Commit From AutoTrain
Browse files- .gitattributes +3 -0
- README.md +51 -0
- config.json +1 -0
- model.joblib +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- autotrain
|
| 4 |
+
- tabular
|
| 5 |
+
- classification
|
| 6 |
+
- tabular-classification
|
| 7 |
+
datasets:
|
| 8 |
+
- nvenhuizen14/autotrain-data-mofodb_classifications
|
| 9 |
+
co2_eq_emissions:
|
| 10 |
+
emissions: 0.04250103814751933
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Model Trained Using AutoTrain
|
| 14 |
+
|
| 15 |
+
- Problem type: Multi-class Classification
|
| 16 |
+
- Model ID: 66203136426
|
| 17 |
+
- CO2 Emissions (in grams): 0.0425
|
| 18 |
+
|
| 19 |
+
## Validation Metrics
|
| 20 |
+
|
| 21 |
+
- Loss: 0.007
|
| 22 |
+
- Accuracy: 0.997
|
| 23 |
+
- Macro F1: 0.915
|
| 24 |
+
- Micro F1: 0.997
|
| 25 |
+
- Weighted F1: 0.996
|
| 26 |
+
- Macro Precision: 0.926
|
| 27 |
+
- Micro Precision: 0.997
|
| 28 |
+
- Weighted Precision: 0.995
|
| 29 |
+
- Macro Recall: 0.915
|
| 30 |
+
- Micro Recall: 0.997
|
| 31 |
+
- Weighted Recall: 0.997
|
| 32 |
+
|
| 33 |
+
## Usage
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
import json
|
| 37 |
+
import joblib
|
| 38 |
+
import pandas as pd
|
| 39 |
+
|
| 40 |
+
model = joblib.load('model.joblib')
|
| 41 |
+
config = json.load(open('config.json'))
|
| 42 |
+
|
| 43 |
+
features = config['features']
|
| 44 |
+
|
| 45 |
+
# data = pd.read_csv("data.csv")
|
| 46 |
+
data = data[features]
|
| 47 |
+
data.columns = ["feat_" + str(col) for col in data.columns]
|
| 48 |
+
|
| 49 |
+
predictions = model.predict(data) # or model.predict_proba(data)
|
| 50 |
+
|
| 51 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"features": ["Full Description", "Group", "Account", "Institution"], "targets": ["target"], "model_type": "logistic_regression", "target_mapping": {"App Building": 0, "Car Insurance": 1, "Car Payment": 2, "Date-Night": 3, "Eating Out": 4, "Fees": 5, "Gaming": 6, "Gas": 7, "Gift": 8, "Groceries": 9, "HSA": 10, "Joyful Noise": 11, "Lunch&Snacks": 12, "Mikal's Paycheck": 13, "Misc": 14, "Misc Auto Expenses": 15, "Nick's Paycheck": 16, "Nicotine": 17, "Retirement": 18, "Shopping": 19, "Software": 20, "Spotify": 21, "Transfer": 22, "Vision": 23, "Vitamins&NooTropics": 24, "Xfinity Internet": 25, "Xfinity Mobile": 26, "car payment": 27, "credit building": 28, "fees": 29, "gaming": 30, "gift": 31, "kratom": 32, "mental": 33, "misc auto expenses": 34, "nicotine": 35, "shopping": 36, "x": 37}}
|
model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34aa94214b8084f83905e05801855fd36e4f5a5c718ac58852ad9853e4bd7626
|
| 3 |
+
size 394726
|