|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  | from transformers import GenerationConfig | 
					
						
						|  | from transformers.generation.utils import NEED_SETUP_CACHE_CLASSES_MAPPING, GenerationMixin, GenerateOutput | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from .block_config import AttentionConfig, FFNConfig | 
					
						
						|  | from .configuration_decilm import DeciLMConfig | 
					
						
						|  | from .transformers_4_44_2__activations import ACT2FN | 
					
						
						|  | from .transformers_4_44_2__cache_utils import Cache, StaticCache | 
					
						
						|  | from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter | 
					
						
						|  | from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward | 
					
						
						|  | from .transformers_4_44_2__modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | QuestionAnsweringModelOutput, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | TokenClassifierOutput, | 
					
						
						|  | ) | 
					
						
						|  | from .transformers_4_44_2__modeling_rope_utils import ROPE_INIT_FUNCTIONS | 
					
						
						|  | from .transformers_4_44_2__pytorch_utils import ALL_LAYERNORM_LAYERS | 
					
						
						|  | from .variable_cache import VariableCache | 
					
						
						|  |  | 
					
						
						|  | MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[DeciLMConfig.model_type] = "DeciLMForCausalLM" | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "DeciLMConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | sequence_length: int, | 
					
						
						|  | target_length: int, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | device: torch.device, | 
					
						
						|  | min_dtype: float, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | 
					
						
						|  | sequence_length (`int`): | 
					
						
						|  | The sequence length being processed. | 
					
						
						|  | target_length (`int`): | 
					
						
						|  | The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The dtype to use for the 4D attention mask. | 
					
						
						|  | device (`torch.device`): | 
					
						
						|  | The device to place the 4D attention mask on. | 
					
						
						|  | min_dtype (`float`): | 
					
						
						|  | The minimum value representable with the dtype `dtype`. | 
					
						
						|  | cache_position (`torch.Tensor`): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | batch_size (`torch.Tensor`): | 
					
						
						|  | Batch size. | 
					
						
						|  | """ | 
					
						
						|  | if attention_mask is not None and attention_mask.dim() == 4: | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | else: | 
					
						
						|  | causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | 
					
						
						|  | if sequence_length != 1: | 
					
						
						|  | causal_mask = torch.triu(causal_mask, diagonal=1) | 
					
						
						|  | causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
						
						|  | causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask.clone() | 
					
						
						|  | mask_length = attention_mask.shape[-1] | 
					
						
						|  | padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | 
					
						
						|  | padding_mask = padding_mask == 0 | 
					
						
						|  | causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
						
						|  | padding_mask, min_dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | DeciLMRMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(DeciLMRMSNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim=None, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | rope_type="default", | 
					
						
						|  | config: Optional[DeciLMConfig] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.rope_kwargs = {} | 
					
						
						|  | if config is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`DeciLMRotaryEmbedding` can now be fully parameterized by passing the model config through the " | 
					
						
						|  | "`config` argument. All other arguments will be removed in v4.45" | 
					
						
						|  | ) | 
					
						
						|  | self.rope_kwargs = { | 
					
						
						|  | "rope_type": rope_type, | 
					
						
						|  | "factor": scaling_factor, | 
					
						
						|  | "dim": dim, | 
					
						
						|  | "base": base, | 
					
						
						|  | "max_position_embeddings": max_position_embeddings, | 
					
						
						|  | } | 
					
						
						|  | self.rope_type = rope_type | 
					
						
						|  | self.max_seq_len_cached = max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = max_position_embeddings | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if config.rope_scaling is not None: | 
					
						
						|  | self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | 
					
						
						|  | else: | 
					
						
						|  | self.rope_type = "default" | 
					
						
						|  | self.max_seq_len_cached = config.max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = config.max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
						
						|  |  | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.original_inv_freq = self.inv_freq | 
					
						
						|  |  | 
					
						
						|  | def _dynamic_frequency_update(self, position_ids, device): | 
					
						
						|  | """ | 
					
						
						|  | dynamic RoPE layers should recompute `inv_freq` in the following situations: | 
					
						
						|  | 1 - growing beyond the cached sequence length (allow scaling) | 
					
						
						|  | 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) | 
					
						
						|  | """ | 
					
						
						|  | seq_len = torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn( | 
					
						
						|  | self.config, device, seq_len=seq_len, **self.rope_kwargs | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: | 
					
						
						|  | self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) | 
					
						
						|  | self.max_seq_len_cached = self.original_max_seq_len | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  | if "dynamic" in self.rope_type: | 
					
						
						|  | self._dynamic_frequency_update(position_ids, device=x.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() | 
					
						
						|  | sin = emb.sin() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cos = cos * self.attention_scaling | 
					
						
						|  | sin = sin * self.attention_scaling | 
					
						
						|  |  | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMLinearScalingRotaryEmbedding(DeciLMRotaryEmbedding): | 
					
						
						|  | """DeciLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`DeciLMLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use " | 
					
						
						|  | "`DeciLMRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)." | 
					
						
						|  | ) | 
					
						
						|  | kwargs["rope_type"] = "linear" | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMDynamicNTKScalingRotaryEmbedding(DeciLMRotaryEmbedding): | 
					
						
						|  | """DeciLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`DeciLMDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use " | 
					
						
						|  | "`DeciLMRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to " | 
					
						
						|  | "__init__)." | 
					
						
						|  | ) | 
					
						
						|  | kwargs["rope_type"] = "dynamic" | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2:] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMMLP(nn.Module): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | config: DeciLMConfig, | 
					
						
						|  | ffn_config: FFNConfig, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.ffn_config = ffn_config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = _ffn_mult_to_intermediate_size( | 
					
						
						|  | ffn_config.ffn_mult, config.hidden_size) | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | if ffn_config.sparsify is not None: | 
					
						
						|  | self.register_full_backward_hook(sparsity_backward_hook) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | slice = self.intermediate_size // self.config.pretraining_tp | 
					
						
						|  | gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | 
					
						
						|  | up_proj_slices = self.up_proj.weight.split(slice, dim=0) | 
					
						
						|  | down_proj_slices = self.down_proj.weight.split(slice, dim=1) | 
					
						
						|  |  | 
					
						
						|  | gate_proj = torch.cat( | 
					
						
						|  | [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | 
					
						
						|  | down_proj = [ | 
					
						
						|  | F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | down_proj = sum(down_proj) | 
					
						
						|  | else: | 
					
						
						|  | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  |  | 
					
						
						|  | return down_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, | 
					
						
						|  | config: DeciLMConfig, | 
					
						
						|  | attention_config: AttentionConfig, | 
					
						
						|  | layer_idx: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.attention_config = attention_config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_groups = attention_config.n_heads_in_group | 
					
						
						|  | self.num_key_value_heads = self.num_heads // self.num_key_value_groups | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.rotary_emb = DeciLMRotaryEmbedding(config=self.config) | 
					
						
						|  |  | 
					
						
						|  | if attention_config.sparsify is not None: | 
					
						
						|  | self.register_full_backward_hook(sparsity_backward_hook) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp | 
					
						
						|  | query_slices = self.q_proj.weight.split( | 
					
						
						|  | (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 | 
					
						
						|  | ) | 
					
						
						|  | key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | 
					
						
						|  | value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | 
					
						
						|  |  | 
					
						
						|  | query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] | 
					
						
						|  | query_states = torch.cat(query_states, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] | 
					
						
						|  | key_states = torch.cat(key_states, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] | 
					
						
						|  | value_states = torch.cat(value_states, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if position_embeddings is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | 
					
						
						|  | "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | 
					
						
						|  | "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be " | 
					
						
						|  | "removed and `position_embeddings` will be mandatory." | 
					
						
						|  | ) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids) | 
					
						
						|  | else: | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights = attn_weights + causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) | 
					
						
						|  | o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) | 
					
						
						|  | attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMFlashAttention2(DeciLMAttention): | 
					
						
						|  | """ | 
					
						
						|  | DeciLM flash attention module. This module inherits from `DeciLMAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | self.sliding_window = self.attention_config.prefill_sliding_window | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if position_embeddings is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | 
					
						
						|  | "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | 
					
						
						|  | "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be " | 
					
						
						|  | "removed and `position_embeddings` will be mandatory." | 
					
						
						|  | ) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids) | 
					
						
						|  | else: | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | dropout_rate = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = _flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | dropout=dropout_rate, | 
					
						
						|  | sliding_window=self.sliding_window, | 
					
						
						|  | use_top_left_mask=self._flash_attn_uses_top_left_mask, | 
					
						
						|  | is_causal=self.is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DECILM_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": DeciLMAttention, | 
					
						
						|  | "flash_attention_2": DeciLMFlashAttention2, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMDecoderLayer(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: DeciLMConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.block_config = config.block_configs[layer_idx] | 
					
						
						|  | self.attention_config = self.block_config.attention | 
					
						
						|  | self.ffn_config = self.block_config.ffn | 
					
						
						|  |  | 
					
						
						|  | if not self.attention_config.no_op: | 
					
						
						|  | self.input_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | if not self.attention_config.replace_with_linear: | 
					
						
						|  | self.self_attn = DECILM_ATTENTION_CLASSES[config._attn_implementation]( | 
					
						
						|  | config=config, attention_config=self.attention_config, layer_idx=layer_idx) | 
					
						
						|  | else: | 
					
						
						|  | self.self_attn = DeciLMLinearAttention(config) | 
					
						
						|  |  | 
					
						
						|  | if not self.ffn_config.no_op: | 
					
						
						|  | self.post_attention_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | if not self.ffn_config.replace_with_linear: | 
					
						
						|  | self.mlp = DeciLMMLP(config, self.ffn_config) | 
					
						
						|  | else: | 
					
						
						|  | self.mlp = DeciLMLinearMLP(config) | 
					
						
						|  |  | 
					
						
						|  | self.is_sliding = self.attention_config.is_sliding | 
					
						
						|  | self.sliding_window = self.attention_config.prefill_sliding_window | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): | 
					
						
						|  | attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
						
						|  | query_sequence_length, key_sequence_length)` if default attention is used. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence | 
					
						
						|  | position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
						
						|  | Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
						
						|  | with `head_dim` being the embedding dimension of each attention head. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
						
						|  | into the model | 
					
						
						|  | """ | 
					
						
						|  | if self.attention_config.unshifted_sink and self.attention_config.is_sink: | 
					
						
						|  | attention_mask = self._unshifted_sink_mask( | 
					
						
						|  | attention_mask, hidden_states, | 
					
						
						|  | self.attention_config.window_length, self.attention_config.num_sink_tokens) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = self._gemma2_window_mask(attention_mask, hidden_states, past_key_value) | 
					
						
						|  |  | 
					
						
						|  | self_attn_weights = None | 
					
						
						|  | present_key_value = past_key_value | 
					
						
						|  | if self.attention_config.no_op: | 
					
						
						|  | pass | 
					
						
						|  | elif self.attention_config.replace_with_linear: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.self_attn(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | else: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | if not self.ffn_config.no_op: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def _gemma2_window_mask(self, | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | past_key_value: Optional[VariableCache], | 
					
						
						|  | ) -> Optional[torch.Tensor]: | 
					
						
						|  | if self.is_sliding and attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | attention_mask = attention_mask[:, -self.sliding_window:] | 
					
						
						|  | else: | 
					
						
						|  | min_dtype = torch.finfo(hidden_states.dtype).min | 
					
						
						|  | sliding_window_mask = torch.tril( | 
					
						
						|  | torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window | 
					
						
						|  | ) | 
					
						
						|  | attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask) | 
					
						
						|  | if attention_mask.shape[-1] <= 1: | 
					
						
						|  | attention_mask = attention_mask[:, :, :, -self.sliding_window:] | 
					
						
						|  | return attention_mask | 
					
						
						|  |  | 
					
						
						|  | def _unshifted_sink_mask(self, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | window_length: int, | 
					
						
						|  | num_sink_tokens: Optional[int], | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | assert self.config._attn_implementation == "eager", "Unshifted sink is only supported in 'eager' mode." | 
					
						
						|  | assert attention_mask is not None, "The attention mask seems to not be prepared" | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.clone() | 
					
						
						|  | min_dtype = torch.finfo(hidden_states.dtype).min | 
					
						
						|  |  | 
					
						
						|  | if window_length == 0: | 
					
						
						|  | attention_mask = torch.full_like(attention_mask, fill_value=min_dtype) | 
					
						
						|  | else: | 
					
						
						|  | query_length = attention_mask.shape[-2] | 
					
						
						|  | is_decode = (query_length == 1) | 
					
						
						|  | if is_decode: | 
					
						
						|  | attention_mask[:, :, :, :-window_length] = min_dtype | 
					
						
						|  | else: | 
					
						
						|  | sliding_window_mask = torch.tril( | 
					
						
						|  | torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-window_length | 
					
						
						|  | ) | 
					
						
						|  | attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | attention_mask[:, :, :, :num_sink_tokens] = 0 | 
					
						
						|  | return attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DECILM_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`DeciLMConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare DeciLM Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | DECILM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeciLMPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = DeciLMConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["DeciLMDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = ["past_key_values"] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = False | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  | _supports_quantized_cache = False | 
					
						
						|  | _supports_static_cache = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  | def _prepare_generation_config( | 
					
						
						|  | self, | 
					
						
						|  | generation_config: Optional[GenerationConfig], | 
					
						
						|  | *args, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> tuple[GenerationConfig, dict]: | 
					
						
						|  |  | 
					
						
						|  | generation_config, model_kwargs = super()._prepare_generation_config(generation_config, *args, **kwargs) | 
					
						
						|  | generation_config.cache_implementation = "variable" | 
					
						
						|  | NEED_SETUP_CACHE_CLASSES_MAPPING["variable"] = VariableCache | 
					
						
						|  | return generation_config, model_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DECILM_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`VariableCache`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | If passed to the forward function, past_key_values must be a VariableCache object (see imports). | 
					
						
						|  | For generation purposes, this is already handled inside model.generate(). | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
						
						|  | this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
						
						|  | the complete sequence length. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare DeciLM Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | DECILM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeciLMModel(DeciLMPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: DeciLMConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: DeciLMConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.norm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.rotary_emb = DeciLMRotaryEmbedding(config=config) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training and use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | is_legacy_cache_format = (past_key_values is not None) and not isinstance(past_key_values, Cache) | 
					
						
						|  | if is_legacy_cache_format: | 
					
						
						|  | raise NotImplementedError("DeciLMModel does not support legacy cache format, please use a newer " | 
					
						
						|  | "transformers version or use VariableCache explicitly (see import in this file).") | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._update_causal_mask( | 
					
						
						|  | attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | causal_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | cache_position, | 
					
						
						|  | position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = next_decoder_cache if use_cache else None | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _update_causal_mask( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | input_tensor: torch.Tensor, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | past_key_values: Cache, | 
					
						
						|  | output_attentions: bool, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  | if attention_mask is not None and 0.0 in attention_mask: | 
					
						
						|  | return attention_mask | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache" | 
					
						
						|  | using_static_cache = isinstance(past_key_values, StaticCache) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | 
					
						
						|  | if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | inputs_embeds=input_tensor, | 
					
						
						|  | past_key_values_length=past_seen_tokens, | 
					
						
						|  | is_training=self.training, | 
					
						
						|  | ) and all([not layer.is_sliding for layer in self.layers]): | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | dtype, device = input_tensor.dtype, input_tensor.device | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | sequence_length = input_tensor.shape[1] | 
					
						
						|  | if using_static_cache: | 
					
						
						|  | target_length = past_key_values.get_max_length() | 
					
						
						|  | else: | 
					
						
						|  | target_length = ( | 
					
						
						|  | attention_mask.shape[-1] | 
					
						
						|  | if isinstance(attention_mask, torch.Tensor) | 
					
						
						|  | else past_seen_tokens + sequence_length + 1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask, | 
					
						
						|  | sequence_length=sequence_length, | 
					
						
						|  | target_length=target_length, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | min_dtype=min_dtype, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | batch_size=input_tensor.shape[0], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.config._attn_implementation == "sdpa" | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and attention_mask.device.type == "cuda" | 
					
						
						|  | and not output_attentions | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMForCausalLM(DeciLMPreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = DeciLMModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Return: | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) | 
					
						
						|  | logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] | 
					
						
						|  | logits = torch.cat(logits, dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | cache_position=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if inputs_embeds is not None: | 
					
						
						|  | input_ids = input_ids[:, -cache_position.shape[0]:] | 
					
						
						|  | elif input_ids.shape[1] != cache_position.shape[0]: | 
					
						
						|  | input_ids = input_ids[:, cache_position] | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1]:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_ids = position_ids.clone(memory_format=torch.contiguous_format) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and cache_position[0] == 0: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} | 
					
						
						|  |  | 
					
						
						|  | assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache" | 
					
						
						|  | if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | 
					
						
						|  | if model_inputs["inputs_embeds"] is not None: | 
					
						
						|  | batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape | 
					
						
						|  | device = model_inputs["inputs_embeds"].device | 
					
						
						|  | else: | 
					
						
						|  | batch_size, sequence_length = model_inputs["input_ids"].shape | 
					
						
						|  | device = model_inputs["input_ids"].device | 
					
						
						|  |  | 
					
						
						|  | dtype = self.lm_head.weight.dtype | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask, | 
					
						
						|  | sequence_length=sequence_length, | 
					
						
						|  | target_length=past_key_values.get_max_length(), | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | min_dtype=min_dtype, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "cache_position": cache_position, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": use_cache, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | def _maybe_initialize_input_ids_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | inputs: Optional[torch.Tensor] = None, | 
					
						
						|  | bos_token_id: Optional[torch.Tensor] = None, | 
					
						
						|  | model_kwargs: Optional[dict[str, torch.Tensor]] = None, | 
					
						
						|  | ) -> torch.LongTensor: | 
					
						
						|  | """ | 
					
						
						|  | Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model | 
					
						
						|  | """ | 
					
						
						|  | input_ids = super()._maybe_initialize_input_ids_for_generation( | 
					
						
						|  | inputs=inputs, bos_token_id=bos_token_id, model_kwargs=model_kwargs) | 
					
						
						|  | if ( | 
					
						
						|  | "inputs_embeds" in model_kwargs | 
					
						
						|  | and input_ids is not None | 
					
						
						|  | and input_ids.shape[1] == 0 | 
					
						
						|  | ): | 
					
						
						|  | batch_size, input_sequence_length = model_kwargs["inputs_embeds"].shape[:2] | 
					
						
						|  | input_ids = torch.zeros((batch_size, input_sequence_length), dtype=torch.long, device=self.device) | 
					
						
						|  | return input_ids | 
					
						
						|  |  | 
					
						
						|  | def generate( | 
					
						
						|  | self, | 
					
						
						|  | inputs: Optional[torch.Tensor] = None, | 
					
						
						|  | *args, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[GenerateOutput, torch.LongTensor]: | 
					
						
						|  | """ | 
					
						
						|  | Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model | 
					
						
						|  | """ | 
					
						
						|  | only_passed_inputs_embeds = ( | 
					
						
						|  | "inputs_embeds" in kwargs and | 
					
						
						|  | "input_ids" not in kwargs and | 
					
						
						|  | inputs is None | 
					
						
						|  | ) | 
					
						
						|  | if only_passed_inputs_embeds: | 
					
						
						|  | input_sequence_length = kwargs["inputs_embeds"].shape[1] | 
					
						
						|  |  | 
					
						
						|  | generation_output = super().generate(inputs=inputs, *args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | if only_passed_inputs_embeds and isinstance(generation_output, torch.Tensor): | 
					
						
						|  | generation_output = generation_output[:, input_sequence_length:] | 
					
						
						|  |  | 
					
						
						|  | return generation_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The DeciLM Model transformer with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`DeciLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | DECILM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeciLMForSequenceClassification(DeciLMPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = DeciLMModel(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
						
						|  | sequence_lengths = sequence_lengths.to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The DeciLM Model transformer with a span classification head on top for extractive question-answering tasks like | 
					
						
						|  | SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
						
						|  | """, | 
					
						
						|  | DECILM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeciLMForQuestionAnswering(DeciLMPreTrainedModel): | 
					
						
						|  | base_model_prefix = "transformer" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = DeciLMModel(config) | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.transformer.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.transformer.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | start_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | end_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, QuestionAnsweringModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.qa_outputs(sequence_output) | 
					
						
						|  | start_logits, end_logits = logits.split(1, dim=-1) | 
					
						
						|  | start_logits = start_logits.squeeze(-1).contiguous() | 
					
						
						|  | end_logits = end_logits.squeeze(-1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(start_positions.size()) > 1: | 
					
						
						|  | start_positions = start_positions.squeeze(-1).to(start_logits.device) | 
					
						
						|  | if len(end_positions.size()) > 1: | 
					
						
						|  | end_positions = end_positions.squeeze(-1).to(end_logits.device) | 
					
						
						|  |  | 
					
						
						|  | ignored_index = start_logits.size(1) | 
					
						
						|  | start_positions = start_positions.clamp(0, ignored_index) | 
					
						
						|  | end_positions = end_positions.clamp(0, ignored_index) | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | 
					
						
						|  | start_loss = loss_fct(start_logits, start_positions) | 
					
						
						|  | end_loss = loss_fct(end_logits, end_positions) | 
					
						
						|  | total_loss = (start_loss + end_loss) / 2 | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (start_logits, end_logits) + outputs[2:] | 
					
						
						|  | return ((total_loss,) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return QuestionAnsweringModelOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | start_logits=start_logits, | 
					
						
						|  | end_logits=end_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The DeciLM Model transformer with a token classification head on top (a linear layer on top of the hidden-states | 
					
						
						|  | output) e.g. for Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | DECILM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeciLMForTokenClassification(DeciLMPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = DeciLMModel(config) | 
					
						
						|  | if getattr(config, "classifier_dropout", None) is not None: | 
					
						
						|  | classifier_dropout = config.classifier_dropout | 
					
						
						|  | elif getattr(config, "hidden_dropout", None) is not None: | 
					
						
						|  | classifier_dropout = config.hidden_dropout | 
					
						
						|  | else: | 
					
						
						|  | classifier_dropout = 0.1 | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, TokenClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | sequence_output = self.dropout(sequence_output) | 
					
						
						|  | logits = self.score(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int: | 
					
						
						|  |  | 
					
						
						|  | intermediate_size = int(2 * ffn_mult * n_embd / 3) | 
					
						
						|  | return _find_multiple(intermediate_size, 256) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _find_multiple(n: int, k: int) -> int: | 
					
						
						|  |  | 
					
						
						|  | if n % k == 0: | 
					
						
						|  | return n | 
					
						
						|  | return n + k - (n % k) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMLinearMLP(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, | 
					
						
						|  | config: DeciLMConfig, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.linear_mlp = nn.Linear(in_features=config.hidden_size, | 
					
						
						|  | out_features=config.hidden_size, | 
					
						
						|  | bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.linear_mlp.forward(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeciLMLinearAttention(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, | 
					
						
						|  | config: DeciLMConfig, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.linear_attn = nn.Linear(in_features=config.hidden_size, | 
					
						
						|  | out_features=config.hidden_size, | 
					
						
						|  | bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.linear_attn.forward(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sparsity_backward_hook(*args, **kwargs): | 
					
						
						|  | raise NotImplementedError("No support for sparsity when training HF DeciLM (inference is ok though)") | 
					
						
						|  |  |