|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
|
|
|
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
from transformers import (
|
|
|
CLIPTextModel,
|
|
|
CLIPTokenizer,
|
|
|
T5EncoderModel,
|
|
|
T5TokenizerFast,
|
|
|
)
|
|
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
|
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
|
|
from diffusers.models.autoencoders import AutoencoderKL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
from torch import Tensor, FloatTensor
|
|
|
from torch.nn import functional as F
|
|
|
from einops import rearrange
|
|
|
from diffusers.models.attention_processor import Attention
|
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""def fa3_sdpa(
|
|
|
q,
|
|
|
k,
|
|
|
v,
|
|
|
):
|
|
|
# flash attention 3 sdpa drop-in replacement
|
|
|
q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]]
|
|
|
out = flash_attn_func(q, k, v)[0]
|
|
|
return out.permute(0, 2, 1, 3)"""
|
|
|
|
|
|
"""
|
|
|
class FluxSingleAttnProcessor3_0:
|
|
|
r""
|
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
|
""
|
|
|
|
|
|
def __init__(self):
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
|
raise ImportError(
|
|
|
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
|
|
)
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
attn,
|
|
|
hidden_states: Tensor,
|
|
|
encoder_hidden_states: Tensor = None,
|
|
|
attention_mask: FloatTensor = None,
|
|
|
image_rotary_emb: Tensor = None,
|
|
|
) -> Tensor:
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
|
|
if input_ndim == 4:
|
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
|
hidden_states = hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
batch_size, _, _ = (
|
|
|
hidden_states.shape
|
|
|
if encoder_hidden_states is None
|
|
|
else encoder_hidden_states.shape
|
|
|
)
|
|
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
if encoder_hidden_states is None:
|
|
|
encoder_hidden_states = hidden_states
|
|
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
|
|
inner_dim = key.shape[-1]
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
query = attn.norm_q(query)
|
|
|
if attn.norm_k is not None:
|
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
# Apply RoPE if needed
|
|
|
if image_rotary_emb is not None:
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
|
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
|
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
|
|
hidden_states = fa3_sdpa(query, key, value)
|
|
|
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(
|
|
|
batch_size, -1, attn.heads * head_dim
|
|
|
)
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class FluxAttnProcessor3_0:
|
|
|
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
|
|
|
|
|
def __init__(self):
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
|
raise ImportError(
|
|
|
"FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
|
|
)
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
attn,
|
|
|
hidden_states: FloatTensor,
|
|
|
encoder_hidden_states: FloatTensor = None,
|
|
|
attention_mask: FloatTensor = None,
|
|
|
image_rotary_emb: Tensor = None,
|
|
|
) -> FloatTensor:
|
|
|
input_ndim = hidden_states.ndim
|
|
|
if input_ndim == 4:
|
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
|
hidden_states = hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
context_input_ndim = encoder_hidden_states.ndim
|
|
|
if context_input_ndim == 4:
|
|
|
batch_size, channel, height, width = encoder_hidden_states.shape
|
|
|
encoder_hidden_states = encoder_hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
batch_size = encoder_hidden_states.shape[0]
|
|
|
|
|
|
# `sample` projections.
|
|
|
query = attn.to_q(hidden_states)
|
|
|
key = attn.to_k(hidden_states)
|
|
|
value = attn.to_v(hidden_states)
|
|
|
|
|
|
inner_dim = key.shape[-1]
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
query = attn.norm_q(query)
|
|
|
if attn.norm_k is not None:
|
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
# `context` projections.
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
|
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
|
|
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
|
|
batch_size, -1, attn.heads, head_dim
|
|
|
).transpose(1, 2)
|
|
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
|
|
batch_size, -1, attn.heads, head_dim
|
|
|
).transpose(1, 2)
|
|
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
|
|
batch_size, -1, attn.heads, head_dim
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
if attn.norm_added_q is not None:
|
|
|
encoder_hidden_states_query_proj = attn.norm_added_q(
|
|
|
encoder_hidden_states_query_proj
|
|
|
)
|
|
|
if attn.norm_added_k is not None:
|
|
|
encoder_hidden_states_key_proj = attn.norm_added_k(
|
|
|
encoder_hidden_states_key_proj
|
|
|
)
|
|
|
|
|
|
# attention
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
|
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
|
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
|
|
|
|
|
if image_rotary_emb is not None:
|
|
|
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
|
|
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
|
|
hidden_states = fa3_sdpa(query, key, value)
|
|
|
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(
|
|
|
batch_size, -1, attn.heads * head_dim
|
|
|
)
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
encoder_hidden_states, hidden_states = (
|
|
|
hidden_states[:, : encoder_hidden_states.shape[1]],
|
|
|
hidden_states[:, encoder_hidden_states.shape[1] :],
|
|
|
)
|
|
|
|
|
|
# linear proj
|
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
|
# dropout
|
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
|
|
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
if context_input_ndim == 4:
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
|
|
|
|
|
class FluxFusedFlashAttnProcessor3(object):
|
|
|
"""
|
|
|
True fused QKV Flash Attention 3 processor for Flux models.
|
|
|
Keeps QKV tensors packed through the entire attention computation.
|
|
|
"""
|
|
|
|
|
|
def __init__(self):
|
|
|
self.flash_attn_qkvpacked_func = None
|
|
|
try:
|
|
|
from flash_attn_interface import flash_attn_qkvpacked_func
|
|
|
|
|
|
self.flash_attn_qkvpacked_func = flash_attn_qkvpacked_func
|
|
|
except ImportError:
|
|
|
raise ImportError(
|
|
|
"FluxFusedFlashAttnProcessor3 requires flash-attn library. "
|
|
|
"Please see this link for Hopper and Blackwell instructions: https://github.com/bghira/SimpleTuner/blob/main/INSTALL.md#nvidia-hopper--blackwell-follow-up-steps"
|
|
|
)
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
attn,
|
|
|
hidden_states: FloatTensor,
|
|
|
encoder_hidden_states: FloatTensor = None,
|
|
|
attention_mask: FloatTensor = None,
|
|
|
image_rotary_emb: Tensor = None,
|
|
|
) -> FloatTensor:
|
|
|
input_ndim = hidden_states.ndim
|
|
|
if input_ndim == 4:
|
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
|
hidden_states = hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
context_input_ndim = (
|
|
|
encoder_hidden_states.ndim if encoder_hidden_states is not None else None
|
|
|
)
|
|
|
if context_input_ndim == 4:
|
|
|
batch_size, channel, height, width = encoder_hidden_states.shape
|
|
|
encoder_hidden_states = encoder_hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
batch_size = (
|
|
|
encoder_hidden_states.shape[0]
|
|
|
if encoder_hidden_states is not None
|
|
|
else hidden_states.shape[0]
|
|
|
)
|
|
|
seq_len = hidden_states.shape[1]
|
|
|
|
|
|
# Fused QKV projection
|
|
|
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
|
|
|
inner_dim = qkv.shape[-1] // 3
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
|
|
# Reshape to packed format: (batch, seq_len, 3, heads, head_dim)
|
|
|
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
|
|
|
|
|
# Apply norms if needed (requires temporary unpacking)
|
|
|
if attn.norm_q is not None or attn.norm_k is not None:
|
|
|
q, k, v = qkv.unbind(dim=2) # Each is (batch, seq_len, heads, head_dim)
|
|
|
q = q.transpose(1, 2) # (batch, heads, seq_len, head_dim)
|
|
|
k = k.transpose(1, 2)
|
|
|
v = v.transpose(1, 2)
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
q = attn.norm_q(q)
|
|
|
if attn.norm_k is not None:
|
|
|
k = attn.norm_k(k)
|
|
|
|
|
|
# Repack: back to (batch, seq_len, 3, heads, head_dim)
|
|
|
qkv = torch.stack(
|
|
|
[q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2
|
|
|
)
|
|
|
|
|
|
# Handle encoder states if present
|
|
|
if encoder_hidden_states is not None:
|
|
|
encoder_seq_len = encoder_hidden_states.shape[1]
|
|
|
|
|
|
# Fused encoder QKV
|
|
|
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
|
|
encoder_qkv = encoder_qkv.view(
|
|
|
batch_size, encoder_seq_len, 3, attn.heads, head_dim
|
|
|
)
|
|
|
|
|
|
# Apply norms if needed
|
|
|
if attn.norm_added_q is not None or attn.norm_added_k is not None:
|
|
|
enc_q, enc_k, enc_v = encoder_qkv.unbind(dim=2)
|
|
|
enc_q = enc_q.transpose(1, 2)
|
|
|
enc_k = enc_k.transpose(1, 2)
|
|
|
enc_v = enc_v.transpose(1, 2)
|
|
|
|
|
|
if attn.norm_added_q is not None:
|
|
|
enc_q = attn.norm_added_q(enc_q)
|
|
|
if attn.norm_added_k is not None:
|
|
|
enc_k = attn.norm_added_k(enc_k)
|
|
|
|
|
|
encoder_qkv = torch.stack(
|
|
|
[
|
|
|
enc_q.transpose(1, 2),
|
|
|
enc_k.transpose(1, 2),
|
|
|
enc_v.transpose(1, 2),
|
|
|
],
|
|
|
dim=2,
|
|
|
)
|
|
|
|
|
|
# Concatenate along sequence dimension
|
|
|
qkv = torch.cat(
|
|
|
[encoder_qkv, qkv], dim=1
|
|
|
) # (batch, encoder_seq + seq, 3, heads, head_dim)
|
|
|
|
|
|
# Apply RoPE if needed
|
|
|
if image_rotary_emb is not None:
|
|
|
q, k, v = qkv.unbind(dim=2) # Each is (batch, seq_len, heads, head_dim)
|
|
|
|
|
|
# Transpose to (batch, heads, seq_len, head_dim) for RoPE
|
|
|
q = q.transpose(1, 2)
|
|
|
k = k.transpose(1, 2)
|
|
|
v = v.transpose(1, 2)
|
|
|
|
|
|
# Apply RoPE to q and k
|
|
|
q = apply_rotary_emb(q, image_rotary_emb)
|
|
|
k = apply_rotary_emb(k, image_rotary_emb)
|
|
|
|
|
|
# Transpose back and repack
|
|
|
qkv = torch.stack(
|
|
|
[q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2
|
|
|
)
|
|
|
|
|
|
# Flash Attention 3 with packed QKV
|
|
|
# Input shape: (batch, seq_len, 3, heads, head_dim)
|
|
|
# Output shape: (batch, seq_len, heads, head_dim)
|
|
|
hidden_states = self.flash_attn_qkvpacked_func(
|
|
|
qkv,
|
|
|
causal=False,
|
|
|
# Don't pass num_heads_q for standard MHA
|
|
|
)
|
|
|
|
|
|
# Reshape output: (batch, seq_len, heads, head_dim) -> (batch, seq_len, heads * head_dim)
|
|
|
hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
hidden_states = hidden_states.to(qkv.dtype)
|
|
|
|
|
|
# Split and process outputs
|
|
|
if encoder_hidden_states is not None:
|
|
|
encoder_seq_len = encoder_hidden_states.shape[1]
|
|
|
encoder_hidden_states = hidden_states[:, :encoder_seq_len]
|
|
|
hidden_states = hidden_states[:, encoder_seq_len:]
|
|
|
|
|
|
# Output projections
|
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
|
hidden_states = attn.to_out[1](hidden_states) # dropout
|
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
|
|
|
|
|
# Reshape if needed
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
if context_input_ndim == 4:
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
|
else:
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
return hidden_states
|
|
|
"""
|
|
|
|
|
|
class FluxFusedSDPAProcessor:
|
|
|
"""
|
|
|
Fused QKV processor using PyTorch's scaled_dot_product_attention.
|
|
|
Uses fused projections but splits for attention computation.
|
|
|
"""
|
|
|
|
|
|
def __init__(self):
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
|
raise ImportError(
|
|
|
"FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
|
|
|
)
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
attn,
|
|
|
hidden_states: FloatTensor,
|
|
|
encoder_hidden_states: FloatTensor = None,
|
|
|
attention_mask: FloatTensor = None,
|
|
|
image_rotary_emb: Tensor = None,
|
|
|
) -> FloatTensor:
|
|
|
input_ndim = hidden_states.ndim
|
|
|
if input_ndim == 4:
|
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
|
hidden_states = hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
context_input_ndim = (
|
|
|
encoder_hidden_states.ndim if encoder_hidden_states is not None else None
|
|
|
)
|
|
|
if context_input_ndim == 4:
|
|
|
batch_size, channel, height, width = encoder_hidden_states.shape
|
|
|
encoder_hidden_states = encoder_hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
batch_size = (
|
|
|
encoder_hidden_states.shape[0]
|
|
|
if encoder_hidden_states is not None
|
|
|
else hidden_states.shape[0]
|
|
|
)
|
|
|
|
|
|
|
|
|
if encoder_hidden_states is None:
|
|
|
|
|
|
qkv = attn.to_qkv(hidden_states)
|
|
|
inner_dim = qkv.shape[-1] // 3
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
seq_len = hidden_states.shape[1]
|
|
|
|
|
|
|
|
|
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
|
|
query, key, value = qkv.unbind(
|
|
|
dim=2
|
|
|
)
|
|
|
|
|
|
|
|
|
query = query.transpose(1, 2)
|
|
|
key = key.transpose(1, 2)
|
|
|
value = value.transpose(1, 2)
|
|
|
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
query = attn.norm_q(query)
|
|
|
if attn.norm_k is not None:
|
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
|
|
|
if image_rotary_emb is not None:
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
|
query,
|
|
|
key,
|
|
|
value,
|
|
|
attn_mask=attention_mask,
|
|
|
dropout_p=0.0,
|
|
|
is_causal=False,
|
|
|
)
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(
|
|
|
batch_size, -1, attn.heads * head_dim
|
|
|
)
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
qkv = attn.to_qkv(hidden_states)
|
|
|
inner_dim = qkv.shape[-1] // 3
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
seq_len = hidden_states.shape[1]
|
|
|
|
|
|
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
|
|
query, key, value = qkv.unbind(dim=2)
|
|
|
|
|
|
|
|
|
query = query.transpose(1, 2)
|
|
|
key = key.transpose(1, 2)
|
|
|
value = value.transpose(1, 2)
|
|
|
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
query = attn.norm_q(query)
|
|
|
if attn.norm_k is not None:
|
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
|
|
|
encoder_seq_len = encoder_hidden_states.shape[1]
|
|
|
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
|
|
encoder_qkv = encoder_qkv.view(
|
|
|
batch_size, encoder_seq_len, 3, attn.heads, head_dim
|
|
|
)
|
|
|
encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2)
|
|
|
|
|
|
|
|
|
encoder_query = encoder_query.transpose(1, 2)
|
|
|
encoder_key = encoder_key.transpose(1, 2)
|
|
|
encoder_value = encoder_value.transpose(1, 2)
|
|
|
|
|
|
|
|
|
if attn.norm_added_q is not None:
|
|
|
encoder_query = attn.norm_added_q(encoder_query)
|
|
|
if attn.norm_added_k is not None:
|
|
|
encoder_key = attn.norm_added_k(encoder_key)
|
|
|
|
|
|
|
|
|
query = torch.cat([encoder_query, query], dim=2)
|
|
|
key = torch.cat([encoder_key, key], dim=2)
|
|
|
value = torch.cat([encoder_value, value], dim=2)
|
|
|
|
|
|
|
|
|
if image_rotary_emb is not None:
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
|
query,
|
|
|
key,
|
|
|
value,
|
|
|
attn_mask=attention_mask,
|
|
|
dropout_p=0.0,
|
|
|
is_causal=False,
|
|
|
)
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(
|
|
|
batch_size, -1, attn.heads * head_dim
|
|
|
)
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
|
|
|
encoder_hidden_states = hidden_states[:, :encoder_seq_len]
|
|
|
hidden_states = hidden_states[:, encoder_seq_len:]
|
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
|
|
|
|
|
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
if context_input_ndim == 4:
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
|
|
|
|
|
|
|
class FluxSingleFusedSDPAProcessor:
|
|
|
"""
|
|
|
Fused QKV processor for single attention (no encoder states).
|
|
|
Simpler version for self-attention only blocks.
|
|
|
"""
|
|
|
|
|
|
def __init__(self):
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
|
raise ImportError(
|
|
|
"FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
|
|
|
)
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
attn,
|
|
|
hidden_states: Tensor,
|
|
|
encoder_hidden_states: Tensor = None,
|
|
|
attention_mask: FloatTensor = None,
|
|
|
image_rotary_emb: Tensor = None,
|
|
|
) -> Tensor:
|
|
|
input_ndim = hidden_states.ndim
|
|
|
if input_ndim == 4:
|
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
|
hidden_states = hidden_states.view(
|
|
|
batch_size, channel, height * width
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
batch_size, seq_len, _ = hidden_states.shape
|
|
|
|
|
|
|
|
|
qkv = attn.to_qkv(hidden_states)
|
|
|
inner_dim = qkv.shape[-1] // 3
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
|
|
|
|
|
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
|
|
qkv = qkv.permute(2, 0, 3, 1, 4)
|
|
|
query, key, value = [
|
|
|
t.contiguous() for t in qkv.unbind(0)
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
query = attn.norm_q(query)
|
|
|
if attn.norm_k is not None:
|
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
|
|
|
if image_rotary_emb is not None:
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
|
)
|
|
|
|
|
|
|
|
|
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
if input_ndim == 4:
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
|
batch_size, channel, height, width
|
|
|
)
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
import numpy as np
|
|
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
|
|
from diffusers.models.attention import FeedForward
|
|
|
from diffusers.models.attention_processor import (
|
|
|
Attention,
|
|
|
AttentionProcessor,
|
|
|
)
|
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
|
from diffusers.models.normalization import (
|
|
|
AdaLayerNormContinuous,
|
|
|
AdaLayerNormZero,
|
|
|
AdaLayerNormZeroSingle,
|
|
|
)
|
|
|
from diffusers.utils import (
|
|
|
USE_PEFT_BACKEND,
|
|
|
is_torch_version,
|
|
|
logging,
|
|
|
scale_lora_layers,
|
|
|
unscale_lora_layers,
|
|
|
)
|
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
|
|
from diffusers.models.embeddings import (
|
|
|
CombinedTimestepGuidanceTextProjEmbeddings,
|
|
|
CombinedTimestepTextProjEmbeddings,
|
|
|
FluxPosEmbed,
|
|
|
)
|
|
|
|
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
|
from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
is_flash_attn_available = False
|
|
|
"""try:
|
|
|
from flash_attn_interface import flash_attn_func
|
|
|
|
|
|
is_flash_attn_available = True
|
|
|
except:
|
|
|
pass"""
|
|
|
|
|
|
|
|
|
class FluxAttnProcessor2_0:
|
|
|
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
|
|
|
|
|
def __init__(self):
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
|
raise ImportError(
|
|
|
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
|
|
)
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
attn: Attention,
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
encoder_hidden_states: torch.FloatTensor = None,
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
|
) -> torch.FloatTensor:
|
|
|
batch_size, _, _ = (
|
|
|
hidden_states.shape
|
|
|
if encoder_hidden_states is None
|
|
|
else encoder_hidden_states.shape
|
|
|
)
|
|
|
|
|
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
key = attn.to_k(hidden_states)
|
|
|
value = attn.to_v(hidden_states)
|
|
|
|
|
|
inner_dim = key.shape[-1]
|
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
if attn.norm_q is not None:
|
|
|
query = attn.norm_q(query)
|
|
|
if attn.norm_k is not None:
|
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
|
|
|
if encoder_hidden_states is not None:
|
|
|
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
|
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
|
|
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
|
|
batch_size, -1, attn.heads, head_dim
|
|
|
).transpose(1, 2)
|
|
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
|
|
batch_size, -1, attn.heads, head_dim
|
|
|
).transpose(1, 2)
|
|
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
|
|
batch_size, -1, attn.heads, head_dim
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
if attn.norm_added_q is not None:
|
|
|
encoder_hidden_states_query_proj = attn.norm_added_q(
|
|
|
encoder_hidden_states_query_proj
|
|
|
)
|
|
|
if attn.norm_added_k is not None:
|
|
|
encoder_hidden_states_key_proj = attn.norm_added_k(
|
|
|
encoder_hidden_states_key_proj
|
|
|
)
|
|
|
|
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
|
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
|
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
|
|
|
|
|
if image_rotary_emb is not None:
|
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
|
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
|
|
attention_mask = (attention_mask > 0).bool()
|
|
|
|
|
|
attention_mask = attention_mask.to(
|
|
|
device=hidden_states.device, dtype=query.dtype
|
|
|
)
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
|
query,
|
|
|
key,
|
|
|
value,
|
|
|
dropout_p=0.0,
|
|
|
is_causal=False,
|
|
|
attn_mask=attention_mask,
|
|
|
)
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(
|
|
|
batch_size, -1, attn.heads * head_dim
|
|
|
)
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
if encoder_hidden_states is not None:
|
|
|
encoder_hidden_states, hidden_states = (
|
|
|
hidden_states[:, : encoder_hidden_states.shape[1]],
|
|
|
hidden_states[:, encoder_hidden_states.shape[1] :],
|
|
|
)
|
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
|
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
def expand_flux_attention_mask(
|
|
|
hidden_states: torch.Tensor,
|
|
|
attn_mask: torch.Tensor,
|
|
|
) -> torch.Tensor:
|
|
|
"""
|
|
|
Expand a mask so that the image is included.
|
|
|
"""
|
|
|
bsz = attn_mask.shape[0]
|
|
|
assert bsz == hidden_states.shape[0]
|
|
|
residual_seq_len = hidden_states.shape[1]
|
|
|
mask_seq_len = attn_mask.shape[1]
|
|
|
|
|
|
expanded_mask = torch.ones(bsz, residual_seq_len)
|
|
|
expanded_mask[:, :mask_seq_len] = attn_mask
|
|
|
|
|
|
return expanded_mask
|
|
|
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
|
class FluxSingleTransformerBlock(nn.Module):
|
|
|
r"""
|
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
|
|
Parameters:
|
|
|
dim (`int`): The number of channels in the input and output.
|
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
|
processing of `context` conditions.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
|
|
super().__init__()
|
|
|
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
|
|
self.norm = AdaLayerNormZeroSingle(dim)
|
|
|
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
|
|
self.act_mlp = nn.GELU(approximate="tanh")
|
|
|
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
|
|
|
|
|
processor = FluxAttnProcessor2_0()
|
|
|
self.attn = Attention(
|
|
|
query_dim=dim,
|
|
|
cross_attention_dim=None,
|
|
|
dim_head=attention_head_dim,
|
|
|
heads=num_attention_heads,
|
|
|
out_dim=dim,
|
|
|
bias=True,
|
|
|
processor=processor,
|
|
|
qk_norm="rms_norm",
|
|
|
eps=1e-6,
|
|
|
pre_only=True,
|
|
|
)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
temb: torch.FloatTensor,
|
|
|
image_rotary_emb=None,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
):
|
|
|
residual = hidden_states
|
|
|
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
|
|
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
attention_mask = expand_flux_attention_mask(
|
|
|
hidden_states,
|
|
|
attention_mask,
|
|
|
)
|
|
|
|
|
|
attn_output = self.attn(
|
|
|
hidden_states=norm_hidden_states,
|
|
|
image_rotary_emb=image_rotary_emb,
|
|
|
attention_mask=attention_mask,
|
|
|
)
|
|
|
|
|
|
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
|
|
gate = gate.unsqueeze(1)
|
|
|
hidden_states = gate * self.proj_out(hidden_states)
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
if hidden_states.dtype == torch.float16:
|
|
|
hidden_states = hidden_states.clip(-65504, 65504)
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
|
class FluxTransformerBlock(nn.Module):
|
|
|
r"""
|
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
|
|
Parameters:
|
|
|
dim (`int`): The number of channels in the input and output.
|
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
|
processing of `context` conditions.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
|
|
):
|
|
|
super().__init__()
|
|
|
|
|
|
self.norm1 = AdaLayerNormZero(dim)
|
|
|
|
|
|
self.norm1_context = AdaLayerNormZero(dim)
|
|
|
|
|
|
if hasattr(F, "scaled_dot_product_attention"):
|
|
|
processor = FluxAttnProcessor2_0()
|
|
|
else:
|
|
|
raise ValueError(
|
|
|
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
|
|
)
|
|
|
self.attn = Attention(
|
|
|
query_dim=dim,
|
|
|
cross_attention_dim=None,
|
|
|
added_kv_proj_dim=dim,
|
|
|
dim_head=attention_head_dim,
|
|
|
heads=num_attention_heads,
|
|
|
out_dim=dim,
|
|
|
context_pre_only=False,
|
|
|
bias=True,
|
|
|
processor=processor,
|
|
|
qk_norm=qk_norm,
|
|
|
eps=eps,
|
|
|
)
|
|
|
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
|
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
self.ff_context = FeedForward(
|
|
|
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
|
|
)
|
|
|
|
|
|
|
|
|
self._chunk_size = None
|
|
|
self._chunk_dim = 0
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.FloatTensor,
|
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
|
temb: torch.FloatTensor,
|
|
|
image_rotary_emb=None,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
):
|
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
|
|
hidden_states, emb=temb
|
|
|
)
|
|
|
|
|
|
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
|
|
self.norm1_context(encoder_hidden_states, emb=temb)
|
|
|
)
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
attention_mask = expand_flux_attention_mask(
|
|
|
torch.cat([encoder_hidden_states, hidden_states], dim=1),
|
|
|
attention_mask,
|
|
|
)
|
|
|
|
|
|
|
|
|
attention_outputs = self.attn(
|
|
|
hidden_states=norm_hidden_states,
|
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
|
image_rotary_emb=image_rotary_emb,
|
|
|
attention_mask=attention_mask,
|
|
|
)
|
|
|
if len(attention_outputs) == 2:
|
|
|
attn_output, context_attn_output = attention_outputs
|
|
|
elif len(attention_outputs) == 3:
|
|
|
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
|
|
|
|
|
|
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
|
hidden_states = hidden_states + attn_output
|
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states)
|
|
|
norm_hidden_states = (
|
|
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
|
)
|
|
|
|
|
|
ff_output = self.ff(norm_hidden_states)
|
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
|
|
hidden_states = hidden_states + ff_output
|
|
|
if len(attention_outputs) == 3:
|
|
|
hidden_states = hidden_states + ip_attn_output
|
|
|
|
|
|
|
|
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
|
|
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
|
|
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
|
|
norm_encoder_hidden_states = (
|
|
|
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
|
|
+ c_shift_mlp[:, None]
|
|
|
)
|
|
|
|
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
|
|
encoder_hidden_states = (
|
|
|
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
|
|
)
|
|
|
|
|
|
if encoder_hidden_states.dtype == torch.float16:
|
|
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
|
|
|
|
|
return encoder_hidden_states, hidden_states
|
|
|
|
|
|
|
|
|
class LibreFluxTransformer2DModel(
|
|
|
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
|
|
):
|
|
|
"""
|
|
|
The Transformer model introduced in Flux.
|
|
|
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
|
|
|
|
|
Parameters:
|
|
|
patch_size (`int`): Patch size to turn the input data into small patches.
|
|
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
|
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
|
|
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
|
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
|
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
|
|
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
|
|
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
|
|
"""
|
|
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
|
|
@register_to_config
|
|
|
def __init__(
|
|
|
self,
|
|
|
patch_size: int = 1,
|
|
|
in_channels: int = 64,
|
|
|
num_layers: int = 19,
|
|
|
num_single_layers: int = 38,
|
|
|
attention_head_dim: int = 128,
|
|
|
num_attention_heads: int = 24,
|
|
|
joint_attention_dim: int = 4096,
|
|
|
pooled_projection_dim: int = 768,
|
|
|
guidance_embeds: bool = False,
|
|
|
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
|
|
):
|
|
|
super().__init__()
|
|
|
self.out_channels = in_channels
|
|
|
self.inner_dim = (
|
|
|
self.config.num_attention_heads * self.config.attention_head_dim
|
|
|
)
|
|
|
|
|
|
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
|
|
text_time_guidance_cls = (
|
|
|
CombinedTimestepGuidanceTextProjEmbeddings
|
|
|
if guidance_embeds
|
|
|
else CombinedTimestepTextProjEmbeddings
|
|
|
)
|
|
|
self.time_text_embed = text_time_guidance_cls(
|
|
|
embedding_dim=self.inner_dim,
|
|
|
pooled_projection_dim=self.config.pooled_projection_dim,
|
|
|
)
|
|
|
|
|
|
self.context_embedder = nn.Linear(
|
|
|
self.config.joint_attention_dim, self.inner_dim
|
|
|
)
|
|
|
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
|
[
|
|
|
FluxTransformerBlock(
|
|
|
dim=self.inner_dim,
|
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
|
)
|
|
|
for i in range(self.config.num_layers)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
self.single_transformer_blocks = nn.ModuleList(
|
|
|
[
|
|
|
FluxSingleTransformerBlock(
|
|
|
dim=self.inner_dim,
|
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
|
)
|
|
|
for i in range(self.config.num_single_layers)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
self.norm_out = AdaLayerNormContinuous(
|
|
|
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
|
|
)
|
|
|
self.proj_out = nn.Linear(
|
|
|
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
|
|
)
|
|
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
self.gradient_checkpointing_interval = None
|
|
|
|
|
|
def set_gradient_checkpointing_interval(self, value: int):
|
|
|
self.gradient_checkpointing_interval = value
|
|
|
|
|
|
@property
|
|
|
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
|
|
r"""
|
|
|
Returns:
|
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
|
indexed by its weight name.
|
|
|
"""
|
|
|
|
|
|
processors = {}
|
|
|
|
|
|
def fn_recursive_add_processors(
|
|
|
name: str,
|
|
|
module: torch.nn.Module,
|
|
|
processors: Dict[str, AttentionProcessor],
|
|
|
):
|
|
|
if hasattr(module, "get_processor"):
|
|
|
processors[f"{name}.processor"] = module.get_processor()
|
|
|
|
|
|
for sub_name, child in module.named_children():
|
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
|
|
return processors
|
|
|
|
|
|
for name, module in self.named_children():
|
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
|
|
return processors
|
|
|
|
|
|
|
|
|
def set_attn_processor(
|
|
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
|
|
):
|
|
|
r"""
|
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
|
|
Parameters:
|
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
|
for **all** `Attention` layers.
|
|
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
|
|
"""
|
|
|
count = len(self.attn_processors.keys())
|
|
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
|
raise ValueError(
|
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
|
)
|
|
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
|
if hasattr(module, "set_processor"):
|
|
|
if not isinstance(processor, dict):
|
|
|
module.set_processor(processor)
|
|
|
else:
|
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
|
|
for sub_name, child in module.named_children():
|
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
|
|
for name, module in self.named_children():
|
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
encoder_hidden_states: torch.Tensor = None,
|
|
|
pooled_projections: torch.Tensor = None,
|
|
|
timestep: torch.LongTensor = None,
|
|
|
img_ids: torch.Tensor = None,
|
|
|
txt_ids: torch.Tensor = None,
|
|
|
guidance: torch.Tensor = None,
|
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
controlnet_block_samples=None,
|
|
|
controlnet_single_block_samples=None,
|
|
|
return_dict: bool = True,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
controlnet_blocks_repeat: bool = False,
|
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
|
"""
|
|
|
The [`FluxTransformer2DModel`] forward method.
|
|
|
|
|
|
Args:
|
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
|
Input `hidden_states`.
|
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
|
from the embeddings of input conditions.
|
|
|
timestep ( `torch.LongTensor`):
|
|
|
Used to indicate denoising step.
|
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
`self.processor` in
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
|
tuple.
|
|
|
|
|
|
Returns:
|
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
|
`tuple` where the first element is the sample tensor.
|
|
|
"""
|
|
|
if joint_attention_kwargs is not None:
|
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
|
else:
|
|
|
lora_scale = 1.0
|
|
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
|
else:
|
|
|
if (
|
|
|
joint_attention_kwargs is not None
|
|
|
and joint_attention_kwargs.get("scale", None) is not None
|
|
|
):
|
|
|
logger.warning(
|
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
|
|
)
|
|
|
hidden_states = self.x_embedder(hidden_states)
|
|
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000
|
|
|
if guidance is not None:
|
|
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
|
|
else:
|
|
|
guidance = None
|
|
|
|
|
|
|
|
|
temb = (
|
|
|
self.time_text_embed(timestep,pooled_projections)
|
|
|
|
|
|
if guidance is None
|
|
|
else self.time_text_embed(timestep, guidance, pooled_projections)
|
|
|
)
|
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
|
|
if txt_ids.ndim == 3:
|
|
|
txt_ids = txt_ids[0]
|
|
|
if img_ids.ndim == 3:
|
|
|
img_ids = img_ids[0]
|
|
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0)
|
|
|
|
|
|
image_rotary_emb = self.pos_embed(ids)
|
|
|
|
|
|
|
|
|
if (
|
|
|
joint_attention_kwargs is not None
|
|
|
and "ip_adapter_image_embeds" in joint_attention_kwargs
|
|
|
):
|
|
|
ip_adapter_image_embeds = joint_attention_kwargs.pop(
|
|
|
"ip_adapter_image_embeds"
|
|
|
)
|
|
|
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
|
|
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
|
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
|
if (
|
|
|
self.training
|
|
|
and self.gradient_checkpointing
|
|
|
and (
|
|
|
self.gradient_checkpointing_interval is None
|
|
|
or index_block % self.gradient_checkpointing_interval == 0
|
|
|
)
|
|
|
):
|
|
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
|
def custom_forward(*inputs):
|
|
|
if return_dict is not None:
|
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
else:
|
|
|
return module(*inputs)
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
)
|
|
|
encoder_hidden_states, hidden_states = (
|
|
|
torch.utils.checkpoint.checkpoint(
|
|
|
create_custom_forward(block),
|
|
|
hidden_states,
|
|
|
encoder_hidden_states,
|
|
|
temb,
|
|
|
image_rotary_emb,
|
|
|
attention_mask,
|
|
|
**ckpt_kwargs,
|
|
|
)
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
encoder_hidden_states, hidden_states = block(
|
|
|
hidden_states=hidden_states,
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
temb=temb,
|
|
|
image_rotary_emb=image_rotary_emb,
|
|
|
attention_mask=attention_mask,
|
|
|
)
|
|
|
|
|
|
|
|
|
if controlnet_block_samples is not None:
|
|
|
interval_control = len(self.transformer_blocks) / len(
|
|
|
controlnet_block_samples
|
|
|
)
|
|
|
interval_control = int(np.ceil(interval_control))
|
|
|
|
|
|
if controlnet_blocks_repeat:
|
|
|
hidden_states = (
|
|
|
hidden_states
|
|
|
+ controlnet_block_samples[
|
|
|
index_block % len(controlnet_block_samples)
|
|
|
]
|
|
|
)
|
|
|
else:
|
|
|
hidden_states = (
|
|
|
hidden_states
|
|
|
+ controlnet_block_samples[index_block // interval_control]
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks):
|
|
|
if (
|
|
|
self.training
|
|
|
and self.gradient_checkpointing
|
|
|
or (
|
|
|
self.gradient_checkpointing_interval is not None
|
|
|
and index_block % self.gradient_checkpointing_interval == 0
|
|
|
)
|
|
|
):
|
|
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
|
def custom_forward(*inputs):
|
|
|
if return_dict is not None:
|
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
else:
|
|
|
return module(*inputs)
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
)
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
create_custom_forward(block),
|
|
|
hidden_states,
|
|
|
temb,
|
|
|
image_rotary_emb,
|
|
|
attention_mask,
|
|
|
**ckpt_kwargs,
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
hidden_states = block(
|
|
|
hidden_states=hidden_states,
|
|
|
temb=temb,
|
|
|
image_rotary_emb=image_rotary_emb,
|
|
|
attention_mask=attention_mask,
|
|
|
)
|
|
|
|
|
|
|
|
|
if controlnet_single_block_samples is not None:
|
|
|
interval_control = len(self.single_transformer_blocks) / len(
|
|
|
controlnet_single_block_samples
|
|
|
)
|
|
|
interval_control = int(np.ceil(interval_control))
|
|
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
|
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
|
|
+ controlnet_single_block_samples[index_block // interval_control]
|
|
|
)
|
|
|
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
|
output = self.proj_out(hidden_states)
|
|
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
|
|
if not return_dict:
|
|
|
return (output,)
|
|
|
|
|
|
return Transformer2DModelOutput(sample=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
|
from diffusers.loaders import PeftAdapterMixin
|
|
|
from diffusers.models.attention_processor import AttentionProcessor
|
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
|
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
|
|
from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
|
|
|
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class FluxControlNetOutput(BaseOutput):
|
|
|
controlnet_block_samples: Tuple[torch.Tensor]
|
|
|
controlnet_single_block_samples: Tuple[torch.Tensor]
|
|
|
|
|
|
|
|
|
class LibreFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
|
|
@register_to_config
|
|
|
def __init__(
|
|
|
self,
|
|
|
patch_size: int = 1,
|
|
|
in_channels: int = 64,
|
|
|
num_layers: int = 19,
|
|
|
num_single_layers: int = 38,
|
|
|
attention_head_dim: int = 128,
|
|
|
num_attention_heads: int = 24,
|
|
|
joint_attention_dim: int = 4096,
|
|
|
pooled_projection_dim: int = 768,
|
|
|
guidance_embeds: bool = False,
|
|
|
axes_dims_rope: List[int] = [16, 56, 56],
|
|
|
num_mode: int = None,
|
|
|
conditioning_embedding_channels: int = None,
|
|
|
):
|
|
|
super().__init__()
|
|
|
self.out_channels = in_channels
|
|
|
self.inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
|
|
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings
|
|
|
text_time_cls = CombinedTimestepTextProjEmbeddings
|
|
|
|
|
|
self.time_text_embed = text_time_cls(
|
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
|
|
)
|
|
|
self.time_text_guidance_embed = text_time_guidance_cls(
|
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
|
|
)
|
|
|
|
|
|
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
|
|
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
|
[
|
|
|
FluxTransformerBlock(
|
|
|
dim=self.inner_dim,
|
|
|
num_attention_heads=num_attention_heads,
|
|
|
attention_head_dim=attention_head_dim,
|
|
|
)
|
|
|
for i in range(num_layers)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
self.single_transformer_blocks = nn.ModuleList(
|
|
|
[
|
|
|
FluxSingleTransformerBlock(
|
|
|
dim=self.inner_dim,
|
|
|
num_attention_heads=num_attention_heads,
|
|
|
attention_head_dim=attention_head_dim,
|
|
|
)
|
|
|
for i in range(num_single_layers)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
|
|
|
self.controlnet_blocks = nn.ModuleList([])
|
|
|
for _ in range(len(self.transformer_blocks)):
|
|
|
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
|
|
|
|
|
self.controlnet_single_blocks = nn.ModuleList([])
|
|
|
for _ in range(len(self.single_transformer_blocks)):
|
|
|
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
|
|
|
|
|
self.union = num_mode is not None
|
|
|
if self.union:
|
|
|
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
|
|
|
|
|
|
if conditioning_embedding_channels is not None:
|
|
|
self.input_hint_block = ControlNetConditioningEmbedding(
|
|
|
conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
|
|
|
)
|
|
|
self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
|
|
else:
|
|
|
self.input_hint_block = None
|
|
|
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
|
|
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
@property
|
|
|
|
|
|
def attn_processors(self):
|
|
|
r"""
|
|
|
Returns:
|
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
|
indexed by its weight name.
|
|
|
"""
|
|
|
|
|
|
processors = {}
|
|
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
|
|
if hasattr(module, "get_processor"):
|
|
|
processors[f"{name}.processor"] = module.get_processor()
|
|
|
|
|
|
for sub_name, child in module.named_children():
|
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
|
|
return processors
|
|
|
|
|
|
for name, module in self.named_children():
|
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
|
|
return processors
|
|
|
|
|
|
|
|
|
def set_attn_processor(self, processor):
|
|
|
r"""
|
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
|
|
Parameters:
|
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
|
for **all** `Attention` layers.
|
|
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
|
|
"""
|
|
|
count = len(self.attn_processors.keys())
|
|
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
|
raise ValueError(
|
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
|
)
|
|
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
|
if hasattr(module, "set_processor"):
|
|
|
if not isinstance(processor, dict):
|
|
|
module.set_processor(processor)
|
|
|
else:
|
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
|
|
for sub_name, child in module.named_children():
|
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
|
|
for name, module in self.named_children():
|
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
|
module.gradient_checkpointing = value
|
|
|
|
|
|
@classmethod
|
|
|
def from_transformer(
|
|
|
cls,
|
|
|
transformer,
|
|
|
num_layers: int = 4,
|
|
|
num_single_layers: int = 10,
|
|
|
attention_head_dim: int = 128,
|
|
|
num_attention_heads: int = 24,
|
|
|
load_weights_from_transformer=True,
|
|
|
):
|
|
|
config = dict(transformer.config)
|
|
|
config["num_layers"] = num_layers
|
|
|
config["num_single_layers"] = num_single_layers
|
|
|
config["attention_head_dim"] = attention_head_dim
|
|
|
config["num_attention_heads"] = num_attention_heads
|
|
|
|
|
|
controlnet = cls.from_config(config)
|
|
|
|
|
|
if load_weights_from_transformer:
|
|
|
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
|
|
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
|
|
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
|
|
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
|
|
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
|
|
controlnet.single_transformer_blocks.load_state_dict(
|
|
|
transformer.single_transformer_blocks.state_dict(), strict=False
|
|
|
)
|
|
|
|
|
|
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
|
|
|
|
|
return controlnet
|
|
|
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
controlnet_cond: torch.Tensor,
|
|
|
controlnet_mode: torch.Tensor = None,
|
|
|
conditioning_scale: float = 1.0,
|
|
|
encoder_hidden_states: torch.Tensor = None,
|
|
|
pooled_projections: torch.Tensor = None,
|
|
|
timestep: torch.LongTensor = None,
|
|
|
img_ids: torch.Tensor = None,
|
|
|
txt_ids: torch.Tensor = None,
|
|
|
guidance: torch.Tensor = None,
|
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
return_dict: bool = True,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
|
"""
|
|
|
The [`FluxTransformer2DModel`] forward method.
|
|
|
|
|
|
Args:
|
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
|
Input `hidden_states`.
|
|
|
controlnet_cond (`torch.Tensor`):
|
|
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
controlnet_mode (`torch.Tensor`):
|
|
|
The mode tensor of shape `(batch_size, 1)`.
|
|
|
conditioning_scale (`float`, defaults to `1.0`):
|
|
|
The scale factor for ControlNet outputs.
|
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
|
from the embeddings of input conditions.
|
|
|
timestep ( `torch.LongTensor`):
|
|
|
Used to indicate denoising step.
|
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
`self.processor` in
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
|
tuple.
|
|
|
|
|
|
Returns:
|
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
|
`tuple` where the first element is the sample tensor.
|
|
|
"""
|
|
|
if joint_attention_kwargs is not None:
|
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
|
else:
|
|
|
lora_scale = 1.0
|
|
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
|
else:
|
|
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
|
|
logger.warning(
|
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
|
|
)
|
|
|
hidden_states = self.x_embedder(hidden_states)
|
|
|
|
|
|
if self.input_hint_block is not None:
|
|
|
controlnet_cond = self.input_hint_block(controlnet_cond)
|
|
|
batch_size, channels, height_pw, width_pw = controlnet_cond.shape
|
|
|
height = height_pw // self.config.patch_size
|
|
|
width = width_pw // self.config.patch_size
|
|
|
controlnet_cond = controlnet_cond.reshape(
|
|
|
batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
|
|
|
)
|
|
|
controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
|
|
|
controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
|
|
|
|
|
|
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
|
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000
|
|
|
if guidance is not None:
|
|
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
|
|
else:
|
|
|
guidance = None
|
|
|
|
|
|
|
|
|
temb = (
|
|
|
self.time_text_embed(timestep, pooled_projections)
|
|
|
if guidance is None
|
|
|
|
|
|
else self.time_text_guidance_embed(timestep, guidance, pooled_projections)
|
|
|
)
|
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
|
|
if self.union:
|
|
|
|
|
|
if controlnet_mode is None:
|
|
|
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
|
|
|
|
|
|
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
|
|
|
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
|
|
|
txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)
|
|
|
|
|
|
if txt_ids.ndim == 3:
|
|
|
logger.warning(
|
|
|
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
|
|
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
|
|
)
|
|
|
txt_ids = txt_ids[0]
|
|
|
if img_ids.ndim == 3:
|
|
|
logger.warning(
|
|
|
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
|
|
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
|
|
)
|
|
|
img_ids = img_ids[0]
|
|
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0)
|
|
|
image_rotary_emb = self.pos_embed(ids)
|
|
|
|
|
|
block_samples = ()
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
|
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
|
def custom_forward(*inputs):
|
|
|
if return_dict is not None:
|
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
else:
|
|
|
return module(*inputs)
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
create_custom_forward(block),
|
|
|
hidden_states,
|
|
|
encoder_hidden_states,
|
|
|
temb,
|
|
|
image_rotary_emb,
|
|
|
attention_mask,
|
|
|
**ckpt_kwargs,
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
encoder_hidden_states, hidden_states = block(
|
|
|
hidden_states=hidden_states,
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
temb=temb,
|
|
|
image_rotary_emb=image_rotary_emb,
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
|
)
|
|
|
block_samples = block_samples + (hidden_states,)
|
|
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
|
|
single_block_samples = ()
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks):
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
|
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
|
def custom_forward(*inputs):
|
|
|
if return_dict is not None:
|
|
|
return module(*inputs, return_dict=return_dict)
|
|
|
else:
|
|
|
return module(*inputs)
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
create_custom_forward(block),
|
|
|
hidden_states,
|
|
|
temb,
|
|
|
image_rotary_emb,
|
|
|
attention_mask,
|
|
|
**ckpt_kwargs,
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
hidden_states = block(
|
|
|
hidden_states=hidden_states,
|
|
|
temb=temb,
|
|
|
image_rotary_emb=image_rotary_emb,
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
|
)
|
|
|
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
|
|
|
|
|
|
|
|
|
controlnet_block_samples = ()
|
|
|
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
|
|
block_sample = controlnet_block(block_sample)
|
|
|
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
|
|
|
|
|
controlnet_single_block_samples = ()
|
|
|
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
|
|
|
single_block_sample = controlnet_block(single_block_sample)
|
|
|
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
|
|
|
|
|
|
|
|
|
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
|
|
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
|
|
|
|
|
|
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
|
|
controlnet_single_block_samples = (
|
|
|
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
|
|
|
)
|
|
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
|
|
if not return_dict:
|
|
|
return (controlnet_block_samples, controlnet_single_block_samples)
|
|
|
|
|
|
return FluxControlNetOutput(
|
|
|
controlnet_block_samples=controlnet_block_samples,
|
|
|
controlnet_single_block_samples=controlnet_single_block_samples,
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
|
|
from diffusers.utils import (
|
|
|
USE_PEFT_BACKEND,
|
|
|
is_torch_xla_available,
|
|
|
logging,
|
|
|
replace_example_docstring,
|
|
|
scale_lora_layers,
|
|
|
unscale_lora_layers,
|
|
|
)
|
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
|
|
|
|
|
|
|
|
if is_torch_xla_available():
|
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
|
|
XLA_AVAILABLE = True
|
|
|
else:
|
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
|
Examples:
|
|
|
```py
|
|
|
>>> import torch
|
|
|
>>> from diffusers.utils import load_image
|
|
|
>>> from diffusers import FluxControlNetPipeline
|
|
|
>>> from diffusers import FluxControlNetModel
|
|
|
|
|
|
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
|
|
|
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
|
|
>>> pipe = FluxControlNetPipeline.from_pretrained(
|
|
|
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
|
|
|
... )
|
|
|
>>> pipe.to("cuda")
|
|
|
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
|
|
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
|
|
|
>>> image = pipe(
|
|
|
... prompt,
|
|
|
... control_image=control_image,
|
|
|
... controlnet_conditioning_scale=0.6,
|
|
|
... num_inference_steps=28,
|
|
|
... guidance_scale=3.5,
|
|
|
... ).images[0]
|
|
|
>>> image.save("flux.png")
|
|
|
```
|
|
|
"""
|
|
|
|
|
|
def _maybe_to(x: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
|
|
if device is None and dtype is None:
|
|
|
return x
|
|
|
need_dev = device is not None and str(getattr(x, "device", None)) != str(device)
|
|
|
need_dt = dtype is not None and getattr(x, "dtype", None) != dtype
|
|
|
return x.to(device=device if need_dev else x.device, dtype=dtype if need_dt else x.dtype) if (need_dev or need_dt) else x
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_shift(
|
|
|
image_seq_len,
|
|
|
base_seq_len: int = 256,
|
|
|
max_seq_len: int = 4096,
|
|
|
base_shift: float = 0.5,
|
|
|
max_shift: float = 1.16,
|
|
|
):
|
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
|
|
b = base_shift - m * base_seq_len
|
|
|
mu = image_seq_len * m + b
|
|
|
return mu
|
|
|
|
|
|
|
|
|
|
|
|
def retrieve_timesteps(
|
|
|
scheduler,
|
|
|
num_inference_steps: Optional[int] = None,
|
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
|
timesteps: Optional[List[int]] = None,
|
|
|
sigmas: Optional[List[float]] = None,
|
|
|
**kwargs,
|
|
|
):
|
|
|
"""
|
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
|
|
Args:
|
|
|
scheduler (`SchedulerMixin`):
|
|
|
The scheduler to get timesteps from.
|
|
|
num_inference_steps (`int`):
|
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
|
must be `None`.
|
|
|
device (`str` or `torch.device`, *optional*):
|
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
|
timesteps (`List[int]`, *optional*):
|
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
|
sigmas (`List[float]`, *optional*):
|
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
|
|
Returns:
|
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
|
second element is the number of inference steps.
|
|
|
"""
|
|
|
if timesteps is not None and sigmas is not None:
|
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
|
if timesteps is not None:
|
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
|
if not accepts_timesteps:
|
|
|
raise ValueError(
|
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
|
)
|
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
|
timesteps = scheduler.timesteps
|
|
|
num_inference_steps = len(timesteps)
|
|
|
elif sigmas is not None:
|
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
|
if not accept_sigmas:
|
|
|
raise ValueError(
|
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
|
)
|
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
|
timesteps = scheduler.timesteps
|
|
|
num_inference_steps = len(timesteps)
|
|
|
else:
|
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
|
timesteps = scheduler.timesteps
|
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
|
|
|
class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
|
|
r"""
|
|
|
The Flux pipeline for text-to-image generation.
|
|
|
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
|
|
|
|
|
Args:
|
|
|
transformer ([`FluxTransformer2DModel`]):
|
|
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
|
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
|
|
vae ([`AutoencoderKL`]):
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
text_encoder ([`CLIPTextModel`]):
|
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
|
text_encoder_2 ([`T5EncoderModel`]):
|
|
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
|
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
|
|
tokenizer (`CLIPTokenizer`):
|
|
|
Tokenizer of class
|
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
|
tokenizer_2 (`T5TokenizerFast`):
|
|
|
Second Tokenizer of class
|
|
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
|
|
"""
|
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
|
|
_optional_components = []
|
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
|
vae: AutoencoderKL,
|
|
|
text_encoder: CLIPTextModel,
|
|
|
tokenizer: CLIPTokenizer,
|
|
|
text_encoder_2: T5EncoderModel,
|
|
|
tokenizer_2: T5TokenizerFast,
|
|
|
transformer: LibreFluxTransformer2DModel,
|
|
|
controlnet: Union[
|
|
|
LibreFluxControlNetModel, List[LibreFluxControlNetModel], Tuple[LibreFluxControlNetModel],
|
|
|
],
|
|
|
):
|
|
|
super().__init__()
|
|
|
|
|
|
self.register_modules(
|
|
|
vae=vae,
|
|
|
text_encoder=text_encoder,
|
|
|
text_encoder_2=text_encoder_2,
|
|
|
tokenizer=tokenizer,
|
|
|
tokenizer_2=tokenizer_2,
|
|
|
transformer=transformer,
|
|
|
scheduler=scheduler,
|
|
|
controlnet=controlnet,
|
|
|
)
|
|
|
self.vae_scale_factor = (
|
|
|
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
|
|
)
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
self.tokenizer_max_length = (
|
|
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
|
|
)
|
|
|
self.default_sample_size = 64
|
|
|
|
|
|
def _get_t5_prompt_embeds(
|
|
|
self,
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
num_images_per_prompt: int = 1,
|
|
|
max_sequence_length: int = 512,
|
|
|
device: Optional[torch.device] = None,
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
):
|
|
|
device = device or self._execution_device
|
|
|
dtype = dtype or self.text_encoder.dtype
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
batch_size = len(prompt)
|
|
|
|
|
|
text_inputs = self.tokenizer_2(
|
|
|
prompt,
|
|
|
padding="max_length",
|
|
|
max_length=max_sequence_length,
|
|
|
truncation=True,
|
|
|
return_length=False,
|
|
|
return_overflowing_tokens=False,
|
|
|
return_tensors="pt",
|
|
|
)
|
|
|
text_input_ids = text_inputs.input_ids
|
|
|
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
|
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
|
|
logger.warning(
|
|
|
"The following part of your input was truncated because `max_sequence_length` is set to "
|
|
|
f" {max_sequence_length} tokens: {removed_text}"
|
|
|
)
|
|
|
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(self.text_encoder_2.device), output_hidden_states=False)[0]
|
|
|
|
|
|
|
|
|
dtype = self.text_encoder_2.dtype
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
|
|
|
|
|
prompt_attention_mask = text_inputs.attention_mask.to(device=device, dtype=dtype)
|
|
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
|
|
|
|
|
|
|
|
return prompt_embeds, prompt_attention_mask
|
|
|
|
|
|
def _get_clip_prompt_embeds(
|
|
|
self,
|
|
|
prompt: Union[str, List[str]],
|
|
|
num_images_per_prompt: int = 1,
|
|
|
device: Optional[torch.device] = None,
|
|
|
):
|
|
|
device = device or self._execution_device
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
batch_size = len(prompt)
|
|
|
|
|
|
text_inputs = self.tokenizer(
|
|
|
prompt,
|
|
|
padding="max_length",
|
|
|
max_length=self.tokenizer_max_length,
|
|
|
truncation=True,
|
|
|
return_overflowing_tokens=False,
|
|
|
return_length=False,
|
|
|
return_tensors="pt",
|
|
|
)
|
|
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
|
|
logger.warning(
|
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
|
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
|
|
)
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(self.text_encoder.device), output_hidden_states=False)
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
|
|
|
|
|
return prompt_embeds
|
|
|
|
|
|
def encode_prompt(
|
|
|
self,
|
|
|
prompt: Union[str, List[str]],
|
|
|
prompt_2: Union[str, List[str]],
|
|
|
device: Optional[torch.device] = None,
|
|
|
num_images_per_prompt: int = 1,
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
max_sequence_length: int = 512,
|
|
|
lora_scale: Optional[float] = None,
|
|
|
):
|
|
|
device = device or self._execution_device
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
|
|
self._lora_scale = lora_scale
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
|
|
scale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
|
|
if prompt_embeds is None:
|
|
|
prompt_2 = prompt_2 or prompt
|
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
|
|
prompt=prompt,
|
|
|
device=device,
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
)
|
|
|
|
|
|
|
|
|
prompt_attention_mask = None
|
|
|
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
|
|
|
prompt=prompt_2,
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
device=device,
|
|
|
)
|
|
|
|
|
|
if self.text_encoder is not None:
|
|
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
if self.text_encoder_2 is not None:
|
|
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
dtype = self.transformer.dtype
|
|
|
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
|
|
|
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask
|
|
|
|
|
|
def check_inputs(
|
|
|
self,
|
|
|
prompt,
|
|
|
prompt_2,
|
|
|
height,
|
|
|
width,
|
|
|
prompt_embeds=None,
|
|
|
pooled_prompt_embeds=None,
|
|
|
callback_on_step_end_tensor_inputs=None,
|
|
|
max_sequence_length=None,
|
|
|
):
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
|
):
|
|
|
raise ValueError(
|
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
|
)
|
|
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
|
raise ValueError(
|
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
|
" only forward one of the two."
|
|
|
)
|
|
|
elif prompt_2 is not None and prompt_embeds is not None:
|
|
|
raise ValueError(
|
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
|
" only forward one of the two."
|
|
|
)
|
|
|
elif prompt is None and prompt_embeds is None:
|
|
|
raise ValueError(
|
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
|
)
|
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
|
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
|
|
raise ValueError(
|
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
|
|
)
|
|
|
|
|
|
if max_sequence_length is not None and max_sequence_length > 512:
|
|
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
|
|
|
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
|
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
|
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
|
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
|
|
|
|
|
latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
|
|
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape[1:]
|
|
|
|
|
|
latent_image_ids = latent_image_ids.reshape(
|
|
|
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
|
|
)
|
|
|
|
|
|
return latent_image_ids.to(device=device, dtype=dtype)
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
|
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
|
|
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
|
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
|
|
|
|
|
return latents
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
|
def _unpack_latents(latents, height, width, vae_scale_factor):
|
|
|
batch_size, num_patches, channels = latents.shape
|
|
|
|
|
|
height = height // vae_scale_factor
|
|
|
width = width // vae_scale_factor
|
|
|
|
|
|
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
|
|
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
|
|
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
|
|
|
|
|
return latents
|
|
|
|
|
|
|
|
|
def prepare_latents(
|
|
|
self,
|
|
|
batch_size,
|
|
|
num_channels_latents,
|
|
|
height,
|
|
|
width,
|
|
|
dtype,
|
|
|
device,
|
|
|
generator,
|
|
|
latents=None,
|
|
|
):
|
|
|
height = 2 * (int(height) // self.vae_scale_factor)
|
|
|
width = 2 * (int(width) // self.vae_scale_factor)
|
|
|
|
|
|
shape = (batch_size, num_channels_latents, height, width)
|
|
|
|
|
|
if latents is not None:
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
|
|
return latents.to(device=device, dtype=dtype), latent_image_ids
|
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
|
raise ValueError(
|
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
|
)
|
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
|
|
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
|
|
|
|
|
return latents, latent_image_ids
|
|
|
|
|
|
|
|
|
def prepare_image(
|
|
|
self,
|
|
|
image,
|
|
|
width,
|
|
|
height,
|
|
|
batch_size,
|
|
|
num_images_per_prompt,
|
|
|
device,
|
|
|
dtype,
|
|
|
do_classifier_free_guidance=False,
|
|
|
guess_mode=False,
|
|
|
):
|
|
|
if isinstance(image, torch.Tensor):
|
|
|
pass
|
|
|
else:
|
|
|
image = self.image_processor.preprocess(image, height=height, width=width)
|
|
|
|
|
|
image_batch_size = image.shape[0]
|
|
|
|
|
|
if image_batch_size == 1:
|
|
|
repeat_by = batch_size
|
|
|
else:
|
|
|
|
|
|
repeat_by = num_images_per_prompt
|
|
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
|
|
if do_classifier_free_guidance and not guess_mode:
|
|
|
image = torch.cat([image] * 2)
|
|
|
|
|
|
return image
|
|
|
|
|
|
@property
|
|
|
def guidance_scale(self):
|
|
|
return self._guidance_scale
|
|
|
|
|
|
@property
|
|
|
def joint_attention_kwargs(self):
|
|
|
return self._joint_attention_kwargs
|
|
|
|
|
|
@property
|
|
|
def num_timesteps(self):
|
|
|
return self._num_timesteps
|
|
|
|
|
|
@property
|
|
|
def interrupt(self):
|
|
|
return self._interrupt
|
|
|
|
|
|
@torch.no_grad()
|
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
def __call__(
|
|
|
self,
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
|
height: Optional[int] = None,
|
|
|
width: Optional[int] = None,
|
|
|
num_inference_steps: int = 28,
|
|
|
timesteps: List[int] = None,
|
|
|
guidance_scale: float = 7.0,
|
|
|
control_image: PipelineImageInput = None,
|
|
|
control_mode: Optional[Union[int, List[int]]] = None,
|
|
|
control_image_undo_centering: bool = False,
|
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
output_type: Optional[str] = "pil",
|
|
|
return_dict: bool = True,
|
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
|
max_sequence_length: int = 512,
|
|
|
negative_prompt: Optional[Union[str, List[str]]] = "",
|
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = "",
|
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
):
|
|
|
r"""
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
|
|
Args:
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
|
instead.
|
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
|
will be used instead
|
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
expense of slower inference.
|
|
|
timesteps (`List[int]`, *optional*):
|
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
|
passed will be used. Must be in descending order.
|
|
|
guidance_scale (`float`, *optional*, defaults to 7.0):
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
usually at the expense of lower image quality.
|
|
|
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
|
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
|
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
|
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
|
|
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
|
|
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
|
|
images must be passed as a list such that each element of the list can be correctly batched for input
|
|
|
to a single ControlNet.
|
|
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
|
|
the corresponding scale as a list.
|
|
|
control_mode (`int` or `List[int]`,, *optional*, defaults to None):
|
|
|
The control mode when applying ControlNet-Union.
|
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
The number of images to generate per prompt.
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
to make generation deterministic.
|
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
The output format of the generate image. Choose between
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
`self.processor` in
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
|
`callback_on_step_end_tensor_inputs`.
|
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
Returns:
|
|
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
|
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
|
|
images.
|
|
|
"""
|
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
|
|
|
|
|
self.check_inputs(
|
|
|
prompt,
|
|
|
prompt_2,
|
|
|
height,
|
|
|
width,
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
)
|
|
|
|
|
|
self._guidance_scale = guidance_scale
|
|
|
self._joint_attention_kwargs = joint_attention_kwargs
|
|
|
self._interrupt = False
|
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
batch_size = 1
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
batch_size = len(prompt)
|
|
|
else:
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
device = self._execution_device
|
|
|
dtype = self.transformer.dtype
|
|
|
|
|
|
lora_scale = (
|
|
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
|
|
)
|
|
|
|
|
|
(
|
|
|
prompt_embeds,
|
|
|
pooled_prompt_embeds,
|
|
|
text_ids,
|
|
|
attention_mask,
|
|
|
) = self.encode_prompt(
|
|
|
prompt=prompt,
|
|
|
prompt_2=prompt_2,
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
|
device=device,
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
lora_scale=lora_scale,
|
|
|
)
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
if do_classifier_free_guidance:
|
|
|
if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None:
|
|
|
negative_prompt = negative_prompt or ""
|
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
(negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, negative_attention_mask) = self.encode_prompt(
|
|
|
prompt=negative_prompt, prompt_2=negative_prompt_2, device=device,
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
max_sequence_length=max_sequence_length, lora_scale=lora_scale,
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4
|
|
|
|
|
|
if type(self.controlnet) == FullyShardedDataParallel:
|
|
|
inner_module = self.controlnet._fsdp_wrapped_module
|
|
|
else:
|
|
|
inner_module = self.controlnet
|
|
|
|
|
|
if isinstance(inner_module, LibreFluxControlNetModel):
|
|
|
control_image = self.prepare_image(
|
|
|
image=control_image,
|
|
|
width=width,
|
|
|
height=height,
|
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
device=device,
|
|
|
dtype=dtype,
|
|
|
)
|
|
|
|
|
|
if control_image_undo_centering:
|
|
|
if not self.image_processor.do_normalize:
|
|
|
raise ValueError(
|
|
|
"`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor"
|
|
|
)
|
|
|
control_image = control_image*0.5 + 0.5
|
|
|
|
|
|
height, width = control_image.shape[-2:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
control_image = _maybe_to(control_image, device=self.vae.device)
|
|
|
control_image = self.vae.encode(control_image).latent_dist.sample()
|
|
|
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
|
|
control_image = _maybe_to(control_image, device=device)
|
|
|
|
|
|
height_control_image, width_control_image = control_image.shape[2:]
|
|
|
control_image = self._pack_latents(
|
|
|
control_image,
|
|
|
batch_size * num_images_per_prompt,
|
|
|
num_channels_latents,
|
|
|
height_control_image,
|
|
|
width_control_image,
|
|
|
)
|
|
|
|
|
|
|
|
|
if control_mode is not None:
|
|
|
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
|
|
|
control_mode = control_mode.reshape([-1, 1])
|
|
|
|
|
|
|
|
|
|
|
|
control_mode_ = []
|
|
|
if isinstance(control_mode, list):
|
|
|
for cmode in control_mode:
|
|
|
if cmode is None:
|
|
|
control_mode_.append(-1)
|
|
|
else:
|
|
|
control_mode_.append(cmode)
|
|
|
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
|
|
|
control_mode = control_mode.reshape([-1, 1])
|
|
|
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4
|
|
|
latents, latent_image_ids = self.prepare_latents(
|
|
|
batch_size * num_images_per_prompt,
|
|
|
num_channels_latents,
|
|
|
height,
|
|
|
width,
|
|
|
prompt_embeds.dtype,
|
|
|
device,
|
|
|
generator,
|
|
|
latents,
|
|
|
)
|
|
|
|
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
|
|
image_seq_len = latents.shape[1]
|
|
|
mu = calculate_shift(
|
|
|
image_seq_len,
|
|
|
self.scheduler.config.base_image_seq_len,
|
|
|
self.scheduler.config.max_image_seq_len,
|
|
|
self.scheduler.config.base_shift,
|
|
|
self.scheduler.config.max_shift,
|
|
|
)
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
|
self.scheduler,
|
|
|
num_inference_steps,
|
|
|
device,
|
|
|
timesteps,
|
|
|
sigmas,
|
|
|
mu=mu,
|
|
|
)
|
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
|
|
|
|
|
target_device = self.transformer.device
|
|
|
self.controlnet.to(target_device)
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
for i, t in enumerate(timesteps):
|
|
|
if self.interrupt:
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
latent_model_input = torch.cat([latents] * 2)
|
|
|
current_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
current_pooled_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
|
|
current_attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
|
|
current_text_ids = torch.cat([negative_text_ids, text_ids])
|
|
|
current_img_ids = torch.cat([latent_image_ids] * 2)
|
|
|
current_control_image = torch.cat([control_image] * 2) if isinstance(control_image, torch.Tensor) else [torch.cat([c_img] * 2) for c_img in control_image]
|
|
|
else:
|
|
|
latent_model_input = latents
|
|
|
current_prompt_embeds = prompt_embeds
|
|
|
current_pooled_embeds = pooled_prompt_embeds
|
|
|
current_attention_mask = attention_mask
|
|
|
current_text_ids = text_ids
|
|
|
current_img_ids = latent_image_ids
|
|
|
current_control_image = control_image
|
|
|
|
|
|
|
|
|
target_device = self.transformer.device
|
|
|
|
|
|
|
|
|
latent_model_input = _maybe_to(latent_model_input, device=target_device)
|
|
|
current_prompt_embeds = _maybe_to(current_prompt_embeds, device=target_device)
|
|
|
current_pooled_embeds = _maybe_to(current_pooled_embeds, device=target_device)
|
|
|
current_attention_mask = _maybe_to(current_attention_mask, device=target_device)
|
|
|
current_text_ids = _maybe_to(current_text_ids, device=target_device)
|
|
|
current_img_ids = _maybe_to(current_img_ids, device=target_device)
|
|
|
if isinstance(current_control_image, torch.Tensor):
|
|
|
current_control_image = _maybe_to(current_control_image, device=target_device)
|
|
|
else:
|
|
|
current_control_image = [ _maybe_to(c, device=target_device) for c in current_control_image ]
|
|
|
control_mode = _maybe_to(control_mode, device=target_device) if control_mode is not None else None
|
|
|
|
|
|
t_model = t.expand(latent_model_input.shape[0]).to(target_device)
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
|
|
|
hidden_states=latent_model_input,
|
|
|
controlnet_cond=current_control_image,
|
|
|
controlnet_mode=control_mode,
|
|
|
conditioning_scale=controlnet_conditioning_scale,
|
|
|
timestep=(t_model / 1000),
|
|
|
guidance=None,
|
|
|
pooled_projections=current_pooled_embeds,
|
|
|
encoder_hidden_states=current_prompt_embeds,
|
|
|
attention_mask=current_attention_mask,
|
|
|
txt_ids=current_text_ids,
|
|
|
img_ids=current_img_ids,
|
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
|
return_dict=False
|
|
|
)
|
|
|
|
|
|
controlnet_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_block_samples]
|
|
|
controlnet_single_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_single_block_samples]
|
|
|
|
|
|
noise_pred = self.transformer(
|
|
|
hidden_states=latent_model_input,
|
|
|
timestep=(t_model / 1000),
|
|
|
guidance=None,
|
|
|
pooled_projections=current_pooled_embeds,
|
|
|
encoder_hidden_states=current_prompt_embeds,
|
|
|
attention_mask=current_attention_mask,
|
|
|
controlnet_block_samples=controlnet_block_samples,
|
|
|
controlnet_single_block_samples=controlnet_single_block_samples,
|
|
|
txt_ids=current_text_ids,
|
|
|
img_ids=current_img_ids,
|
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
|
return_dict=False
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latents_dtype = latents.dtype
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
if latents.dtype != latents_dtype:
|
|
|
if torch.backends.mps.is_available():
|
|
|
|
|
|
latents = latents.to(latents_dtype)
|
|
|
|
|
|
if callback_on_step_end is not None:
|
|
|
callback_kwargs = {}
|
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
|
callback_kwargs[k] = locals()[k]
|
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
progress_bar.update()
|
|
|
|
|
|
if XLA_AVAILABLE:
|
|
|
xm.mark_step()
|
|
|
|
|
|
if output_type == "latent":
|
|
|
image = latents
|
|
|
|
|
|
else:
|
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
|
|
|
|
|
latents = _maybe_to(latents, device=self.vae.device)
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
|
|
if not return_dict:
|
|
|
return (image,)
|
|
|
|
|
|
return FluxPipelineOutput(images=image) |