File size: 121,490 Bytes
addfdf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 |
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This was modied from the control net repo
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
import numpy as np
import torch
from transformers import (
CLIPTextModel,
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
)
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
from diffusers.models.autoencoders import AutoencoderKL
### MERGEING THESE ###
# from src.models.transformer import FluxTransformer2DModel
# from src.models.controlnet_flux import FluxControlNetModel
#############
##########################################
########### ATTENTION MERGE ##############
##########################################
import torch
from torch import Tensor, FloatTensor
from torch.nn import functional as F
from einops import rearrange
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import apply_rotary_emb
#try:
# from flash_attn_interface import flash_attn_func, flash_attn_qkvpacked_func
#except:
# pass
"""def fa3_sdpa(
q,
k,
v,
):
# flash attention 3 sdpa drop-in replacement
q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]]
out = flash_attn_func(q, k, v)[0]
return out.permute(0, 2, 1, 3)"""
"""
class FluxSingleAttnProcessor3_0:
r""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn,
hidden_states: Tensor,
encoder_hidden_states: Tensor = None,
attention_mask: FloatTensor = None,
image_rotary_emb: Tensor = None,
) -> Tensor:
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, _, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = fa3_sdpa(query, key, value)
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states
class FluxAttnProcessor3_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn,
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor = None,
attention_mask: FloatTensor = None,
image_rotary_emb: Tensor = None,
) -> FloatTensor:
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
context_input_ndim = encoder_hidden_states.ndim
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size = encoder_hidden_states.shape[0]
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(
encoder_hidden_states_query_proj
)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(
encoder_hidden_states_key_proj
)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = fa3_sdpa(query, key, value)
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states, encoder_hidden_states
class FluxFusedFlashAttnProcessor3(object):
"""
True fused QKV Flash Attention 3 processor for Flux models.
Keeps QKV tensors packed through the entire attention computation.
"""
def __init__(self):
self.flash_attn_qkvpacked_func = None
try:
from flash_attn_interface import flash_attn_qkvpacked_func
self.flash_attn_qkvpacked_func = flash_attn_qkvpacked_func
except ImportError:
raise ImportError(
"FluxFusedFlashAttnProcessor3 requires flash-attn library. "
"Please see this link for Hopper and Blackwell instructions: https://github.com/bghira/SimpleTuner/blob/main/INSTALL.md#nvidia-hopper--blackwell-follow-up-steps"
)
def __call__(
self,
attn,
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor = None,
attention_mask: FloatTensor = None,
image_rotary_emb: Tensor = None,
) -> FloatTensor:
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
context_input_ndim = (
encoder_hidden_states.ndim if encoder_hidden_states is not None else None
)
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size = (
encoder_hidden_states.shape[0]
if encoder_hidden_states is not None
else hidden_states.shape[0]
)
seq_len = hidden_states.shape[1]
# Fused QKV projection
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
inner_dim = qkv.shape[-1] // 3
head_dim = inner_dim // attn.heads
# Reshape to packed format: (batch, seq_len, 3, heads, head_dim)
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
# Apply norms if needed (requires temporary unpacking)
if attn.norm_q is not None or attn.norm_k is not None:
q, k, v = qkv.unbind(dim=2) # Each is (batch, seq_len, heads, head_dim)
q = q.transpose(1, 2) # (batch, heads, seq_len, head_dim)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if attn.norm_q is not None:
q = attn.norm_q(q)
if attn.norm_k is not None:
k = attn.norm_k(k)
# Repack: back to (batch, seq_len, 3, heads, head_dim)
qkv = torch.stack(
[q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2
)
# Handle encoder states if present
if encoder_hidden_states is not None:
encoder_seq_len = encoder_hidden_states.shape[1]
# Fused encoder QKV
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
encoder_qkv = encoder_qkv.view(
batch_size, encoder_seq_len, 3, attn.heads, head_dim
)
# Apply norms if needed
if attn.norm_added_q is not None or attn.norm_added_k is not None:
enc_q, enc_k, enc_v = encoder_qkv.unbind(dim=2)
enc_q = enc_q.transpose(1, 2)
enc_k = enc_k.transpose(1, 2)
enc_v = enc_v.transpose(1, 2)
if attn.norm_added_q is not None:
enc_q = attn.norm_added_q(enc_q)
if attn.norm_added_k is not None:
enc_k = attn.norm_added_k(enc_k)
encoder_qkv = torch.stack(
[
enc_q.transpose(1, 2),
enc_k.transpose(1, 2),
enc_v.transpose(1, 2),
],
dim=2,
)
# Concatenate along sequence dimension
qkv = torch.cat(
[encoder_qkv, qkv], dim=1
) # (batch, encoder_seq + seq, 3, heads, head_dim)
# Apply RoPE if needed
if image_rotary_emb is not None:
q, k, v = qkv.unbind(dim=2) # Each is (batch, seq_len, heads, head_dim)
# Transpose to (batch, heads, seq_len, head_dim) for RoPE
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
# Apply RoPE to q and k
q = apply_rotary_emb(q, image_rotary_emb)
k = apply_rotary_emb(k, image_rotary_emb)
# Transpose back and repack
qkv = torch.stack(
[q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2
)
# Flash Attention 3 with packed QKV
# Input shape: (batch, seq_len, 3, heads, head_dim)
# Output shape: (batch, seq_len, heads, head_dim)
hidden_states = self.flash_attn_qkvpacked_func(
qkv,
causal=False,
# Don't pass num_heads_q for standard MHA
)
# Reshape output: (batch, seq_len, heads, head_dim) -> (batch, seq_len, heads * head_dim)
hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(qkv.dtype)
# Split and process outputs
if encoder_hidden_states is not None:
encoder_seq_len = encoder_hidden_states.shape[1]
encoder_hidden_states = hidden_states[:, :encoder_seq_len]
hidden_states = hidden_states[:, encoder_seq_len:]
# Output projections
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states) # dropout
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
# Reshape if needed
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states, encoder_hidden_states
else:
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states
"""
class FluxFusedSDPAProcessor:
"""
Fused QKV processor using PyTorch's scaled_dot_product_attention.
Uses fused projections but splits for attention computation.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
)
def __call__(
self,
attn,
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor = None,
attention_mask: FloatTensor = None,
image_rotary_emb: Tensor = None,
) -> FloatTensor:
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
context_input_ndim = (
encoder_hidden_states.ndim if encoder_hidden_states is not None else None
)
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size = (
encoder_hidden_states.shape[0]
if encoder_hidden_states is not None
else hidden_states.shape[0]
)
# Single attention case (no encoder states)
if encoder_hidden_states is None:
# Use fused QKV projection
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
inner_dim = qkv.shape[-1] // 3
head_dim = inner_dim // attn.heads
seq_len = hidden_states.shape[1]
# Split and reshape
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
query, key, value = qkv.unbind(
dim=2
) # Each is (batch, seq_len, heads, head_dim)
# Transpose to (batch, heads, seq_len, head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# Apply norms if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# SDPA
hidden_states = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
)
# Reshape back
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states
# Joint attention case (with encoder states)
else:
# Process self-attention QKV
qkv = attn.to_qkv(hidden_states)
inner_dim = qkv.shape[-1] // 3
head_dim = inner_dim // attn.heads
seq_len = hidden_states.shape[1]
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
query, key, value = qkv.unbind(dim=2)
# Transpose to (batch, heads, seq_len, head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# Apply norms if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Process encoder QKV
encoder_seq_len = encoder_hidden_states.shape[1]
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
encoder_qkv = encoder_qkv.view(
batch_size, encoder_seq_len, 3, attn.heads, head_dim
)
encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2)
# Transpose to (batch, heads, seq_len, head_dim)
encoder_query = encoder_query.transpose(1, 2)
encoder_key = encoder_key.transpose(1, 2)
encoder_value = encoder_value.transpose(1, 2)
# Apply encoder norms if needed
if attn.norm_added_q is not None:
encoder_query = attn.norm_added_q(encoder_query)
if attn.norm_added_k is not None:
encoder_key = attn.norm_added_k(encoder_key)
# Concatenate encoder and self-attention
query = torch.cat([encoder_query, query], dim=2)
key = torch.cat([encoder_key, key], dim=2)
value = torch.cat([encoder_value, value], dim=2)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# SDPA
hidden_states = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
)
# Reshape: (batch, heads, seq_len, head_dim) -> (batch, seq_len, heads * head_dim)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# Split encoder and self outputs
encoder_hidden_states = hidden_states[:, :encoder_seq_len]
hidden_states = hidden_states[:, encoder_seq_len:]
# Output projections
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states) # dropout
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
# Reshape if needed
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states, encoder_hidden_states
class FluxSingleFusedSDPAProcessor:
"""
Fused QKV processor for single attention (no encoder states).
Simpler version for self-attention only blocks.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
)
def __call__(
self,
attn,
hidden_states: Tensor,
encoder_hidden_states: Tensor = None,
attention_mask: FloatTensor = None,
image_rotary_emb: Tensor = None,
) -> Tensor:
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, seq_len, _ = hidden_states.shape
# Use fused QKV projection
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
inner_dim = qkv.shape[-1] // 3
head_dim = inner_dim // attn.heads
# Split and reshape in one go
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
qkv = qkv.permute(2, 0, 3, 1, 4) # (3, B, H, L, D) – still strided
query, key, value = [
t.contiguous() for t in qkv.unbind(0) # make each view dense
]
# Now each is (batch, heads, seq_len, head_dim)
# Apply norms if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# SDPA
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# Reshape back
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
hidden_states = hidden_states.to(query.dtype)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
return hidden_states
#################################
##### TRANSFORMER MERGE #########
#################################
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
Attention,
AttentionProcessor,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (
AdaLayerNormContinuous,
AdaLayerNormZero,
AdaLayerNormZeroSingle,
)
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_version,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import (
CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjEmbeddings,
FluxPosEmbed,
)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
is_flash_attn_available = False
"""try:
from flash_attn_interface import flash_attn_func
is_flash_attn_available = True
except:
pass"""
class FluxAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(
encoder_hidden_states_query_proj
)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(
encoder_hidden_states_key_proj
)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if attention_mask is not None:
#print ('Attention Used')
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = (attention_mask > 0).bool()
# Edit 17 - match attn dtype to query d-type
attention_mask = attention_mask.to(
device=hidden_states.device, dtype=query.dtype
)
hidden_states = F.scaled_dot_product_attention(
query,
key,
value,
dropout_p=0.0,
is_causal=False,
attn_mask=attention_mask,
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
return hidden_states
def expand_flux_attention_mask(
hidden_states: torch.Tensor,
attn_mask: torch.Tensor,
) -> torch.Tensor:
"""
Expand a mask so that the image is included.
"""
bsz = attn_mask.shape[0]
assert bsz == hidden_states.shape[0]
residual_seq_len = hidden_states.shape[1]
mask_seq_len = attn_mask.shape[1]
expanded_mask = torch.ones(bsz, residual_seq_len)
expanded_mask[:, :mask_seq_len] = attn_mask
return expanded_mask
@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm = AdaLayerNormZeroSingle(dim)
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
processor = FluxAttnProcessor2_0()
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=processor,
qk_norm="rms_norm",
eps=1e-6,
pre_only=True,
)
def forward(
self,
hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
image_rotary_emb=None,
attention_mask: Optional[torch.Tensor] = None,
):
residual = hidden_states
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
if attention_mask is not None:
attention_mask = expand_flux_attention_mask(
hidden_states,
attention_mask,
)
attn_output = self.attn(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask,
)
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
gate = gate.unsqueeze(1)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return hidden_states
@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
):
super().__init__()
self.norm1 = AdaLayerNormZero(dim)
self.norm1_context = AdaLayerNormZero(dim)
if hasattr(F, "scaled_dot_product_attention"):
processor = FluxAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=False,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=eps,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
image_rotary_emb=None,
attention_mask: Optional[torch.Tensor] = None,
):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, emb=temb
)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
self.norm1_context(encoder_hidden_states, emb=temb)
)
if attention_mask is not None:
attention_mask = expand_flux_attention_mask(
torch.cat([encoder_hidden_states, hidden_states], dim=1),
attention_mask,
)
# Attention.
attention_outputs = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask,
)
if len(attention_outputs) == 2:
attn_output, context_attn_output = attention_outputs
elif len(attention_outputs) == 3:
attn_output, context_attn_output, ip_attn_output = attention_outputs
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = (
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
if len(attention_outputs) == 3:
hidden_states = hidden_states + ip_attn_output
# Process attention outputs for the `encoder_hidden_states`.
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = (
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
+ c_shift_mlp[:, None]
)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = (
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
)
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states
class LibreFluxTransformer2DModel(
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
):
"""
The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Parameters:
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int] = (16, 56, 56),
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = (
self.config.num_attention_heads * self.config.attention_head_dim
)
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
text_time_guidance_cls = (
CombinedTimestepGuidanceTextProjEmbeddings ### 3 input forward (timestep, guidance, pooled_projection)
if guidance_embeds
else CombinedTimestepTextProjEmbeddings #### 2 input forward (timestep, pooled_projection)
)
self.time_text_embed = text_time_guidance_cls(
embedding_dim=self.inner_dim,
pooled_projection_dim=self.config.pooled_projection_dim,
)
self.context_embedder = nn.Linear(
self.config.joint_attention_dim, self.inner_dim
)
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_single_layers)
]
)
self.norm_out = AdaLayerNormContinuous(
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
)
self.proj_out = nn.Linear(
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
)
self.gradient_checkpointing = False
# added for users to disable checkpointing every nth step
self.gradient_checkpointing_interval = None
def set_gradient_checkpointing_interval(self, value: int):
self.gradient_checkpointing_interval = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
attention_mask: Optional[torch.Tensor] = None,
controlnet_blocks_repeat: bool = False,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if (
joint_attention_kwargs is not None
and joint_attention_kwargs.get("scale", None) is not None
):
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
#print( self.time_text_embed)
temb = (
self.time_text_embed(timestep,pooled_projections)
# Edit 1 # Charlie NOT NEEDED - UNDONE
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
# IP adapter
if (
joint_attention_kwargs is not None
and "ip_adapter_image_embeds" in joint_attention_kwargs
):
ip_adapter_image_embeds = joint_attention_kwargs.pop(
"ip_adapter_image_embeds"
)
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
for index_block, block in enumerate(self.transformer_blocks):
if (
self.training
and self.gradient_checkpointing
and (
self.gradient_checkpointing_interval is None
or index_block % self.gradient_checkpointing_interval == 0
)
):
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
encoder_hidden_states, hidden_states = (
torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
attention_mask,
**ckpt_kwargs,
)
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(
controlnet_block_samples
)
interval_control = int(np.ceil(interval_control))
# For Xlabs ControlNet.
if controlnet_blocks_repeat:
hidden_states = (
hidden_states
+ controlnet_block_samples[
index_block % len(controlnet_block_samples)
]
)
else:
hidden_states = (
hidden_states
+ controlnet_block_samples[index_block // interval_control]
)
# Flux places the text tokens in front of the image tokens in the
# sequence.
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if (
self.training
and self.gradient_checkpointing
or (
self.gradient_checkpointing_interval is not None
and index_block % self.gradient_checkpointing_interval == 0
)
):
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
attention_mask,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(
controlnet_single_block_samples
)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
####################################
##### CONTROL NET MODEL MERGE ######
####################################
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class FluxControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
controlnet_single_block_samples: Tuple[torch.Tensor]
class LibreFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: List[int] = [16, 56, 56],
num_mode: int = None,
conditioning_embedding_channels: int = None,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
# edit 19
#text_time_guidance_cls = (
# CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
#)
text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings
text_time_cls = CombinedTimestepTextProjEmbeddings
self.time_text_embed = text_time_cls(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.time_text_guidance_embed = text_time_guidance_cls(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_single_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.controlnet_single_blocks = nn.ModuleList([])
for _ in range(len(self.single_transformer_blocks)):
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.union = num_mode is not None
if self.union:
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
if conditioning_embedding_channels is not None:
self.input_hint_block = ControlNetConditioningEmbedding(
conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
)
self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
else:
self.input_hint_block = None
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self):
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@classmethod
def from_transformer(
cls,
transformer,
num_layers: int = 4,
num_single_layers: int = 10,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
load_weights_from_transformer=True,
):
config = dict(transformer.config)
config["num_layers"] = num_layers
config["num_single_layers"] = num_single_layers
config["attention_head_dim"] = attention_head_dim
config["num_attention_heads"] = num_attention_heads
controlnet = cls.from_config(config)
if load_weights_from_transformer:
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
controlnet.single_transformer_blocks.load_state_dict(
transformer.single_transformer_blocks.state_dict(), strict=False
)
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
return controlnet
# Edit 13 Adding attention masking to forward
def forward(
self,
hidden_states: torch.Tensor,
controlnet_cond: torch.Tensor,
controlnet_mode: torch.Tensor = None,
conditioning_scale: float = 1.0,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
attention_mask: Optional[torch.Tensor] = None, # <-- 1. ADD ARGUMENT HERE
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
controlnet_cond (`torch.Tensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
controlnet_mode (`torch.Tensor`):
The mode tensor of shape `(batch_size, 1)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
if self.input_hint_block is not None:
controlnet_cond = self.input_hint_block(controlnet_cond)
batch_size, channels, height_pw, width_pw = controlnet_cond.shape
height = height_pw // self.config.patch_size
width = width_pw // self.config.patch_size
controlnet_cond = controlnet_cond.reshape(
batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
)
controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
# add
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
#print ('Guidance:', guidance)
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
# edit 19
else self.time_text_guidance_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if self.union:
# union mode
if controlnet_mode is None:
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
# union mode emb
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)
if txt_ids.ndim == 3:
logger.warning(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
logger.warning(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
block_samples = ()
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
attention_mask, # Edit 13
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask, # Edit 13
)
block_samples = block_samples + (hidden_states,)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
single_block_samples = ()
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
attention_mask, # <-- 2. PASS MASK TO GRADIENT CHECKPOINTING # Edit 13
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask, # <-- 2. PASS MASK TO BLOCK Edit 13
)
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
# controlnet block
controlnet_block_samples = ()
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
block_sample = controlnet_block(block_sample)
controlnet_block_samples = controlnet_block_samples + (block_sample,)
controlnet_single_block_samples = ()
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
single_block_sample = controlnet_block(single_block_sample)
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
# scaling
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
controlnet_single_block_samples = (
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_samples, controlnet_single_block_samples)
return FluxControlNetOutput(
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)
####################################
##### ACTUAL PIPELINE STUFF ########
####################################
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
# TODO(Chris): why won't this emit messages at the INFO level???
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers.utils import load_image
>>> from diffusers import FluxControlNetPipeline
>>> from diffusers import FluxControlNetModel
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
>>> pipe = FluxControlNetPipeline.from_pretrained(
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
... )
>>> pipe.to("cuda")
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
>>> image = pipe(
... prompt,
... control_image=control_image,
... controlnet_conditioning_scale=0.6,
... num_inference_steps=28,
... guidance_scale=3.5,
... ).images[0]
>>> image.save("flux.png")
```
"""
def _maybe_to(x: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is None and dtype is None:
return x
need_dev = device is not None and str(getattr(x, "device", None)) != str(device)
need_dt = dtype is not None and getattr(x, "dtype", None) != dtype
return x.to(device=device if need_dev else x.device, dtype=dtype if need_dt else x.dtype) if (need_dev or need_dt) else x
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
r"""
The Flux pipeline for text-to-image generation.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Args:
transformer ([`FluxTransformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
text_encoder_2 ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_2 (`T5TokenizerFast`):
Second Tokenizer of class
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
text_encoder_2: T5EncoderModel,
tokenizer_2: T5TokenizerFast,
transformer: LibreFluxTransformer2DModel,
controlnet: Union[
LibreFluxControlNetModel, List[LibreFluxControlNetModel], Tuple[LibreFluxControlNetModel],
],
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
transformer=transformer,
scheduler=scheduler,
controlnet=controlnet,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
)
self.default_sample_size = 64
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 512,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer_2(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder_2(text_input_ids.to(self.text_encoder_2.device), output_hidden_states=False)[0]
#prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
dtype = self.text_encoder_2.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# ADD THIS: Get the attention mask and repeat it for each image
prompt_attention_mask = text_inputs.attention_mask.to(device=device, dtype=dtype)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
# ADD THIS: Return the attention mask
return prompt_embeds, prompt_attention_mask
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(text_input_ids.to(self.text_encoder.device), output_hidden_states=False)
#prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
def encode_prompt(
self,
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
lora_scale: Optional[float] = None,
):
device = device or self._execution_device
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
self._lora_scale = lora_scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
pooled_prompt_embeds = self._get_clip_prompt_embeds(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
)
# ADD THIS: Initialize mask and capture it from the T5 embedder
prompt_attention_mask = None
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
if self.text_encoder is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
unscale_lora_layers(self.text_encoder_2, lora_scale)
# FIX: Get batch_size and create text_ids with the correct shape
batch_size = prompt_embeds.shape[0]
dtype = self.transformer.dtype
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
prompt_embeds=None,
pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
@staticmethod
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
# FIX: Correctly creates batched image IDs
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1, 1)
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape[1:]
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
@staticmethod
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
@staticmethod
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
height = height // vae_scale_factor
width = width // vae_scale_factor
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
return latents
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
return latents, latent_image_ids
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if isinstance(image, torch.Tensor):
pass
else:
image = self.image_processor.preprocess(image, height=height, width=width)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
@property
def guidance_scale(self):
return self._guidance_scale
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
control_image: PipelineImageInput = None,
control_mode: Optional[Union[int, List[int]]] = None,
control_image_undo_centering: bool = False,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
negative_prompt: Optional[Union[str, List[str]]] = "",
negative_prompt_2: Optional[Union[str, List[str]]] = "",
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
images must be passed as a list such that each element of the list can be correctly batched for input
to a single ControlNet.
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
control_mode (`int` or `List[int]`,, *optional*, defaults to None):
The control mode when applying ControlNet-Union.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
dtype = self.transformer.dtype
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
# 💡 ADD THIS: Capture the attention_mask from encode_prompt
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
attention_mask,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# ✨ FIX: Encode negative prompts for CFG
do_classifier_free_guidance = guidance_scale > 1.0
if do_classifier_free_guidance:
if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
(negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, negative_attention_mask) = self.encode_prompt(
prompt=negative_prompt, prompt_2=negative_prompt_2, device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length, lora_scale=lora_scale,
)
# 3. Prepare control image
num_channels_latents = self.transformer.config.in_channels // 4
if type(self.controlnet) == FullyShardedDataParallel:
inner_module = self.controlnet._fsdp_wrapped_module
else:
inner_module = self.controlnet
if isinstance(inner_module, LibreFluxControlNetModel):
control_image = self.prepare_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=dtype,
)
if control_image_undo_centering:
if not self.image_processor.do_normalize:
raise ValueError(
"`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor"
)
control_image = control_image*0.5 + 0.5
height, width = control_image.shape[-2:]
#logger.warning(
# f"pipeline_flux_controlnet, control_image: {control_image.min()} {control_image.max()}"
#)
# vae encode
control_image = _maybe_to(control_image, device=self.vae.device)
control_image = self.vae.encode(control_image).latent_dist.sample()
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
control_image = _maybe_to(control_image, device=device)
# pack
height_control_image, width_control_image = control_image.shape[2:]
control_image = self._pack_latents(
control_image,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
# set control mode
if control_mode is not None:
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
control_mode = control_mode.reshape([-1, 1])
# set control mode
control_mode_ = []
if isinstance(control_mode, list):
for cmode in control_mode:
if cmode is None:
control_mode_.append(-1)
else:
control_mode_.append(cmode)
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
control_mode = control_mode.reshape([-1, 1])
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 6. Denoising loop
target_device = self.transformer.device
self.controlnet.to(target_device)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# FIX: BATCH INPUTS FOR CFG
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * 2)
current_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
current_pooled_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
current_attention_mask = torch.cat([negative_attention_mask, attention_mask])
current_text_ids = torch.cat([negative_text_ids, text_ids])
current_img_ids = torch.cat([latent_image_ids] * 2)
current_control_image = torch.cat([control_image] * 2) if isinstance(control_image, torch.Tensor) else [torch.cat([c_img] * 2) for c_img in control_image]
else:
latent_model_input = latents
current_prompt_embeds = prompt_embeds
current_pooled_embeds = pooled_prompt_embeds
current_attention_mask = attention_mask
current_text_ids = text_ids
current_img_ids = latent_image_ids
current_control_image = control_image
# FIX: Integrate with device handling
target_device = self.transformer.device
# Move all inputs to the target device
latent_model_input = _maybe_to(latent_model_input, device=target_device)
current_prompt_embeds = _maybe_to(current_prompt_embeds, device=target_device)
current_pooled_embeds = _maybe_to(current_pooled_embeds, device=target_device)
current_attention_mask = _maybe_to(current_attention_mask, device=target_device)
current_text_ids = _maybe_to(current_text_ids, device=target_device)
current_img_ids = _maybe_to(current_img_ids, device=target_device)
if isinstance(current_control_image, torch.Tensor):
current_control_image = _maybe_to(current_control_image, device=target_device)
else:
current_control_image = [ _maybe_to(c, device=target_device) for c in current_control_image ]
control_mode = _maybe_to(control_mode, device=target_device) if control_mode is not None else None
t_model = t.expand(latent_model_input.shape[0]).to(target_device)
# Model calls
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
hidden_states=latent_model_input,
controlnet_cond=current_control_image,
controlnet_mode=control_mode,
conditioning_scale=controlnet_conditioning_scale,
timestep=(t_model / 1000),
guidance=None,
pooled_projections=current_pooled_embeds,
encoder_hidden_states=current_prompt_embeds,
attention_mask=current_attention_mask,
txt_ids=current_text_ids,
img_ids=current_img_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False
)
controlnet_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_block_samples]
controlnet_single_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_single_block_samples]
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=(t_model / 1000),
guidance=None,
pooled_projections=current_pooled_embeds,
encoder_hidden_states=current_prompt_embeds,
attention_mask=current_attention_mask,
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
txt_ids=current_text_ids,
img_ids=current_img_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False
)[0]
# FIX: Apply CFG formula
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
## Probably not needed
#noise_pred = noise_pred.to(latents.device)
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
latents = _maybe_to(latents, device=self.vae.device)
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image) |