# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This was modied from the control net repo import inspect from typing import Any, Callable, Dict, List, Optional, Tuple, Union from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel import numpy as np import torch from transformers import ( CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, ) from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin from diffusers.models.autoencoders import AutoencoderKL ### MERGEING THESE ### # from src.models.transformer import FluxTransformer2DModel # from src.models.controlnet_flux import FluxControlNetModel ############# ########################################## ########### ATTENTION MERGE ############## ########################################## import torch from torch import Tensor, FloatTensor from torch.nn import functional as F from einops import rearrange from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import apply_rotary_emb def fa3_sdpa( q, k, v, ): # flash attention 3 sdpa drop-in replacement q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]] out = flash_attn_func(q, k, v)[0] return out.permute(0, 2, 1, 3) class FluxSingleAttnProcessor3_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn, hidden_states: Tensor, encoder_hidden_states: Tensor = None, attention_mask: FloatTensor = None, image_rotary_emb: Tensor = None, ) -> Tensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, _, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 # hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = fa3_sdpa(query, key, value) hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)") hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states class FluxAttnProcessor3_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn, hidden_states: FloatTensor, encoder_hidden_states: FloatTensor = None, attention_mask: FloatTensor = None, image_rotary_emb: Tensor = None, ) -> FloatTensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size = encoder_hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q( encoder_hidden_states_query_proj ) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k( encoder_hidden_states_key_proj ) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = fa3_sdpa(query, key, value) hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)") hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states, encoder_hidden_states class FluxFusedSDPAProcessor: """ Fused QKV processor using PyTorch's scaled_dot_product_attention. Uses fused projections but splits for attention computation. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention" ) def __call__( self, attn, hidden_states: FloatTensor, encoder_hidden_states: FloatTensor = None, attention_mask: FloatTensor = None, image_rotary_emb: Tensor = None, ) -> FloatTensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) context_input_ndim = ( encoder_hidden_states.ndim if encoder_hidden_states is not None else None ) if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size = ( encoder_hidden_states.shape[0] if encoder_hidden_states is not None else hidden_states.shape[0] ) # Single attention case (no encoder states) if encoder_hidden_states is None: # Use fused QKV projection qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim) inner_dim = qkv.shape[-1] // 3 head_dim = inner_dim // attn.heads seq_len = hidden_states.shape[1] # Split and reshape qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) query, key, value = qkv.unbind( dim=2 ) # Each is (batch, seq_len, heads, head_dim) # Transpose to (batch, heads, seq_len, head_dim) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Apply norms if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # SDPA hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, ) # Reshape back hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states # Joint attention case (with encoder states) else: # Process self-attention QKV qkv = attn.to_qkv(hidden_states) inner_dim = qkv.shape[-1] // 3 head_dim = inner_dim // attn.heads seq_len = hidden_states.shape[1] qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) query, key, value = qkv.unbind(dim=2) # Transpose to (batch, heads, seq_len, head_dim) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Apply norms if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Process encoder QKV encoder_seq_len = encoder_hidden_states.shape[1] encoder_qkv = attn.to_added_qkv(encoder_hidden_states) encoder_qkv = encoder_qkv.view( batch_size, encoder_seq_len, 3, attn.heads, head_dim ) encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2) # Transpose to (batch, heads, seq_len, head_dim) encoder_query = encoder_query.transpose(1, 2) encoder_key = encoder_key.transpose(1, 2) encoder_value = encoder_value.transpose(1, 2) # Apply encoder norms if needed if attn.norm_added_q is not None: encoder_query = attn.norm_added_q(encoder_query) if attn.norm_added_k is not None: encoder_key = attn.norm_added_k(encoder_key) # Concatenate encoder and self-attention query = torch.cat([encoder_query, query], dim=2) key = torch.cat([encoder_key, key], dim=2) value = torch.cat([encoder_value, value], dim=2) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # SDPA hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, ) # Reshape: (batch, heads, seq_len, head_dim) -> (batch, seq_len, heads * head_dim) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # Split encoder and self outputs encoder_hidden_states = hidden_states[:, :encoder_seq_len] hidden_states = hidden_states[:, encoder_seq_len:] # Output projections hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) # dropout encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # Reshape if needed if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states, encoder_hidden_states class FluxSingleFusedSDPAProcessor: """ Fused QKV processor for single attention (no encoder states). Simpler version for self-attention only blocks. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention" ) def __call__( self, attn, hidden_states: Tensor, encoder_hidden_states: Tensor = None, attention_mask: FloatTensor = None, image_rotary_emb: Tensor = None, ) -> Tensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, seq_len, _ = hidden_states.shape # Use fused QKV projection qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim) inner_dim = qkv.shape[-1] // 3 head_dim = inner_dim // attn.heads # Split and reshape in one go qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) qkv = qkv.permute(2, 0, 3, 1, 4) # (3, B, H, L, D) – still strided query, key, value = [ t.contiguous() for t in qkv.unbind(0) # make each view dense ] # Now each is (batch, heads, seq_len, head_dim) # Apply norms if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # SDPA hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) # Reshape back hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)") hidden_states = hidden_states.to(query.dtype) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states ################################# ##### TRANSFORMER MERGE ######### ################################# from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import ( Attention, AttentionProcessor, ) from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import ( AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, ) from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.embeddings import ( CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed, ) from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel logger = logging.get_logger(__name__) # pylint: disable=invalid-name is_flash_attn_available = False class FluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q( encoder_hidden_states_query_proj ) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k( encoder_hidden_states_key_proj ) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if attention_mask is not None: #print ('Attention Used') attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = (attention_mask > 0).bool() # Edit 17 - match attn dtype to query d-type attention_mask = attention_mask.to( device=hidden_states.device, dtype=query.dtype ) hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask, ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states return hidden_states def expand_flux_attention_mask( hidden_states: torch.Tensor, attn_mask: torch.Tensor, ) -> torch.Tensor: """ Expand a mask so that the image is included. """ bsz = attn_mask.shape[0] assert bsz == hidden_states.shape[0] residual_seq_len = hidden_states.shape[1] mask_seq_len = attn_mask.shape[1] expanded_mask = torch.ones(bsz, residual_seq_len) expanded_mask[:, :mask_seq_len] = attn_mask return expanded_mask @maybe_allow_in_graph class FluxSingleTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) processor = FluxAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, attention_mask: Optional[torch.Tensor] = None, ): residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) if attention_mask is not None: attention_mask = expand_flux_attention_mask( hidden_states, attention_mask, ) attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states @maybe_allow_in_graph class FluxTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__( self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6 ): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = FluxAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward( dim=dim, dim_out=dim, activation_fn="gelu-approximate" ) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, attention_mask: Optional[torch.Tensor] = None, ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, emb=temb ) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( self.norm1_context(encoder_hidden_states, emb=temb) ) if attention_mask is not None: attention_mask = expand_flux_attention_mask( torch.cat([encoder_hidden_states, hidden_states], dim=1), attention_mask, ) # Attention. attention_outputs = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) if len(attention_outputs) == 2: attn_output, context_attn_output = attention_outputs elif len(attention_outputs) == 3: attn_output, context_attn_output, ip_attn_output = attention_outputs # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output if len(attention_outputs) == 3: hidden_states = hidden_states + ip_attn_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = ( norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = ( encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output ) if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states class LibreFluxTransformer2DModel( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin ): """ The Transformer model introduced in Flux. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Parameters: patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: Tuple[int] = (16, 56, 56), ): super().__init__() self.out_channels = in_channels self.inner_dim = ( self.config.num_attention_heads * self.config.attention_head_dim ) self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) text_time_guidance_cls = ( CombinedTimestepGuidanceTextProjEmbeddings ### 3 input forward (timestep, guidance, pooled_projection) if guidance_embeds else CombinedTimestepTextProjEmbeddings #### 2 input forward (timestep, pooled_projection) ) self.time_text_embed = text_time_guidance_cls( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim, ) self.context_embedder = nn.Linear( self.config.joint_attention_dim, self.inner_dim ) self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ FluxTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ FluxSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_single_layers) ] ) self.norm_out = AdaLayerNormContinuous( self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 ) self.proj_out = nn.Linear( self.inner_dim, patch_size * patch_size * self.out_channels, bias=True ) self.gradient_checkpointing = False # added for users to disable checkpointing every nth step self.gradient_checkpointing_interval = None def set_gradient_checkpointing_interval(self, value: int): self.gradient_checkpointing_interval = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor( self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool = True, attention_mask: Optional[torch.Tensor] = None, controlnet_blocks_repeat: bool = False, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if ( joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None ): logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None #print( self.time_text_embed) temb = ( self.time_text_embed(timestep,pooled_projections) # Edit 1 # Charlie NOT NEEDED - UNDONE if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if txt_ids.ndim == 3: txt_ids = txt_ids[0] if img_ids.ndim == 3: img_ids = img_ids[0] ids = torch.cat((txt_ids, img_ids), dim=0) image_rotary_emb = self.pos_embed(ids) # IP adapter if ( joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs ): ip_adapter_image_embeds = joint_attention_kwargs.pop( "ip_adapter_image_embeds" ) ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) for index_block, block in enumerate(self.transformer_blocks): if ( self.training and self.gradient_checkpointing and ( self.gradient_checkpointing_interval is None or index_block % self.gradient_checkpointing_interval == 0 ) ): def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) encoder_hidden_states, hidden_states = ( torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, attention_mask, **ckpt_kwargs, ) ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len( controlnet_block_samples ) interval_control = int(np.ceil(interval_control)) # For Xlabs ControlNet. if controlnet_blocks_repeat: hidden_states = ( hidden_states + controlnet_block_samples[ index_block % len(controlnet_block_samples) ] ) else: hidden_states = ( hidden_states + controlnet_block_samples[index_block // interval_control] ) # Flux places the text tokens in front of the image tokens in the # sequence. hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if ( self.training and self.gradient_checkpointing or ( self.gradient_checkpointing_interval is not None and index_block % self.gradient_checkpointing_interval == 0 ) ): def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, attention_mask, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len( controlnet_single_block_samples ) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)