Initial upload of LibreFlux ControlNet pipeline
Browse files- __init__.py +2 -1
- controlnet/net.py +227 -0
- pipeline.py +51 -52
- transformer/trans.py +510 -1
__init__.py
CHANGED
|
@@ -2,4 +2,5 @@ from .pipeline import (
|
|
| 2 |
LibreFluxControlNetPipeline,
|
| 3 |
LibreFluxTransformer2DModel,
|
| 4 |
LibreFluxControlNetModel,
|
| 5 |
-
)
|
|
|
|
|
|
| 2 |
LibreFluxControlNetPipeline,
|
| 3 |
LibreFluxTransformer2DModel,
|
| 4 |
LibreFluxControlNetModel,
|
| 5 |
+
)
|
| 6 |
+
from .transformer.tran import *
|
controlnet/net.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
#
|
| 3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -50,6 +51,210 @@ from diffusers.models.embeddings import apply_rotary_emb
|
|
| 50 |
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
class FluxFusedSDPAProcessor:
|
| 54 |
"""
|
| 55 |
Fused QKV processor using PyTorch's scaled_dot_product_attention.
|
|
@@ -1070,6 +1275,27 @@ class LibreFluxTransformer2DModel(
|
|
| 1070 |
|
| 1071 |
return Transformer2DModelOutput(sample=output)
|
| 1072 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1073 |
####################################
|
| 1074 |
##### CONTROL NET MODEL MERGE ######
|
| 1075 |
####################################
|
|
@@ -1505,3 +1731,4 @@ class LibreFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
| 1505 |
controlnet_block_samples=controlnet_block_samples,
|
| 1506 |
controlnet_single_block_samples=controlnet_single_block_samples,
|
| 1507 |
)
|
|
|
|
|
|
| 1 |
+
|
| 2 |
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 3 |
#
|
| 4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
+
def fa3_sdpa(
|
| 55 |
+
q,
|
| 56 |
+
k,
|
| 57 |
+
v,
|
| 58 |
+
):
|
| 59 |
+
# flash attention 3 sdpa drop-in replacement
|
| 60 |
+
q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]]
|
| 61 |
+
out = flash_attn_func(q, k, v)[0]
|
| 62 |
+
return out.permute(0, 2, 1, 3)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class FluxSingleAttnProcessor3_0:
|
| 66 |
+
r"""
|
| 67 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def __init__(self):
|
| 71 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 72 |
+
raise ImportError(
|
| 73 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def __call__(
|
| 77 |
+
self,
|
| 78 |
+
attn,
|
| 79 |
+
hidden_states: Tensor,
|
| 80 |
+
encoder_hidden_states: Tensor = None,
|
| 81 |
+
attention_mask: FloatTensor = None,
|
| 82 |
+
image_rotary_emb: Tensor = None,
|
| 83 |
+
) -> Tensor:
|
| 84 |
+
input_ndim = hidden_states.ndim
|
| 85 |
+
|
| 86 |
+
if input_ndim == 4:
|
| 87 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 88 |
+
hidden_states = hidden_states.view(
|
| 89 |
+
batch_size, channel, height * width
|
| 90 |
+
).transpose(1, 2)
|
| 91 |
+
|
| 92 |
+
batch_size, _, _ = (
|
| 93 |
+
hidden_states.shape
|
| 94 |
+
if encoder_hidden_states is None
|
| 95 |
+
else encoder_hidden_states.shape
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
query = attn.to_q(hidden_states)
|
| 99 |
+
if encoder_hidden_states is None:
|
| 100 |
+
encoder_hidden_states = hidden_states
|
| 101 |
+
|
| 102 |
+
key = attn.to_k(encoder_hidden_states)
|
| 103 |
+
value = attn.to_v(encoder_hidden_states)
|
| 104 |
+
|
| 105 |
+
inner_dim = key.shape[-1]
|
| 106 |
+
head_dim = inner_dim // attn.heads
|
| 107 |
+
|
| 108 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 109 |
+
|
| 110 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 111 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 112 |
+
|
| 113 |
+
if attn.norm_q is not None:
|
| 114 |
+
query = attn.norm_q(query)
|
| 115 |
+
if attn.norm_k is not None:
|
| 116 |
+
key = attn.norm_k(key)
|
| 117 |
+
|
| 118 |
+
# Apply RoPE if needed
|
| 119 |
+
if image_rotary_emb is not None:
|
| 120 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 121 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 122 |
+
|
| 123 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 124 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 125 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 126 |
+
hidden_states = fa3_sdpa(query, key, value)
|
| 127 |
+
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
| 128 |
+
|
| 129 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 130 |
+
batch_size, -1, attn.heads * head_dim
|
| 131 |
+
)
|
| 132 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 133 |
+
|
| 134 |
+
if input_ndim == 4:
|
| 135 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 136 |
+
batch_size, channel, height, width
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
return hidden_states
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class FluxAttnProcessor3_0:
|
| 143 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 144 |
+
|
| 145 |
+
def __init__(self):
|
| 146 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 147 |
+
raise ImportError(
|
| 148 |
+
"FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
def __call__(
|
| 152 |
+
self,
|
| 153 |
+
attn,
|
| 154 |
+
hidden_states: FloatTensor,
|
| 155 |
+
encoder_hidden_states: FloatTensor = None,
|
| 156 |
+
attention_mask: FloatTensor = None,
|
| 157 |
+
image_rotary_emb: Tensor = None,
|
| 158 |
+
) -> FloatTensor:
|
| 159 |
+
input_ndim = hidden_states.ndim
|
| 160 |
+
if input_ndim == 4:
|
| 161 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 162 |
+
hidden_states = hidden_states.view(
|
| 163 |
+
batch_size, channel, height * width
|
| 164 |
+
).transpose(1, 2)
|
| 165 |
+
context_input_ndim = encoder_hidden_states.ndim
|
| 166 |
+
if context_input_ndim == 4:
|
| 167 |
+
batch_size, channel, height, width = encoder_hidden_states.shape
|
| 168 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 169 |
+
batch_size, channel, height * width
|
| 170 |
+
).transpose(1, 2)
|
| 171 |
+
|
| 172 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 173 |
+
|
| 174 |
+
# `sample` projections.
|
| 175 |
+
query = attn.to_q(hidden_states)
|
| 176 |
+
key = attn.to_k(hidden_states)
|
| 177 |
+
value = attn.to_v(hidden_states)
|
| 178 |
+
|
| 179 |
+
inner_dim = key.shape[-1]
|
| 180 |
+
head_dim = inner_dim // attn.heads
|
| 181 |
+
|
| 182 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 183 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 184 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 185 |
+
|
| 186 |
+
if attn.norm_q is not None:
|
| 187 |
+
query = attn.norm_q(query)
|
| 188 |
+
if attn.norm_k is not None:
|
| 189 |
+
key = attn.norm_k(key)
|
| 190 |
+
|
| 191 |
+
# `context` projections.
|
| 192 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 193 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 194 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 195 |
+
|
| 196 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 197 |
+
batch_size, -1, attn.heads, head_dim
|
| 198 |
+
).transpose(1, 2)
|
| 199 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 200 |
+
batch_size, -1, attn.heads, head_dim
|
| 201 |
+
).transpose(1, 2)
|
| 202 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 203 |
+
batch_size, -1, attn.heads, head_dim
|
| 204 |
+
).transpose(1, 2)
|
| 205 |
+
|
| 206 |
+
if attn.norm_added_q is not None:
|
| 207 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
| 208 |
+
encoder_hidden_states_query_proj
|
| 209 |
+
)
|
| 210 |
+
if attn.norm_added_k is not None:
|
| 211 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
| 212 |
+
encoder_hidden_states_key_proj
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# attention
|
| 216 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 217 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 218 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 219 |
+
|
| 220 |
+
if image_rotary_emb is not None:
|
| 221 |
+
|
| 222 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 223 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 224 |
+
|
| 225 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 226 |
+
hidden_states = fa3_sdpa(query, key, value)
|
| 227 |
+
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
| 228 |
+
|
| 229 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 230 |
+
batch_size, -1, attn.heads * head_dim
|
| 231 |
+
)
|
| 232 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 233 |
+
|
| 234 |
+
encoder_hidden_states, hidden_states = (
|
| 235 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 236 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# linear proj
|
| 240 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 241 |
+
# dropout
|
| 242 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 243 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 244 |
+
|
| 245 |
+
if input_ndim == 4:
|
| 246 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 247 |
+
batch_size, channel, height, width
|
| 248 |
+
)
|
| 249 |
+
if context_input_ndim == 4:
|
| 250 |
+
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
| 251 |
+
batch_size, channel, height, width
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
return hidden_states, encoder_hidden_states
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
class FluxFusedSDPAProcessor:
|
| 259 |
"""
|
| 260 |
Fused QKV processor using PyTorch's scaled_dot_product_attention.
|
|
|
|
| 1275 |
|
| 1276 |
return Transformer2DModelOutput(sample=output)
|
| 1277 |
|
| 1278 |
+
###################################
|
| 1279 |
+
# END TRANS MERGE
|
| 1280 |
+
####################################
|
| 1281 |
+
|
| 1282 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 1283 |
+
#
|
| 1284 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 1285 |
+
# you may not use this file except in compliance with the License.
|
| 1286 |
+
# You may obtain a copy of the License at
|
| 1287 |
+
#
|
| 1288 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 1289 |
+
#
|
| 1290 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 1291 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 1292 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 1293 |
+
# See the License for the specific language governing permissions and
|
| 1294 |
+
# limitations under the License.
|
| 1295 |
+
#
|
| 1296 |
+
# This was modied from the control net repo
|
| 1297 |
+
|
| 1298 |
+
|
| 1299 |
####################################
|
| 1300 |
##### CONTROL NET MODEL MERGE ######
|
| 1301 |
####################################
|
|
|
|
| 1731 |
controlnet_block_samples=controlnet_block_samples,
|
| 1732 |
controlnet_single_block_samples=controlnet_single_block_samples,
|
| 1733 |
)
|
| 1734 |
+
|
pipeline.py
CHANGED
|
@@ -749,62 +749,61 @@ class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSi
|
|
| 749 |
else:
|
| 750 |
inner_module = self.controlnet
|
| 751 |
|
| 752 |
-
|
| 753 |
-
control_image
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
)
|
| 762 |
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
control_mode = control_mode.reshape([-1, 1])
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
# set control mode
|
| 798 |
-
control_mode_ = []
|
| 799 |
-
if isinstance(control_mode, list):
|
| 800 |
-
for cmode in control_mode:
|
| 801 |
-
if cmode is None:
|
| 802 |
-
control_mode_.append(-1)
|
| 803 |
-
else:
|
| 804 |
-
control_mode_.append(cmode)
|
| 805 |
-
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
|
| 806 |
control_mode = control_mode.reshape([-1, 1])
|
| 807 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 808 |
# 4. Prepare latent variables
|
| 809 |
num_channels_latents = self.transformer.config.in_channels // 4
|
| 810 |
latents, latent_image_ids = self.prepare_latents(
|
|
|
|
| 749 |
else:
|
| 750 |
inner_module = self.controlnet
|
| 751 |
|
| 752 |
+
control_image = self.prepare_image(
|
| 753 |
+
image=control_image,
|
| 754 |
+
width=width,
|
| 755 |
+
height=height,
|
| 756 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 757 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 758 |
+
device=device,
|
| 759 |
+
dtype=dtype,
|
| 760 |
+
)
|
|
|
|
| 761 |
|
| 762 |
+
if control_image_undo_centering:
|
| 763 |
+
if not self.image_processor.do_normalize:
|
| 764 |
+
raise ValueError(
|
| 765 |
+
"`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor"
|
| 766 |
+
)
|
| 767 |
+
control_image = control_image*0.5 + 0.5
|
| 768 |
+
|
| 769 |
+
height, width = control_image.shape[-2:]
|
| 770 |
+
|
| 771 |
+
#logger.warning(
|
| 772 |
+
# f"pipeline_flux_controlnet, control_image: {control_image.min()} {control_image.max()}"
|
| 773 |
+
#)
|
| 774 |
+
|
| 775 |
+
# vae encode
|
| 776 |
+
control_image = _maybe_to(control_image, device=self.vae.device)
|
| 777 |
+
control_image = self.vae.encode(control_image).latent_dist.sample()
|
| 778 |
+
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 779 |
+
control_image = _maybe_to(control_image, device=device)
|
| 780 |
+
# pack
|
| 781 |
+
height_control_image, width_control_image = control_image.shape[2:]
|
| 782 |
+
control_image = self._pack_latents(
|
| 783 |
+
control_image,
|
| 784 |
+
batch_size * num_images_per_prompt,
|
| 785 |
+
num_channels_latents,
|
| 786 |
+
height_control_image,
|
| 787 |
+
width_control_image,
|
| 788 |
+
)
|
| 789 |
|
| 790 |
+
# set control mode
|
| 791 |
+
if control_mode is not None:
|
| 792 |
+
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 793 |
control_mode = control_mode.reshape([-1, 1])
|
| 794 |
|
| 795 |
+
|
| 796 |
+
# set control mode
|
| 797 |
+
control_mode_ = []
|
| 798 |
+
if isinstance(control_mode, list):
|
| 799 |
+
for cmode in control_mode:
|
| 800 |
+
if cmode is None:
|
| 801 |
+
control_mode_.append(-1)
|
| 802 |
+
else:
|
| 803 |
+
control_mode_.append(cmode)
|
| 804 |
+
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
|
| 805 |
+
control_mode = control_mode.reshape([-1, 1])
|
| 806 |
+
|
| 807 |
# 4. Prepare latent variables
|
| 808 |
num_channels_latents = self.transformer.config.in_channels // 4
|
| 809 |
latents, latent_image_ids = self.prepare_latents(
|
transformer/trans.py
CHANGED
|
@@ -1,3 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#################################
|
| 2 |
##### TRANSFORMER MERGE #########
|
| 3 |
#################################
|
|
@@ -763,4 +1272,4 @@ class LibreFluxTransformer2DModel(
|
|
| 763 |
if not return_dict:
|
| 764 |
return (output,)
|
| 765 |
|
| 766 |
-
return Transformer2DModelOutput(sample=output)
|
|
|
|
| 1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
#
|
| 15 |
+
# This was modied from the control net repo
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import inspect
|
| 19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
from transformers import (
|
| 26 |
+
CLIPTextModel,
|
| 27 |
+
CLIPTokenizer,
|
| 28 |
+
T5EncoderModel,
|
| 29 |
+
T5TokenizerFast,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 33 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
| 34 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 35 |
+
### MERGEING THESE ###
|
| 36 |
+
# from src.models.transformer import FluxTransformer2DModel
|
| 37 |
+
# from src.models.controlnet_flux import FluxControlNetModel
|
| 38 |
+
#############
|
| 39 |
+
|
| 40 |
+
##########################################
|
| 41 |
+
########### ATTENTION MERGE ##############
|
| 42 |
+
##########################################
|
| 43 |
+
|
| 44 |
+
import torch
|
| 45 |
+
from torch import Tensor, FloatTensor
|
| 46 |
+
from torch.nn import functional as F
|
| 47 |
+
from einops import rearrange
|
| 48 |
+
from diffusers.models.attention_processor import Attention
|
| 49 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def fa3_sdpa(
|
| 54 |
+
q,
|
| 55 |
+
k,
|
| 56 |
+
v,
|
| 57 |
+
):
|
| 58 |
+
# flash attention 3 sdpa drop-in replacement
|
| 59 |
+
q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]]
|
| 60 |
+
out = flash_attn_func(q, k, v)[0]
|
| 61 |
+
return out.permute(0, 2, 1, 3)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class FluxSingleAttnProcessor3_0:
|
| 65 |
+
r"""
|
| 66 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
def __init__(self):
|
| 70 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 71 |
+
raise ImportError(
|
| 72 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def __call__(
|
| 76 |
+
self,
|
| 77 |
+
attn,
|
| 78 |
+
hidden_states: Tensor,
|
| 79 |
+
encoder_hidden_states: Tensor = None,
|
| 80 |
+
attention_mask: FloatTensor = None,
|
| 81 |
+
image_rotary_emb: Tensor = None,
|
| 82 |
+
) -> Tensor:
|
| 83 |
+
input_ndim = hidden_states.ndim
|
| 84 |
+
|
| 85 |
+
if input_ndim == 4:
|
| 86 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 87 |
+
hidden_states = hidden_states.view(
|
| 88 |
+
batch_size, channel, height * width
|
| 89 |
+
).transpose(1, 2)
|
| 90 |
+
|
| 91 |
+
batch_size, _, _ = (
|
| 92 |
+
hidden_states.shape
|
| 93 |
+
if encoder_hidden_states is None
|
| 94 |
+
else encoder_hidden_states.shape
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
query = attn.to_q(hidden_states)
|
| 98 |
+
if encoder_hidden_states is None:
|
| 99 |
+
encoder_hidden_states = hidden_states
|
| 100 |
+
|
| 101 |
+
key = attn.to_k(encoder_hidden_states)
|
| 102 |
+
value = attn.to_v(encoder_hidden_states)
|
| 103 |
+
|
| 104 |
+
inner_dim = key.shape[-1]
|
| 105 |
+
head_dim = inner_dim // attn.heads
|
| 106 |
+
|
| 107 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 108 |
+
|
| 109 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 110 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 111 |
+
|
| 112 |
+
if attn.norm_q is not None:
|
| 113 |
+
query = attn.norm_q(query)
|
| 114 |
+
if attn.norm_k is not None:
|
| 115 |
+
key = attn.norm_k(key)
|
| 116 |
+
|
| 117 |
+
# Apply RoPE if needed
|
| 118 |
+
if image_rotary_emb is not None:
|
| 119 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 120 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 121 |
+
|
| 122 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 123 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 124 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 125 |
+
hidden_states = fa3_sdpa(query, key, value)
|
| 126 |
+
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
| 127 |
+
|
| 128 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 129 |
+
batch_size, -1, attn.heads * head_dim
|
| 130 |
+
)
|
| 131 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 132 |
+
|
| 133 |
+
if input_ndim == 4:
|
| 134 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 135 |
+
batch_size, channel, height, width
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return hidden_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class FluxAttnProcessor3_0:
|
| 142 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 143 |
+
|
| 144 |
+
def __init__(self):
|
| 145 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 146 |
+
raise ImportError(
|
| 147 |
+
"FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def __call__(
|
| 151 |
+
self,
|
| 152 |
+
attn,
|
| 153 |
+
hidden_states: FloatTensor,
|
| 154 |
+
encoder_hidden_states: FloatTensor = None,
|
| 155 |
+
attention_mask: FloatTensor = None,
|
| 156 |
+
image_rotary_emb: Tensor = None,
|
| 157 |
+
) -> FloatTensor:
|
| 158 |
+
input_ndim = hidden_states.ndim
|
| 159 |
+
if input_ndim == 4:
|
| 160 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 161 |
+
hidden_states = hidden_states.view(
|
| 162 |
+
batch_size, channel, height * width
|
| 163 |
+
).transpose(1, 2)
|
| 164 |
+
context_input_ndim = encoder_hidden_states.ndim
|
| 165 |
+
if context_input_ndim == 4:
|
| 166 |
+
batch_size, channel, height, width = encoder_hidden_states.shape
|
| 167 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 168 |
+
batch_size, channel, height * width
|
| 169 |
+
).transpose(1, 2)
|
| 170 |
+
|
| 171 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 172 |
+
|
| 173 |
+
# `sample` projections.
|
| 174 |
+
query = attn.to_q(hidden_states)
|
| 175 |
+
key = attn.to_k(hidden_states)
|
| 176 |
+
value = attn.to_v(hidden_states)
|
| 177 |
+
|
| 178 |
+
inner_dim = key.shape[-1]
|
| 179 |
+
head_dim = inner_dim // attn.heads
|
| 180 |
+
|
| 181 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 182 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 183 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 184 |
+
|
| 185 |
+
if attn.norm_q is not None:
|
| 186 |
+
query = attn.norm_q(query)
|
| 187 |
+
if attn.norm_k is not None:
|
| 188 |
+
key = attn.norm_k(key)
|
| 189 |
+
|
| 190 |
+
# `context` projections.
|
| 191 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 192 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 193 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 194 |
+
|
| 195 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 196 |
+
batch_size, -1, attn.heads, head_dim
|
| 197 |
+
).transpose(1, 2)
|
| 198 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 199 |
+
batch_size, -1, attn.heads, head_dim
|
| 200 |
+
).transpose(1, 2)
|
| 201 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 202 |
+
batch_size, -1, attn.heads, head_dim
|
| 203 |
+
).transpose(1, 2)
|
| 204 |
+
|
| 205 |
+
if attn.norm_added_q is not None:
|
| 206 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
| 207 |
+
encoder_hidden_states_query_proj
|
| 208 |
+
)
|
| 209 |
+
if attn.norm_added_k is not None:
|
| 210 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
| 211 |
+
encoder_hidden_states_key_proj
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# attention
|
| 215 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 216 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 217 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 218 |
+
|
| 219 |
+
if image_rotary_emb is not None:
|
| 220 |
+
|
| 221 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 222 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 223 |
+
|
| 224 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 225 |
+
hidden_states = fa3_sdpa(query, key, value)
|
| 226 |
+
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
| 227 |
+
|
| 228 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 229 |
+
batch_size, -1, attn.heads * head_dim
|
| 230 |
+
)
|
| 231 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 232 |
+
|
| 233 |
+
encoder_hidden_states, hidden_states = (
|
| 234 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 235 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# linear proj
|
| 239 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 240 |
+
# dropout
|
| 241 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 242 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 243 |
+
|
| 244 |
+
if input_ndim == 4:
|
| 245 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 246 |
+
batch_size, channel, height, width
|
| 247 |
+
)
|
| 248 |
+
if context_input_ndim == 4:
|
| 249 |
+
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
| 250 |
+
batch_size, channel, height, width
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
return hidden_states, encoder_hidden_states
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class FluxFusedSDPAProcessor:
|
| 258 |
+
"""
|
| 259 |
+
Fused QKV processor using PyTorch's scaled_dot_product_attention.
|
| 260 |
+
Uses fused projections but splits for attention computation.
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
def __init__(self):
|
| 264 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 265 |
+
raise ImportError(
|
| 266 |
+
"FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
def __call__(
|
| 270 |
+
self,
|
| 271 |
+
attn,
|
| 272 |
+
hidden_states: FloatTensor,
|
| 273 |
+
encoder_hidden_states: FloatTensor = None,
|
| 274 |
+
attention_mask: FloatTensor = None,
|
| 275 |
+
image_rotary_emb: Tensor = None,
|
| 276 |
+
) -> FloatTensor:
|
| 277 |
+
input_ndim = hidden_states.ndim
|
| 278 |
+
if input_ndim == 4:
|
| 279 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 280 |
+
hidden_states = hidden_states.view(
|
| 281 |
+
batch_size, channel, height * width
|
| 282 |
+
).transpose(1, 2)
|
| 283 |
+
|
| 284 |
+
context_input_ndim = (
|
| 285 |
+
encoder_hidden_states.ndim if encoder_hidden_states is not None else None
|
| 286 |
+
)
|
| 287 |
+
if context_input_ndim == 4:
|
| 288 |
+
batch_size, channel, height, width = encoder_hidden_states.shape
|
| 289 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 290 |
+
batch_size, channel, height * width
|
| 291 |
+
).transpose(1, 2)
|
| 292 |
+
|
| 293 |
+
batch_size = (
|
| 294 |
+
encoder_hidden_states.shape[0]
|
| 295 |
+
if encoder_hidden_states is not None
|
| 296 |
+
else hidden_states.shape[0]
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Single attention case (no encoder states)
|
| 300 |
+
if encoder_hidden_states is None:
|
| 301 |
+
# Use fused QKV projection
|
| 302 |
+
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
|
| 303 |
+
inner_dim = qkv.shape[-1] // 3
|
| 304 |
+
head_dim = inner_dim // attn.heads
|
| 305 |
+
seq_len = hidden_states.shape[1]
|
| 306 |
+
|
| 307 |
+
# Split and reshape
|
| 308 |
+
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
| 309 |
+
query, key, value = qkv.unbind(
|
| 310 |
+
dim=2
|
| 311 |
+
) # Each is (batch, seq_len, heads, head_dim)
|
| 312 |
+
|
| 313 |
+
# Transpose to (batch, heads, seq_len, head_dim)
|
| 314 |
+
query = query.transpose(1, 2)
|
| 315 |
+
key = key.transpose(1, 2)
|
| 316 |
+
value = value.transpose(1, 2)
|
| 317 |
+
|
| 318 |
+
# Apply norms if needed
|
| 319 |
+
if attn.norm_q is not None:
|
| 320 |
+
query = attn.norm_q(query)
|
| 321 |
+
if attn.norm_k is not None:
|
| 322 |
+
key = attn.norm_k(key)
|
| 323 |
+
|
| 324 |
+
# Apply RoPE if needed
|
| 325 |
+
if image_rotary_emb is not None:
|
| 326 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 327 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 328 |
+
|
| 329 |
+
# SDPA
|
| 330 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 331 |
+
query,
|
| 332 |
+
key,
|
| 333 |
+
value,
|
| 334 |
+
attn_mask=attention_mask,
|
| 335 |
+
dropout_p=0.0,
|
| 336 |
+
is_causal=False,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Reshape back
|
| 340 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 341 |
+
batch_size, -1, attn.heads * head_dim
|
| 342 |
+
)
|
| 343 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 344 |
+
|
| 345 |
+
if input_ndim == 4:
|
| 346 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 347 |
+
batch_size, channel, height, width
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
return hidden_states
|
| 351 |
+
|
| 352 |
+
# Joint attention case (with encoder states)
|
| 353 |
+
else:
|
| 354 |
+
# Process self-attention QKV
|
| 355 |
+
qkv = attn.to_qkv(hidden_states)
|
| 356 |
+
inner_dim = qkv.shape[-1] // 3
|
| 357 |
+
head_dim = inner_dim // attn.heads
|
| 358 |
+
seq_len = hidden_states.shape[1]
|
| 359 |
+
|
| 360 |
+
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
| 361 |
+
query, key, value = qkv.unbind(dim=2)
|
| 362 |
+
|
| 363 |
+
# Transpose to (batch, heads, seq_len, head_dim)
|
| 364 |
+
query = query.transpose(1, 2)
|
| 365 |
+
key = key.transpose(1, 2)
|
| 366 |
+
value = value.transpose(1, 2)
|
| 367 |
+
|
| 368 |
+
# Apply norms if needed
|
| 369 |
+
if attn.norm_q is not None:
|
| 370 |
+
query = attn.norm_q(query)
|
| 371 |
+
if attn.norm_k is not None:
|
| 372 |
+
key = attn.norm_k(key)
|
| 373 |
+
|
| 374 |
+
# Process encoder QKV
|
| 375 |
+
encoder_seq_len = encoder_hidden_states.shape[1]
|
| 376 |
+
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
| 377 |
+
encoder_qkv = encoder_qkv.view(
|
| 378 |
+
batch_size, encoder_seq_len, 3, attn.heads, head_dim
|
| 379 |
+
)
|
| 380 |
+
encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2)
|
| 381 |
+
|
| 382 |
+
# Transpose to (batch, heads, seq_len, head_dim)
|
| 383 |
+
encoder_query = encoder_query.transpose(1, 2)
|
| 384 |
+
encoder_key = encoder_key.transpose(1, 2)
|
| 385 |
+
encoder_value = encoder_value.transpose(1, 2)
|
| 386 |
+
|
| 387 |
+
# Apply encoder norms if needed
|
| 388 |
+
if attn.norm_added_q is not None:
|
| 389 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 390 |
+
if attn.norm_added_k is not None:
|
| 391 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 392 |
+
|
| 393 |
+
# Concatenate encoder and self-attention
|
| 394 |
+
query = torch.cat([encoder_query, query], dim=2)
|
| 395 |
+
key = torch.cat([encoder_key, key], dim=2)
|
| 396 |
+
value = torch.cat([encoder_value, value], dim=2)
|
| 397 |
+
|
| 398 |
+
# Apply RoPE if needed
|
| 399 |
+
if image_rotary_emb is not None:
|
| 400 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 401 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 402 |
+
|
| 403 |
+
# SDPA
|
| 404 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 405 |
+
query,
|
| 406 |
+
key,
|
| 407 |
+
value,
|
| 408 |
+
attn_mask=attention_mask,
|
| 409 |
+
dropout_p=0.0,
|
| 410 |
+
is_causal=False,
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
# Reshape: (batch, heads, seq_len, head_dim) -> (batch, seq_len, heads * head_dim)
|
| 414 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 415 |
+
batch_size, -1, attn.heads * head_dim
|
| 416 |
+
)
|
| 417 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 418 |
+
|
| 419 |
+
# Split encoder and self outputs
|
| 420 |
+
encoder_hidden_states = hidden_states[:, :encoder_seq_len]
|
| 421 |
+
hidden_states = hidden_states[:, encoder_seq_len:]
|
| 422 |
+
|
| 423 |
+
# Output projections
|
| 424 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 425 |
+
hidden_states = attn.to_out[1](hidden_states) # dropout
|
| 426 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 427 |
+
|
| 428 |
+
# Reshape if needed
|
| 429 |
+
if input_ndim == 4:
|
| 430 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 431 |
+
batch_size, channel, height, width
|
| 432 |
+
)
|
| 433 |
+
if context_input_ndim == 4:
|
| 434 |
+
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
| 435 |
+
batch_size, channel, height, width
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
return hidden_states, encoder_hidden_states
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
class FluxSingleFusedSDPAProcessor:
|
| 442 |
+
"""
|
| 443 |
+
Fused QKV processor for single attention (no encoder states).
|
| 444 |
+
Simpler version for self-attention only blocks.
|
| 445 |
+
"""
|
| 446 |
+
|
| 447 |
+
def __init__(self):
|
| 448 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 449 |
+
raise ImportError(
|
| 450 |
+
"FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
def __call__(
|
| 454 |
+
self,
|
| 455 |
+
attn,
|
| 456 |
+
hidden_states: Tensor,
|
| 457 |
+
encoder_hidden_states: Tensor = None,
|
| 458 |
+
attention_mask: FloatTensor = None,
|
| 459 |
+
image_rotary_emb: Tensor = None,
|
| 460 |
+
) -> Tensor:
|
| 461 |
+
input_ndim = hidden_states.ndim
|
| 462 |
+
if input_ndim == 4:
|
| 463 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 464 |
+
hidden_states = hidden_states.view(
|
| 465 |
+
batch_size, channel, height * width
|
| 466 |
+
).transpose(1, 2)
|
| 467 |
+
|
| 468 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 469 |
+
|
| 470 |
+
# Use fused QKV projection
|
| 471 |
+
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
|
| 472 |
+
inner_dim = qkv.shape[-1] // 3
|
| 473 |
+
head_dim = inner_dim // attn.heads
|
| 474 |
+
|
| 475 |
+
# Split and reshape in one go
|
| 476 |
+
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
| 477 |
+
qkv = qkv.permute(2, 0, 3, 1, 4) # (3, B, H, L, D) – still strided
|
| 478 |
+
query, key, value = [
|
| 479 |
+
t.contiguous() for t in qkv.unbind(0) # make each view dense
|
| 480 |
+
]
|
| 481 |
+
# Now each is (batch, heads, seq_len, head_dim)
|
| 482 |
+
|
| 483 |
+
# Apply norms if needed
|
| 484 |
+
if attn.norm_q is not None:
|
| 485 |
+
query = attn.norm_q(query)
|
| 486 |
+
if attn.norm_k is not None:
|
| 487 |
+
key = attn.norm_k(key)
|
| 488 |
+
|
| 489 |
+
# Apply RoPE if needed
|
| 490 |
+
if image_rotary_emb is not None:
|
| 491 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 492 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 493 |
+
|
| 494 |
+
# SDPA
|
| 495 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 496 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
# Reshape back
|
| 500 |
+
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
| 501 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 502 |
+
|
| 503 |
+
if input_ndim == 4:
|
| 504 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 505 |
+
batch_size, channel, height, width
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
return hidden_states
|
| 509 |
+
|
| 510 |
#################################
|
| 511 |
##### TRANSFORMER MERGE #########
|
| 512 |
#################################
|
|
|
|
| 1272 |
if not return_dict:
|
| 1273 |
return (output,)
|
| 1274 |
|
| 1275 |
+
return Transformer2DModelOutput(sample=output)
|