|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from typing import List, Tuple |
|
|
|
|
|
|
|
|
class Exp: |
|
|
""" |
|
|
Configuration class for the graphic element model. |
|
|
|
|
|
This class contains all configuration parameters for the YOLOX-based |
|
|
graphic element detection model, including architecture settings, inference |
|
|
parameters, and class-specific thresholds. |
|
|
""" |
|
|
|
|
|
def __init__(self) -> None: |
|
|
"""Initialize the configuration with default parameters.""" |
|
|
self.name: str = "graphic-element-v1" |
|
|
self.ckpt: str = "weights.pth" |
|
|
self.device: str = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
|
|
|
self.act: str = "silu" |
|
|
self.depth: float = 1.00 |
|
|
self.width: float = 1.00 |
|
|
self.labels: List[str] = [ |
|
|
"chart_title", |
|
|
"x_title", |
|
|
"y_title", |
|
|
"xlabel", |
|
|
"ylabel", |
|
|
"other", |
|
|
"legend_label", |
|
|
"legend_title", |
|
|
"mark_label", |
|
|
"value_label", |
|
|
] |
|
|
self.num_classes: int = len(self.labels) |
|
|
|
|
|
|
|
|
self.size: Tuple[int, int] = (1024, 1024) |
|
|
self.min_bbox_size: int = 0 |
|
|
self.normalize_boxes: bool = True |
|
|
|
|
|
|
|
|
self.conf_thresh: float = 0.01 |
|
|
self.iou_thresh: float = 0.25 |
|
|
self.class_agnostic: bool = True |
|
|
|
|
|
self.threshold: float = 0.1 |
|
|
|
|
|
def get_model(self) -> nn.Module: |
|
|
""" |
|
|
Get the YOLOX model. |
|
|
|
|
|
Builds and returns a YOLOX model with the configured architecture. |
|
|
Also updates batch normalization parameters for optimal inference. |
|
|
|
|
|
Returns: |
|
|
nn.Module: The YOLOX model with configured parameters. |
|
|
""" |
|
|
from yolox import YOLOX, YOLOPAFPN, YOLOXHead |
|
|
|
|
|
|
|
|
if getattr(self, "model", None) is None: |
|
|
in_channels = [256, 512, 1024] |
|
|
backbone = YOLOPAFPN( |
|
|
self.depth, self.width, in_channels=in_channels, act=self.act |
|
|
) |
|
|
head = YOLOXHead( |
|
|
self.num_classes, self.width, in_channels=in_channels, act=self.act |
|
|
) |
|
|
self.model = YOLOX(backbone, head) |
|
|
|
|
|
|
|
|
def init_yolo(M: nn.Module) -> None: |
|
|
for m in M.modules(): |
|
|
if isinstance(m, nn.BatchNorm2d): |
|
|
m.eps = 1e-3 |
|
|
m.momentum = 0.03 |
|
|
|
|
|
self.model.apply(init_yolo) |
|
|
|
|
|
return self.model |
|
|
|