|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from transformers import ( |
|
|
CLIPTextModel, |
|
|
CLIPTokenizer, |
|
|
T5EncoderModel, |
|
|
T5TokenizerFast, |
|
|
) |
|
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
|
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin |
|
|
from diffusers.models.autoencoders import AutoencoderKL |
|
|
|
|
|
from .controlnet.net import LibreFluxControlNetModel |
|
|
from .transformer.trans import LibreFluxTransformer2DModel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
is_torch_xla_available, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
|
|
|
|
|
|
|
if is_torch_xla_available(): |
|
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
XLA_AVAILABLE = True |
|
|
else: |
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
|
Examples: |
|
|
```py |
|
|
>>> import torch |
|
|
>>> from diffusers.utils import load_image |
|
|
>>> from diffusers import FluxControlNetPipeline |
|
|
>>> from diffusers import FluxControlNetModel |
|
|
|
|
|
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny" |
|
|
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) |
|
|
>>> pipe = FluxControlNetPipeline.from_pretrained( |
|
|
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16 |
|
|
... ) |
|
|
>>> pipe.to("cuda") |
|
|
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") |
|
|
>>> prompt = "A girl in city, 25 years old, cool, futuristic" |
|
|
>>> image = pipe( |
|
|
... prompt, |
|
|
... control_image=control_image, |
|
|
... controlnet_conditioning_scale=0.6, |
|
|
... num_inference_steps=28, |
|
|
... guidance_scale=3.5, |
|
|
... ).images[0] |
|
|
>>> image.save("flux.png") |
|
|
``` |
|
|
""" |
|
|
|
|
|
def _maybe_to(x: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None): |
|
|
if device is None and dtype is None: |
|
|
return x |
|
|
need_dev = device is not None and str(getattr(x, "device", None)) != str(device) |
|
|
need_dt = dtype is not None and getattr(x, "dtype", None) != dtype |
|
|
return x.to(device=device if need_dev else x.device, dtype=dtype if need_dt else x.dtype) if (need_dev or need_dt) else x |
|
|
|
|
|
|
|
|
|
|
|
def calculate_shift( |
|
|
image_seq_len, |
|
|
base_seq_len: int = 256, |
|
|
max_seq_len: int = 4096, |
|
|
base_shift: float = 0.5, |
|
|
max_shift: float = 1.16, |
|
|
): |
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
|
b = base_shift - m * base_seq_len |
|
|
mu = image_seq_len * m + b |
|
|
return mu |
|
|
|
|
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
|
scheduler, |
|
|
num_inference_steps: Optional[int] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
timesteps: Optional[List[int]] = None, |
|
|
sigmas: Optional[List[float]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
""" |
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
|
|
Args: |
|
|
scheduler (`SchedulerMixin`): |
|
|
The scheduler to get timesteps from. |
|
|
num_inference_steps (`int`): |
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
|
must be `None`. |
|
|
device (`str` or `torch.device`, *optional*): |
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
|
`num_inference_steps` and `sigmas` must be `None`. |
|
|
sigmas (`List[float]`, *optional*): |
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
|
|
Returns: |
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
|
second element is the number of inference steps. |
|
|
""" |
|
|
if timesteps is not None and sigmas is not None: |
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
|
if timesteps is not None: |
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accepts_timesteps: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
elif sigmas is not None: |
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accept_sigmas: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
else: |
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
|
class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): |
|
|
r""" |
|
|
The Flux pipeline for text-to-image generation. |
|
|
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ |
|
|
|
|
|
Args: |
|
|
transformer ([`FluxTransformer2DModel`]): |
|
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
|
vae ([`AutoencoderKL`]): |
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
|
text_encoder ([`CLIPTextModel`]): |
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
|
text_encoder_2 ([`T5EncoderModel`]): |
|
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically |
|
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
|
tokenizer (`CLIPTokenizer`): |
|
|
Tokenizer of class |
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). |
|
|
tokenizer_2 (`T5TokenizerFast`): |
|
|
Second Tokenizer of class |
|
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). |
|
|
""" |
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" |
|
|
_optional_components = [] |
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
|
vae: AutoencoderKL, |
|
|
text_encoder: CLIPTextModel, |
|
|
tokenizer: CLIPTokenizer, |
|
|
text_encoder_2: T5EncoderModel, |
|
|
tokenizer_2: T5TokenizerFast, |
|
|
transformer: LibreFluxTransformer2DModel, |
|
|
controlnet: Union[ |
|
|
LibreFluxControlNetModel, List[LibreFluxControlNetModel], Tuple[LibreFluxControlNetModel], |
|
|
], |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.register_modules( |
|
|
vae=vae, |
|
|
text_encoder=text_encoder, |
|
|
text_encoder_2=text_encoder_2, |
|
|
tokenizer=tokenizer, |
|
|
tokenizer_2=tokenizer_2, |
|
|
transformer=transformer, |
|
|
scheduler=scheduler, |
|
|
controlnet=controlnet, |
|
|
) |
|
|
self.vae_scale_factor = ( |
|
|
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 |
|
|
) |
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
self.tokenizer_max_length = ( |
|
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
|
) |
|
|
self.default_sample_size = 64 |
|
|
|
|
|
def _get_t5_prompt_embeds( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
num_images_per_prompt: int = 1, |
|
|
max_sequence_length: int = 512, |
|
|
device: Optional[torch.device] = None, |
|
|
dtype: Optional[torch.dtype] = None, |
|
|
): |
|
|
device = device or self._execution_device |
|
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
batch_size = len(prompt) |
|
|
|
|
|
text_inputs = self.tokenizer_2( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=max_sequence_length, |
|
|
truncation=True, |
|
|
return_length=False, |
|
|
return_overflowing_tokens=False, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
|
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
|
f" {max_sequence_length} tokens: {removed_text}" |
|
|
) |
|
|
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(self.text_encoder_2.device), output_hidden_states=False)[0] |
|
|
|
|
|
|
|
|
dtype = self.text_encoder_2.dtype |
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
prompt_attention_mask = text_inputs.attention_mask.to(device=device, dtype=dtype) |
|
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
|
|
|
|
|
return prompt_embeds, prompt_attention_mask |
|
|
|
|
|
def _get_clip_prompt_embeds( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
num_images_per_prompt: int = 1, |
|
|
device: Optional[torch.device] = None, |
|
|
): |
|
|
device = device or self._execution_device |
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
batch_size = len(prompt) |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=self.tokenizer_max_length, |
|
|
truncation=True, |
|
|
return_overflowing_tokens=False, |
|
|
return_length=False, |
|
|
return_tensors="pt", |
|
|
) |
|
|
|
|
|
text_input_ids = text_inputs.input_ids |
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
|
f" {self.tokenizer_max_length} tokens: {removed_text}" |
|
|
) |
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(self.text_encoder.device), output_hidden_states=False) |
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output |
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
prompt_2: Union[str, List[str]], |
|
|
device: Optional[torch.device] = None, |
|
|
num_images_per_prompt: int = 1, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
max_sequence_length: int = 512, |
|
|
lora_scale: Optional[float] = None, |
|
|
): |
|
|
device = device or self._execution_device |
|
|
|
|
|
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): |
|
|
self._lora_scale = lora_scale |
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND: |
|
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: |
|
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
|
|
if prompt_embeds is None: |
|
|
prompt_2 = prompt_2 or prompt |
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
|
prompt=prompt, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
) |
|
|
|
|
|
|
|
|
prompt_attention_mask = None |
|
|
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( |
|
|
prompt=prompt_2, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
max_sequence_length=max_sequence_length, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
if self.text_encoder is not None: |
|
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
if self.text_encoder_2 is not None: |
|
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
|
|
|
|
|
batch_size = prompt_embeds.shape[0] |
|
|
dtype = self.transformer.dtype |
|
|
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) |
|
|
|
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask |
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
prompt, |
|
|
prompt_2, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds=None, |
|
|
pooled_prompt_embeds=None, |
|
|
callback_on_step_end_tensor_inputs=None, |
|
|
max_sequence_length=None, |
|
|
): |
|
|
if height % 8 != 0 or width % 8 != 0: |
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
|
): |
|
|
raise ValueError( |
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
|
) |
|
|
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt is None and prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
|
) |
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
|
) |
|
|
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
|
|
@staticmethod |
|
|
|
|
|
|
|
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): |
|
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3) |
|
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] |
|
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] |
|
|
|
|
|
latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1, 1) |
|
|
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape[1:] |
|
|
|
|
|
latent_image_ids = latent_image_ids.reshape( |
|
|
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
|
) |
|
|
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
|
|
@staticmethod |
|
|
|
|
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width): |
|
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) |
|
|
latents = latents.permute(0, 2, 4, 1, 3, 5) |
|
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) |
|
|
|
|
|
return latents |
|
|
|
|
|
@staticmethod |
|
|
|
|
|
def _unpack_latents(latents, height, width, vae_scale_factor): |
|
|
batch_size, num_patches, channels = latents.shape |
|
|
|
|
|
height = height // vae_scale_factor |
|
|
width = width // vae_scale_factor |
|
|
|
|
|
latents = latents.view(batch_size, height, width, channels // 4, 2, 2) |
|
|
latents = latents.permute(0, 3, 1, 4, 2, 5) |
|
|
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) |
|
|
|
|
|
return latents |
|
|
|
|
|
|
|
|
def prepare_latents( |
|
|
self, |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
dtype, |
|
|
device, |
|
|
generator, |
|
|
latents=None, |
|
|
): |
|
|
height = 2 * (int(height) // self.vae_scale_factor) |
|
|
width = 2 * (int(width) // self.vae_scale_factor) |
|
|
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
|
|
|
|
if latents is not None: |
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
|
raise ValueError( |
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
|
) |
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
|
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
|
|
|
|
return latents, latent_image_ids |
|
|
|
|
|
|
|
|
def prepare_image( |
|
|
self, |
|
|
image, |
|
|
width, |
|
|
height, |
|
|
batch_size, |
|
|
num_images_per_prompt, |
|
|
device, |
|
|
dtype, |
|
|
do_classifier_free_guidance=False, |
|
|
guess_mode=False, |
|
|
): |
|
|
if isinstance(image, torch.Tensor): |
|
|
pass |
|
|
else: |
|
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
|
|
|
|
image_batch_size = image.shape[0] |
|
|
|
|
|
if image_batch_size == 1: |
|
|
repeat_by = batch_size |
|
|
else: |
|
|
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
|
image = torch.cat([image] * 2) |
|
|
|
|
|
return image |
|
|
|
|
|
@property |
|
|
def guidance_scale(self): |
|
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
|
def joint_attention_kwargs(self): |
|
|
return self._joint_attention_kwargs |
|
|
|
|
|
@property |
|
|
def num_timesteps(self): |
|
|
return self._num_timesteps |
|
|
|
|
|
@property |
|
|
def interrupt(self): |
|
|
return self._interrupt |
|
|
|
|
|
@torch.no_grad() |
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
|
def __call__( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
num_inference_steps: int = 28, |
|
|
timesteps: List[int] = None, |
|
|
guidance_scale: float = 7.0, |
|
|
control_image: PipelineImageInput = None, |
|
|
control_mode: Optional[Union[int, List[int]]] = None, |
|
|
control_image_undo_centering: bool = False, |
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
|
num_images_per_prompt: Optional[int] = 1, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.FloatTensor] = None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
max_sequence_length: int = 512, |
|
|
negative_prompt: Optional[Union[str, List[str]]] = "", |
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = "", |
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
): |
|
|
r""" |
|
|
Function invoked when calling the pipeline for generation. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
|
instead. |
|
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
|
will be used instead |
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
|
expense of slower inference. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
|
passed will be used. Must be in descending order. |
|
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
|
usually at the expense of lower image quality. |
|
|
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted |
|
|
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or |
|
|
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, |
|
|
images must be passed as a list such that each element of the list can be correctly batched for input |
|
|
to a single ControlNet. |
|
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
|
the corresponding scale as a list. |
|
|
control_mode (`int` or `List[int]`,, *optional*, defaults to None): |
|
|
The control mode when applying ControlNet-Union. |
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
|
The number of images to generate per prompt. |
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
|
to make generation deterministic. |
|
|
latents (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
|
provided, text embeddings will be generated from `prompt` input argument. |
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generate image. Choose between |
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
|
joint_attention_kwargs (`dict`, *optional*): |
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
|
`self.processor` in |
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
callback_on_step_end (`Callable`, *optional*): |
|
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
|
`callback_on_step_end_tensor_inputs`. |
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
|
|
Examples: |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
|
images. |
|
|
""" |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
prompt_2, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds=prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
|
self._interrupt = False |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
device = self._execution_device |
|
|
dtype = self.transformer.dtype |
|
|
|
|
|
lora_scale = ( |
|
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
|
) |
|
|
|
|
|
( |
|
|
prompt_embeds, |
|
|
pooled_prompt_embeds, |
|
|
text_ids, |
|
|
attention_mask, |
|
|
) = self.encode_prompt( |
|
|
prompt=prompt, |
|
|
prompt_2=prompt_2, |
|
|
prompt_embeds=prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
max_sequence_length=max_sequence_length, |
|
|
lora_scale=lora_scale, |
|
|
) |
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
if do_classifier_free_guidance: |
|
|
if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None: |
|
|
negative_prompt = negative_prompt or "" |
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
(negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, negative_attention_mask) = self.encode_prompt( |
|
|
prompt=negative_prompt, prompt_2=negative_prompt_2, device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
max_sequence_length=max_sequence_length, lora_scale=lora_scale, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
|
|
|
|
if type(self.controlnet) == FullyShardedDataParallel: |
|
|
inner_module = self.controlnet._fsdp_wrapped_module |
|
|
else: |
|
|
inner_module = self.controlnet |
|
|
|
|
|
control_image = self.prepare_image( |
|
|
image=control_image, |
|
|
width=width, |
|
|
height=height, |
|
|
batch_size=batch_size * num_images_per_prompt, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
if control_image_undo_centering: |
|
|
if not self.image_processor.do_normalize: |
|
|
raise ValueError( |
|
|
"`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor" |
|
|
) |
|
|
control_image = control_image*0.5 + 0.5 |
|
|
|
|
|
height, width = control_image.shape[-2:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
control_image = _maybe_to(control_image, device=self.vae.device) |
|
|
control_image = self.vae.encode(control_image).latent_dist.sample() |
|
|
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
control_image = _maybe_to(control_image, device=device) |
|
|
|
|
|
height_control_image, width_control_image = control_image.shape[2:] |
|
|
control_image = self._pack_latents( |
|
|
control_image, |
|
|
batch_size * num_images_per_prompt, |
|
|
num_channels_latents, |
|
|
height_control_image, |
|
|
width_control_image, |
|
|
) |
|
|
|
|
|
|
|
|
if control_mode is not None: |
|
|
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) |
|
|
control_mode = control_mode.reshape([-1, 1]) |
|
|
|
|
|
|
|
|
|
|
|
control_mode_ = [] |
|
|
if isinstance(control_mode, list): |
|
|
for cmode in control_mode: |
|
|
if cmode is None: |
|
|
control_mode_.append(-1) |
|
|
else: |
|
|
control_mode_.append(cmode) |
|
|
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long) |
|
|
control_mode = control_mode.reshape([-1, 1]) |
|
|
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
|
latents, latent_image_ids = self.prepare_latents( |
|
|
batch_size * num_images_per_prompt, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds.dtype, |
|
|
device, |
|
|
generator, |
|
|
latents, |
|
|
) |
|
|
|
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
|
image_seq_len = latents.shape[1] |
|
|
mu = calculate_shift( |
|
|
image_seq_len, |
|
|
self.scheduler.config.base_image_seq_len, |
|
|
self.scheduler.config.max_image_seq_len, |
|
|
self.scheduler.config.base_shift, |
|
|
self.scheduler.config.max_shift, |
|
|
) |
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
|
self.scheduler, |
|
|
num_inference_steps, |
|
|
device, |
|
|
timesteps, |
|
|
sigmas, |
|
|
mu=mu, |
|
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
|
|
|
target_device = self.transformer.device |
|
|
self.controlnet.to(target_device) |
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
for i, t in enumerate(timesteps): |
|
|
if self.interrupt: |
|
|
continue |
|
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
latent_model_input = torch.cat([latents] * 2) |
|
|
current_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
current_pooled_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) |
|
|
current_attention_mask = torch.cat([negative_attention_mask, attention_mask]) |
|
|
current_text_ids = text_ids[0] |
|
|
current_img_ids = latent_image_ids[0] |
|
|
current_control_image = torch.cat([control_image] * 2) if isinstance(control_image, torch.Tensor) else [torch.cat([c_img] * 2) for c_img in control_image] |
|
|
else: |
|
|
latent_model_input = latents |
|
|
current_prompt_embeds = prompt_embeds |
|
|
current_pooled_embeds = pooled_prompt_embeds |
|
|
current_attention_mask = attention_mask |
|
|
current_text_ids = text_ids[0] |
|
|
current_img_ids = latent_image_ids[0] |
|
|
current_control_image = control_image |
|
|
|
|
|
|
|
|
target_device = self.transformer.device |
|
|
|
|
|
|
|
|
latent_model_input = _maybe_to(latent_model_input, device=target_device) |
|
|
current_prompt_embeds = _maybe_to(current_prompt_embeds, device=target_device) |
|
|
current_pooled_embeds = _maybe_to(current_pooled_embeds, device=target_device) |
|
|
current_attention_mask = _maybe_to(current_attention_mask, device=target_device) |
|
|
current_text_ids = _maybe_to(current_text_ids, device=target_device) |
|
|
current_img_ids = _maybe_to(current_img_ids, device=target_device) |
|
|
if isinstance(current_control_image, torch.Tensor): |
|
|
current_control_image = _maybe_to(current_control_image, device=target_device) |
|
|
else: |
|
|
current_control_image = [ _maybe_to(c, device=target_device) for c in current_control_image ] |
|
|
control_mode = _maybe_to(control_mode, device=target_device) if control_mode is not None else None |
|
|
|
|
|
t_model = t.expand(latent_model_input.shape[0]).to(target_device) |
|
|
|
|
|
|
|
|
|
|
|
controlnet_block_samples, controlnet_single_block_samples = self.controlnet( |
|
|
hidden_states=latent_model_input, |
|
|
controlnet_cond=current_control_image, |
|
|
controlnet_mode=control_mode, |
|
|
conditioning_scale=controlnet_conditioning_scale, |
|
|
timestep=(t_model / 1000), |
|
|
guidance=None, |
|
|
pooled_projections=current_pooled_embeds, |
|
|
encoder_hidden_states=current_prompt_embeds, |
|
|
attention_mask=current_attention_mask, |
|
|
txt_ids=current_text_ids, |
|
|
img_ids=current_img_ids, |
|
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
|
return_dict=False |
|
|
) |
|
|
|
|
|
controlnet_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_block_samples] |
|
|
controlnet_single_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_single_block_samples] |
|
|
|
|
|
noise_pred = self.transformer( |
|
|
hidden_states=latent_model_input, |
|
|
timestep=(t_model / 1000), |
|
|
guidance=None, |
|
|
pooled_projections=current_pooled_embeds, |
|
|
encoder_hidden_states=current_prompt_embeds, |
|
|
attention_mask=current_attention_mask, |
|
|
controlnet_block_samples=controlnet_block_samples, |
|
|
controlnet_single_block_samples=controlnet_single_block_samples, |
|
|
txt_ids=current_text_ids, |
|
|
img_ids=current_img_ids, |
|
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
|
return_dict=False |
|
|
)[0] |
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) |
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latents_dtype = latents.dtype |
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
|
|
if latents.dtype != latents_dtype: |
|
|
if torch.backends.mps.is_available(): |
|
|
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
|
callback_kwargs = {} |
|
|
for k in callback_on_step_end_tensor_inputs: |
|
|
callback_kwargs[k] = locals()[k] |
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
|
progress_bar.update() |
|
|
|
|
|
if XLA_AVAILABLE: |
|
|
xm.mark_step() |
|
|
|
|
|
if output_type == "latent": |
|
|
image = latents |
|
|
|
|
|
else: |
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
|
|
|
|
latents = _maybe_to(latents, device=self.vae.device) |
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
return FluxPipelineOutput(images=image) |