
return self
def _embed(
self,
input_ids: torch.Tensor,
media: Dict[str, List[torch.Tensor]],
media_config: Dict[str, Dict[str, Any]],
labels: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
media = copy.deepcopy(media)
media_config = copy.deepcopy(media_config)
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
PROCESS_GROUP_MANAGER = None
if PROCESS_GROUP_MANAGER is not None:
for name in media:
self.encoders[name].end_tokens = None
# Extract text and media embeddings
text_embeds = self.llm_model_embed_tokens(input_ids)
mm_info = {}
if "video_info" in media:
video_info = media["video_info"]
del media["video_info"]
mm_info['video_info'] = video_info
else:
video_info = None
if "audio_info" in media:
audio_info = media["audio_info"]
del media["audio_info"]
mm_info['audio_info'] = audio_info
else:
audio_info = None
if media is not None:
media_embeds = self.__embed_media_tokens(media, media_config, mm_info)
else:
# no media was provided, so we just return an empty dict
media_embeds = {}
if PROCESS_GROUP_MANAGER is not None:
media_embeds_video = []
for i, images in enumerate(media_embeds["video"]):
num_video_frame = media["video"][i].shape[0]
media_embeds_video += torch.unbind(images.reshape(num_video_frame, -1, images.shape[-1]))
media_embeds["video"] = deque(media_embeds_video)
# This is a workaround to make sure the dummy embeddings are consumed
while media_embeds.get("dummy"):
dummy_embed = media_embeds["dummy"].popleft()
text_embeds += torch.sum(dummy_embed) * 0
# Based on segment_aud_indices_list and segment_vis_indices_list, get interleaved vis-aud embeddings for video
video_sound_embeds_idx = 0
sep_embed = self.encoders["video"].embed_tokens("\n")
text_embeds = text_embeds.to(self.dtype)
sep_embed = sep_embed.to(text_embeds.dtype)
if video_info is not None and self.config.load_audio_in_video and self.config.interleaved_vis_aud_in_video:
assert self.encoders["video"].end_tokens is None, "end_tokens must be None for interleaved vis-aud in video"
new_video_embeds = deque()
video_embeds_idx = 0
for k in range(len(video_info)):
if video_info[k] is None:
continue
for i in range(len(video_info[k])):
has_audio = video_info[k][i]["has_audio"]
if not has_audio:
new_video_embeds.append(media_embeds["video"][video_embeds_idx])
video_embeds_idx += 1
continue
# Check bounds for sound embeddings
if video_sound_embeds_idx >= len(media_embeds["sound"]):
raise ValueError(f"Sound embeddings index {video_sound_embeds_idx} out of bounds for video_info[{k}][{i}]")
segment_aud_indices_list = video_info[k][i]["segment_aud_indices_list"]
segment_vis_indices_list = video_info[k][i]["segment_vis_indices_list"]
vis_fea_len_per_frame = media_embeds["video"][video_embeds_idx].shape[0] / video_info[k][i]["expected_frame_count"]
aud_fea_len_per_stft_frame = media_embeds["sound"][video_sound_embeds_idx].shape[0] / audio_info[k][i]["new_audio_n_stft_frames"]
vis_end = 0
aud_end = 0
_new_video_embed = []
for j in range(len(segment_vis_indices_list)):
_vis_aud_fea = []
if len(segment_vis_indices_list[j]) > 0:
_new_frames = [int(np.ceil((_frame+1) * vis_fea_len_per_frame)) for _frame in segment_vis_indices_list[j]]
_vis_fea_end = _new_frames[-1]
# Ensure we don't exceed the available features
_vis_fea_end = min(_vis_fea_end, media_embeds["video"][video_embeds_idx].shape[0])
if j == len(segment_vis_indices_list) - 1 and i == len(video_info) - 1 and k == len(video_info[i]) - 1 and not _vis_fea_end == media_embeds["video"][video_embeds_idx].shape[0]:
print(f"Warning: The number of last interleaved video features does not match the video feature length. Expected: {media_embeds['video'][video_embeds_idx].shape[0]}, Got: {_vis_fea_end}")
_vis_fea_end = media_embeds["video"][video_embeds_idx].shape[0]
_vis_fea = media_embeds["video"][video_embeds_idx][vis_end:_vis_fea_end]
vis_end = _vis_fea_end
_vis_aud_fea.append(_vis_fea)
_vis_aud_fea.append(sep_embed)
if len(segment_aud_indices_list[j]) > 0:
_new_audio_indices = [int(np.ceil(_fea * aud_fea_len_per_stft_frame)) for _fea in segment_aud_indices_list[j]]
_aud_fea_end = _new_audio_indices[-1]
# Ensure we don't exceed the available features
_aud_fea_end = min(_aud_fea_end, media_embeds["sound"][video_sound_embeds_idx].shape[0])
_aud_fea = media_embeds["sound"][video_sound_embeds_idx][aud_end:_aud_fea_end]
_vis_aud_fea.append(_aud_fea)
aud_end = _aud_fea_end
_vis_aud_fea.append(sep_embed)
_new_video_embed.append(torch.cat(_vis_aud_fea, dim=0))
video_sound_embeds_idx += 1
new_video_embeds.append(torch.cat(_new_video_embed, dim=0))
video_embeds_idx += 1
assert len(new_video_embeds) == len(media_embeds["video"]), "The number of new video embeddings does not match the number of original video embeddings."
media_embeds["video"] = new_video_embeds
# Remove padding
batch_size = labels.shape[0]
text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)]
labels = [labels[k][attention_mask[k]] for k in range(batch_size)]
# Build inverse mapping from token ID to media name
media_tokens = {}
for name, token_id in self.tokenizer.media_token_ids.items():
media_tokens[token_id] = name
# Fuse text and media embeddings
inputs_m, labels_m = [], []
sound_embeds_idx = 0
for k in range(batch_size):
inputs_mk, labels_mk = [], []
pos = 0
while pos < len(labels[k]):
if input_ids[k][pos].item() in media_tokens:
name = media_tokens[input_ids[k][pos].item()] if PROCESS_GROUP_MANAGER is None else "video"
if input_ids[k][pos].item() == self.tokenizer.media_token_ids["sound"]:
if self.config.interleaved_vis_aud_in_video:
if sound_embeds_idx < video_sound_embeds_idx:
media_embeds[name].popleft()
sound_embeds_idx += 1
pos += 1
continue
sound_embeds_idx += 1
end = pos + 1
input = media_embeds[name].popleft()
label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
else:
end = pos
while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
end += 1
input = text_embeds[k][pos:end]
label = labels[k][pos:end]
inputs_mk.append(input)
labels_mk.append(label)
pos = end
inputs_m.append(torch.cat(inputs_mk, dim=0))
labels_m.append(torch.cat(labels_mk, dim=0))
inputs, labels = inputs_m, labels_m
inputs[0] += sep_embed.mean() * 0 # dummy embedding
# Check if all media embeddings are consumed
for name in media_embeds:
if media_embeds[name]:
raise ValueError(f"Not all {name} embeddings are consumed! Still {len(media_embeds[name])} left.")
# Truncate sequences to `model_max_length` as media embeddings are inserted
inputs, labels = self.__truncate_sequence(inputs, labels)
# Pad sequences to the longest one in the batch
return self.__batchify_sequence(inputs, labels)
def __embed_media_tokens(
self,
media: Dict[str, List[torch.Tensor]],
media_config: Dict[str, Dict[str, Any]],
mm_info,
) -> Dict[str, List[torch.Tensor]]:
embeds = defaultdict(deque)
if self.config.unified_audio_encoder:
assert len(media["speech"]) == 0
for name in media:
_encoder = self.encoders[name]
if name in ["speech", "sound"] and self.config.unified_audio_encoder:
_encoder = self.encoders["sound"]
if self.training:
# Gather metainfo of media objects from all ranks
if name in ["speech", "sound"]:
info = []
if type(media.get(name, {})) is dict:
for _dict in media.get(name, {}):
info.append({k: {"shape": v.shape, "dtype": v.dtype} for k, v in _dict.items()})
elif type(media.get(name, {})) is list:
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
else:
raise ValueError(f"Unsupported media type: {type(media.get(name, {}))}")
infos_list = vila_all_gather(info)
infos = list(chain(*infos_list))
# The entire batch does not contain any media objects of this type.
if not infos:
continue
# for audio encoding, we have to ensure the batch size is the same for all ranks. If not, we need to pad the batch with dummy tensors to the max batch size
max_batch_size = max(len(_info) for _info in infos_list)
missing_batch_size = max_batch_size - len(info)
_media = media.get(name, [])
_medias = list(chain(vila_all_gather(_media)))
if missing_batch_size > 0:
for i in range(missing_batch_size):
# use one of the media tensors to create a dummy tensor
if type(media.get(name, {})) is dict:
_dummy = {k: v.clone().to(device=self.device) for k, v in _medias[0].items()}
elif type(media.get(name, {})) is list:
if type(_medias[0]) is torch.Tensor:
_dummy = _medias[0].clone().to(device=self.device)
elif type(_medias[0]) is np.ndarray:
_dummy = _medias[0].copy()
else:
raise ValueError(f"Unsupported media type: {type(_medias[0])}")
else:
raise ValueError(f"Unsupported media type: {type(media.get(name, {}))}")
_media.append(_dummy)
mm_info["audio_info"].append(["dummy"])
# we need to also align the length of all audio samples in the batch size
cur_batch_max_audio_samples = max(len(_audio) for _audio in _medias)
cur_batch_max_audio_samples = int(np.ceil(cur_batch_max_audio_samples / (self.config.audio_sampling_rate * 30)) * (self.config.audio_sampling_rate * 30)) # should be multiple of 30 seconds
cur_batch_max_audio_samples = min(cur_batch_max_audio_samples, self.config.audio_chunk_length * self.config.audio_sampling_rate)
cur_batch_max_audio_duration = cur_batch_max_audio_samples // self.config.audio_sampling_rate
whisper_feature_extractor = WhisperFeatureExtractor.from_pretrained(
self.config._name_or_path, chunk_length=cur_batch_max_audio_duration, sampling_rate=self.config.audio_sampling_rate, hop_length=self.config.audio_hop_length
)
# use WhisperFeatureExtractor in transformers to load
new_media = []
aud_idx = 0
for _batch_idx in range(len(mm_info["audio_info"])):
_audio_info = mm_info["audio_info"][_batch_idx]
if _audio_info is not None:
for _mm_idx in range(len(_audio_info)):
_audio = _media[aud_idx]
if type(_audio) is torch.Tensor:
device = _audio.device
dtype = _audio.dtype
_audio = _audio.cpu().float()
else:
# logger.warning(f"The audio type is not a tensor, which is unexpected. Using the device and dtype of the model. media: {media}, mm_info: {mm_info}")
device = self.device
dtype = self.dtype
_audio = whisper.pad_or_trim(_audio, length=cur_batch_max_audio_samples)
aud_idx += 1
stft_features = whisper_feature_extractor(
_audio,
sampling_rate=self.config.audio_sampling_rate,
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
).to(device, dtype)
new_media.append(stft_features)
if _audio_info[_mm_idx] != "dummy":
_audio_info[_mm_idx]["new_audio_chunk_length"] = cur_batch_max_audio_duration
_audio_info[_mm_idx]["new_audio_n_samples"] = cur_batch_max_audio_samples
_audio_info[_mm_idx]["audio_end_sample_sec"] = _audio_info[_mm_idx]["audio_start_sec"] + cur_batch_max_audio_duration
_audio_info[_mm_idx]["new_audio_n_stft_frames"] = stft_features["input_features"].shape[-1]
assert aud_idx == len(_media), "The number of audio info does not match the number of audio samples."
_media = new_media
_fea = _encoder(_media, media_config[name], mm_info)
# [751, 1536]
# consume dummy features later
_dummy_fea = _fea[len(info) :]
embeds["dummy"].extend(_dummy_fea)
# remove the dummy features
_real_fea = _fea[: len(info)]
if len(info) > 0:
embeds[name] = deque(_real_fea)
else:
# Gather metainfo of media objects from all ranks
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
infos = list(chain(vila_all_gather(info)))
# The entire batch does not contain any media objects of this type.
if not infos:
continue
# Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
if media.get(name) is None or len(media[name]) == 0:
dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
continue
embeds[name] = deque(self.encoders[name](media[name], media_config[name]))
else:
if name == "sound":
all_audio_chunk_lengths = []
for _sample_idx in range(len(media[name])):
for _mm_idx in range(len(mm_info["audio_info"][_sample_idx])):
_new_audio_chunk_length = mm_info["audio_info"][_sample_idx][_mm_idx]["new_audio_chunk_length"]
all_audio_chunk_lengths.append(_new_audio_chunk_length)
cur_batch_max_audio_duration = max(all_audio_chunk_lengths)
cur_batch_max_audio_samples = cur_batch_max_audio_duration * self.config.audio_sampling_rate
# for qwen omni audio
# cur_batch_max_audio_samples = 960000
whisper_feature_extractor = WhisperFeatureExtractor.from_pretrained(
self.config._name_or_path, chunk_length=cur_batch_max_audio_duration, sampling_rate=self.config.audio_sampling_rate, hop_length=self.config.audio_hop_length
)
new_media = []
_idx = 0
assert len(all_audio_chunk_lengths) == len(media[name]), "The number of audio chunk lengths does not match the number of audio samples."
_media = media.get(name, [])
aud_idx = 0
for _batch_idx in range(len(mm_info["audio_info"])):
_audio_info = mm_info["audio_info"][_batch_idx]
if _audio_info is not None:
for _mm_idx in range(len(_audio_info)):
_audio = _media[aud_idx]
if type(_audio) is torch.Tensor:
device = _audio.device
dtype = _audio.dtype
_audio = _audio.cpu().float()
else:
device = self.device
dtype = self.dtype
_audio = whisper.pad_or_trim(_audio, length=cur_batch_max_audio_samples)
aud_idx += 1
stft_features = whisper_feature_extractor(
_audio,
sampling_rate=self.config.audio_sampling_rate,
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
).to(device, dtype)
new_media.append(stft_features)
if _audio_info[_mm_idx] != "dummy":
_audio_info[_mm_idx]["new_audio_chunk_length"] = cur_batch_max_audio_duration
_audio_info[_mm_idx]["new_audio_n_samples"] = cur_batch_max_audio_samples
_audio_info[_mm_idx]["audio_end_sample_sec"] = _audio_info[_mm_idx]["audio_start_sec"] + cur_batch_max_audio_duration
_audio_info[_mm_idx]["new_audio_n_stft_frames"] = stft_features["input_features"].shape[-1]
media[name] = new_media
if len(media[name]) > 0:
embeds[name] = deque(_encoder(media[name], media_config[name], mm_info))
return embeds
def __truncate_sequence(
self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
labels = [label[: self.tokenizer.model_max_length] for label in labels]
return inputs, labels
def __batchify_sequence(
self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
batch_size = len(inputs)
device = inputs[0].device
hidden_size = inputs[0].shape[1]
max_length = max(inputs[k].shape[0] for k in range(batch_size))
attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)
inputs_p, labels_p = [], []
for k in range(batch_size):
size_pk = max_length - inputs[k].shape[0]
inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
if self.tokenizer.padding_side == "right":
attention_mask[k, inputs[k].shape[0] :] = False
inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
labels_pk = torch.cat([labels[k], labels_pk], dim=0)
else:
labels[k] = labels[k].to(device)
attention_mask[k, : -inputs[k].shape[0]] = False
inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
inputs_p.append(inputs_pk)
labels_p.append(labels_pk)
inputs = torch.stack(inputs_p, dim=0)
labels = torch.stack(labels_p, dim=0)
return inputs, labels, attention_mask
def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
# Handle sequence parallelism
PROCESS_GROUP_MANAGER = None
# We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
if PROCESS_GROUP_MANAGER is not None:
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
sp_group = PROCESS_GROUP_MANAGER.sp_pg
ring_degree = PROCESS_GROUP_MANAGER.ring_degree
ring_rank = PROCESS_GROUP_MANAGER.ring_rank
ring_type = PROCESS_GROUP_MANAGER.ring_type
ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank
bs, shard_seqlen = position_ids.shape
sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)
if sp_rank == 0:
original_start_id = 0
else:
original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()
# Gather attention_mask, position_ids, labels and input_embeds
all_inputs_embeds = torch.zeros(
bs,
torch.sum(sp_seq_len_cat),
inputs_embeds.shape[-1],
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
).contiguous()
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
dist.barrier(group=sp_group)
dist.all_reduce(all_inputs_embeds, group=sp_group)
dist.barrier(group=sp_group)
attention_mask_list = [
torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
for i in range(sp_degree)
]
position_ids_list = [
torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
for i in range(sp_degree)
]
labels_list = [
torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
]
dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
dist.all_gather(position_ids_list, position_ids, group=sp_group)
dist.all_gather(labels_list, labels, group=sp_group)
effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
global_attention_mask_list = []
global_position_ids_list = []
global_labels_list = []
global_inputs_embeds_list = []
for i in range(bs):
global_attention_mask_batch_list = []
global_position_ids_batch_list = []
global_labels_batch_list = []
global_inputs_embeds_batch_list = []
for j in range(sp_degree):
eff_len = effective_seqlen_batch_list[i][j]
prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0
global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
global_labels_batch_list.append(labels_list[j][i, :eff_len])
global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
global_attention_mask = torch.nn.utils.rnn.pad_sequence(
global_attention_mask_list, batch_first=True, padding_value=False
)
global_position_ids = torch.nn.utils.rnn.pad_sequence(
global_position_ids_list, batch_first=True, padding_value=-1
)
global_labels = torch.nn.utils.rnn.pad_sequence(
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
)
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
global_inputs_embeds_list, batch_first=True, padding_value=0
)
# Re-shard the inputs
if ring_degree > 1:
total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
new_seqlen_per_rank = total_effective_seqlen // sp_degree
assert torch.all(
total_effective_seqlen % sp_degree == 0
), "total_effective_seqlen must be divisible by sp_degree"
max_new_seqlen = torch.max(new_seqlen_per_rank).item()
new_attention_mask = torch.zeros(
(bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
)
new_position_ids = torch.zeros(
(bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
)
new_labels = torch.full(
(bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
)
new_inputs_embeds = torch.zeros(
(bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
dtype=global_inputs_embeds.dtype,
device=global_inputs_embeds.device,
)
if ring_type == "ring_varlen":
for i in range(bs):
start_idx = new_seqlen_per_rank[i] * sp_rank
end_idx = start_idx + new_seqlen_per_rank[i]
new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
i, start_idx:end_idx, :
]
elif ring_type == "zigzag_ring_varlen":
chunk_size = total_effective_seqlen // (2 * sp_degree)
for i in range(bs):
# Zigzag pattern indices
if sp_degree == ring_degree:
forward_rank_idx = sp_rank
backward_rank_idx = 2 * sp_degree - sp_rank - 1
else:
ulysses_offset = ulysses_rank * ring_degree * 2
forward_rank_idx = ring_rank + ulysses_offset
backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset
# Calculate start and end indices for the forward and backward zigzag
start_idx_fwd = forward_rank_idx * chunk_size[i]
end_idx_fwd = start_idx_fwd + chunk_size[i]
start_idx_bwd = backward_rank_idx * chunk_size[i]
end_idx_bwd = start_idx_bwd + chunk_size[i]
# Fill new tensors with zigzag data
new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
i, start_idx_bwd:end_idx_bwd
]
new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
i, start_idx_bwd:end_idx_bwd
]
new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]
new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
i, start_idx_bwd:end_idx_bwd, :
]
else:
raise ValueError(f"Invalid ring_type: {ring_type}")
else:
global_seq_len = global_attention_mask.shape[-1]
seq_len_sharded = global_seq_len // sp_degree
start_idx_reshard = seq_len_sharded * sp_rank
end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len
new_attention_mask = torch.narrow(
global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
new_position_ids = torch.narrow(
global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
new_inputs_embeds = torch.narrow(
global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
device = inputs_embeds.device
batch_size = inputs_embeds.shape[0]
seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]
# Pack all sequences together
inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]
# Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))
# Mask the first token of each sequence to avoid contamination
for label in labels_p:
label[0] = IGNORE_INDEX
# Batch the data
inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)
if hasattr(
self, "pad_to_multiple_of"
): # related to quantization, please refer to ModelArguments for more information.
assert len(labels_p.shape) == 2
batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
hidden_size = inputs_embeds_p.shape[-1]
if max_length % self.pad_to_multiple_of != 0:
max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
difference = max_length - cur_length
inputs_embeds_p = torch.cat(
(
inputs_embeds_p,
torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
),
dim=1,
)
labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
attention_mask_p = torch.cat(
(
attention_mask_p,
torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
),
dim=1,
)
position_ids_p = torch.cat(
(position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
)
return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p
def forward(
self,
input_ids: torch.LongTensor = None,
media: Optional[Dict[str, List[torch.Tensor]]] = None,
images: Optional[torch.FloatTensor] = None,
media_config: Optional[List] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
packing: bool = True,
force_packing: bool = False,
seqlens_in_batch: Optional[torch.LongTensor] = None,
dpo_forward: bool = False,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
self.freezed_module_patch()
if images is not None:
if media is not None:
raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
print("The 'images' argument is deprecated. Please use 'media' instead.")
media = {"image": images}
if media_config is None:
media_config = defaultdict(dict)
if inputs_embeds is None:
inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask)
if force_packing or (packing and self.training and not dpo_forward):
if seqlens_in_batch is None:
seqlens_in_batch = torch.sum(attention_mask, dim=1)
set_seqlens_in_batch(seqlens_in_batch)
(inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
inputs_embeds, attention_mask, position_ids, labels
)
outputs = self.llm(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=labels,
**kwargs,
)
if self.training and getattr(self.config, "time_token_ids", []):
outputs.loss = soft_cross_entropy(
outputs.logits,
labels,
soft_tokens=self.config.time_token_ids,
std=self.config.soft_ce_std,
)
if dpo_forward:
return outputs.logits, labels
return outputs
@torch.inference_mode()
def generate(
self,
input_ids: Optional[torch.FloatTensor] = None,
media: Optional[Dict[str, List[torch.Tensor]]] = None,
media_config: Dict[str, Dict[str, Any]] = None,
attention_mask: Optional[torch.LongTensor] = None,
return_output_ids_only: bool = True,
**generation_kwargs,
) -> torch.LongTensor:
"""
input_tokens: <image> describe the image
media: [Tensor(1, 3, 384, 384), ]
----------->
input_tokens: 36000 001 002 003 004
input_emds: <media emd> 001 002 003 004
"""
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
output_ids = self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)
if return_output_ids_only:
return_value = output_ids
else:
# by default, return the input_ids and output_ids concatenated to keep consistency with the community VLMs like qwen
generation_config = generation_kwargs.get("generation_config", None)
if generation_config is not None:
num_generations = generation_config.num_return_sequences
repeat_input_ids = input_ids.repeat_interleave(num_generations, dim=0)
return_value = torch.cat([repeat_input_ids, output_ids], dim=-1)
else:
return_value = torch.cat([input_ids, output_ids], dim=-1)
return return_value
@torch.inference_mode()
def generate_content(
self,
prompt: Union[str, List],
generation_config: Optional[GenerationConfig] = None,
response_format=None,
) -> str:
conversation = [{"from": "human", "value": prompt}]
# Convert response format to logits processor
xgr_logits_processor = None
# Extract media from the conversation
media = extract_media(conversation, self.config)
# Process media
media_config = defaultdict(dict)
for name in media:
if name == "image":
if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
self.config.image_processor = self.vision_tower.image_processor
if self.config.image_aspect_ratio == "dynamic":
images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
conversation[0]["value"] = conversation[0]["value"].replace(
DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
)
else:
if type(self.config.s2_scales) is str:
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
images, block_sizes = process_image(
media["image"][0], self.config, None, enable_dynamic_s2=True
)
images = images.half()
media_config[name]["block_sizes"] = [block_sizes]
else:
images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
media[name] = [image for image in images]
elif name == "video":
if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1:
media[name] = [
process_images(
images,
self.vision_tower.image_processor,
self.config,
enable_dynamic_res=True,
max_tiles=self.config.video_max_tiles,
).half()
for images in media[name]
]
elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1:
self.config.image_processor = self.vision_tower.image_processor
if type(self.config.s2_scales) is str:
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
media[name] = [
torch.cat(
[
process_image(
image,
self.config,
None,
enable_dynamic_s2=True,
max_tiles=self.config.video_max_tiles,
)[0].half()
for image in images
]
)
for images in media[name]
]
else:
media[name] = [
process_images(images, self.vision_tower.image_processor, self.config)
for images in media[name]
]
elif name == "speech":
speeches = media["speech"]
media[name] = [speech for speech in speeches]
elif name == "sound":
# sounds = process_sounds(media["sound"]).half()
sounds = media["sound"]
# media[name] = [{k: v.half() for sound in sounds for k, v in sound.items()]
for sound in sounds:
if type(sound) is dict:
for k, v in sound.items():
sound[k] = v.half()
media[name] = [sound for sound in sounds]
elif name == "video_info":
media[name] = [media["video_info"]]
elif name == "audio_info":
media[name] = [media["audio_info"]]
else:
raise ValueError(f"Unsupported media type: {name}")
# Tokenize the conversation
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).unsqueeze(0).cuda()
# Set up the generation config
generation_config = generation_config or self.default_generation_config
# Generate the response
try:
output_ids = self.generate(
input_ids=input_ids,
media=media,
media_config=media_config,
generation_config=generation_config,
logits_processor=xgr_logits_processor, # structured generation
)
except ValueError:
if not generation_config.do_sample:
raise
logging.warning("Generation failed with sampling, retrying with greedy decoding.")
generation_config.do_sample = False
output_ids = self.generate(
input_ids=input_ids,
media=media,
media_config=media_config,
generation_config=generation_config,
logits_processor=xgr_logits_processor,
)
# Decode the response
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
return response
@property
def default_generation_config(self) -> GenerationConfig:
generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
if self.tokenizer.eos_token_id is None:
raise ValueError("Tokenizer must have an EOS token")
if generation_config.max_length == GenerationConfig().max_length:
generation_config.max_length = self.tokenizer.model_max_length
if generation_config.pad_token_id is None:
generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
if generation_config.bos_token_id is None:
generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
if generation_config.eos_token_id is None:
generation_config.eos_token_id = self.tokenizer.eos_token_id
return generation_config
|