File size: 121,490 Bytes
addfdf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This was modied from the control net repo


import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel

import numpy as np
import torch
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    T5EncoderModel,
    T5TokenizerFast,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
from diffusers.models.autoencoders import AutoencoderKL
###  MERGEING THESE ###
# from src.models.transformer import FluxTransformer2DModel
# from src.models.controlnet_flux import FluxControlNetModel
#############

##########################################
########### ATTENTION MERGE ##############
##########################################

import torch
from torch import Tensor, FloatTensor
from torch.nn import functional as F
from einops import rearrange
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import apply_rotary_emb

#try:
#    from flash_attn_interface import flash_attn_func, flash_attn_qkvpacked_func
#except:
#    pass


"""def fa3_sdpa(

    q,

    k,

    v,

):

    # flash attention 3 sdpa drop-in replacement

    q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]]

    out = flash_attn_func(q, k, v)[0]

    return out.permute(0, 2, 1, 3)"""

"""

class FluxSingleAttnProcessor3_0:

    r""

    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).

    ""



    def __init__(self):

        if not hasattr(F, "scaled_dot_product_attention"):

            raise ImportError(

                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."

            )



    def __call__(

        self,

        attn,

        hidden_states: Tensor,

        encoder_hidden_states: Tensor = None,

        attention_mask: FloatTensor = None,

        image_rotary_emb: Tensor = None,

    ) -> Tensor:

        input_ndim = hidden_states.ndim



        if input_ndim == 4:

            batch_size, channel, height, width = hidden_states.shape

            hidden_states = hidden_states.view(

                batch_size, channel, height * width

            ).transpose(1, 2)



        batch_size, _, _ = (

            hidden_states.shape

            if encoder_hidden_states is None

            else encoder_hidden_states.shape

        )



        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:

            encoder_hidden_states = hidden_states



        key = attn.to_k(encoder_hidden_states)

        value = attn.to_v(encoder_hidden_states)



        inner_dim = key.shape[-1]

        head_dim = inner_dim // attn.heads



        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)



        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)



        if attn.norm_q is not None:

            query = attn.norm_q(query)

        if attn.norm_k is not None:

            key = attn.norm_k(key)



        # Apply RoPE if needed

        if image_rotary_emb is not None:

            query = apply_rotary_emb(query, image_rotary_emb)

            key = apply_rotary_emb(key, image_rotary_emb)



        # the output of sdp = (batch, num_heads, seq_len, head_dim)

        # TODO: add support for attn.scale when we move to Torch 2.1

        # hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)

        hidden_states = fa3_sdpa(query, key, value)

        hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")



        hidden_states = hidden_states.transpose(1, 2).reshape(

            batch_size, -1, attn.heads * head_dim

        )

        hidden_states = hidden_states.to(query.dtype)



        if input_ndim == 4:

            hidden_states = hidden_states.transpose(-1, -2).reshape(

                batch_size, channel, height, width

            )



        return hidden_states





class FluxAttnProcessor3_0:

    """Attention processor used typically in processing the SD3-like self-attention projections."""



    def __init__(self):

        if not hasattr(F, "scaled_dot_product_attention"):

            raise ImportError(

                "FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."

            )



    def __call__(

        self,

        attn,

        hidden_states: FloatTensor,

        encoder_hidden_states: FloatTensor = None,

        attention_mask: FloatTensor = None,

        image_rotary_emb: Tensor = None,

    ) -> FloatTensor:

        input_ndim = hidden_states.ndim

        if input_ndim == 4:

            batch_size, channel, height, width = hidden_states.shape

            hidden_states = hidden_states.view(

                batch_size, channel, height * width

            ).transpose(1, 2)

        context_input_ndim = encoder_hidden_states.ndim

        if context_input_ndim == 4:

            batch_size, channel, height, width = encoder_hidden_states.shape

            encoder_hidden_states = encoder_hidden_states.view(

                batch_size, channel, height * width

            ).transpose(1, 2)



        batch_size = encoder_hidden_states.shape[0]



        # `sample` projections.

        query = attn.to_q(hidden_states)

        key = attn.to_k(hidden_states)

        value = attn.to_v(hidden_states)



        inner_dim = key.shape[-1]

        head_dim = inner_dim // attn.heads



        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)



        if attn.norm_q is not None:

            query = attn.norm_q(query)

        if attn.norm_k is not None:

            key = attn.norm_k(key)



        # `context` projections.

        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)

        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)



        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(

            batch_size, -1, attn.heads, head_dim

        ).transpose(1, 2)

        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(

            batch_size, -1, attn.heads, head_dim

        ).transpose(1, 2)

        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(

            batch_size, -1, attn.heads, head_dim

        ).transpose(1, 2)



        if attn.norm_added_q is not None:

            encoder_hidden_states_query_proj = attn.norm_added_q(

                encoder_hidden_states_query_proj

            )

        if attn.norm_added_k is not None:

            encoder_hidden_states_key_proj = attn.norm_added_k(

                encoder_hidden_states_key_proj

            )



        # attention

        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)

        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)

        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)



        if image_rotary_emb is not None:



            query = apply_rotary_emb(query, image_rotary_emb)

            key = apply_rotary_emb(key, image_rotary_emb)



        # hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)

        hidden_states = fa3_sdpa(query, key, value)

        hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")



        hidden_states = hidden_states.transpose(1, 2).reshape(

            batch_size, -1, attn.heads * head_dim

        )

        hidden_states = hidden_states.to(query.dtype)



        encoder_hidden_states, hidden_states = (

            hidden_states[:, : encoder_hidden_states.shape[1]],

            hidden_states[:, encoder_hidden_states.shape[1] :],

        )



        # linear proj

        hidden_states = attn.to_out[0](hidden_states)

        # dropout

        hidden_states = attn.to_out[1](hidden_states)

        encoder_hidden_states = attn.to_add_out(encoder_hidden_states)



        if input_ndim == 4:

            hidden_states = hidden_states.transpose(-1, -2).reshape(

                batch_size, channel, height, width

            )

        if context_input_ndim == 4:

            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(

                batch_size, channel, height, width

            )



        return hidden_states, encoder_hidden_states





class FluxFusedFlashAttnProcessor3(object):

    """
    True fused QKV Flash Attention 3 processor for Flux models.
    Keeps QKV tensors packed through the entire attention computation.
    """



    def __init__(self):

        self.flash_attn_qkvpacked_func = None

        try:

            from flash_attn_interface import flash_attn_qkvpacked_func



            self.flash_attn_qkvpacked_func = flash_attn_qkvpacked_func

        except ImportError:

            raise ImportError(

                "FluxFusedFlashAttnProcessor3 requires flash-attn library. "

                "Please see this link for Hopper and Blackwell instructions: https://github.com/bghira/SimpleTuner/blob/main/INSTALL.md#nvidia-hopper--blackwell-follow-up-steps"

            )



    def __call__(

        self,

        attn,

        hidden_states: FloatTensor,

        encoder_hidden_states: FloatTensor = None,

        attention_mask: FloatTensor = None,

        image_rotary_emb: Tensor = None,

    ) -> FloatTensor:

        input_ndim = hidden_states.ndim

        if input_ndim == 4:

            batch_size, channel, height, width = hidden_states.shape

            hidden_states = hidden_states.view(

                batch_size, channel, height * width

            ).transpose(1, 2)



        context_input_ndim = (

            encoder_hidden_states.ndim if encoder_hidden_states is not None else None

        )

        if context_input_ndim == 4:

            batch_size, channel, height, width = encoder_hidden_states.shape

            encoder_hidden_states = encoder_hidden_states.view(

                batch_size, channel, height * width

            ).transpose(1, 2)



        batch_size = (

            encoder_hidden_states.shape[0]

            if encoder_hidden_states is not None

            else hidden_states.shape[0]

        )

        seq_len = hidden_states.shape[1]



        # Fused QKV projection

        qkv = attn.to_qkv(hidden_states)  # (batch, seq_len, 3 * inner_dim)

        inner_dim = qkv.shape[-1] // 3

        head_dim = inner_dim // attn.heads



        # Reshape to packed format: (batch, seq_len, 3, heads, head_dim)

        qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)



        # Apply norms if needed (requires temporary unpacking)

        if attn.norm_q is not None or attn.norm_k is not None:

            q, k, v = qkv.unbind(dim=2)  # Each is (batch, seq_len, heads, head_dim)

            q = q.transpose(1, 2)  # (batch, heads, seq_len, head_dim)

            k = k.transpose(1, 2)

            v = v.transpose(1, 2)



            if attn.norm_q is not None:

                q = attn.norm_q(q)

            if attn.norm_k is not None:

                k = attn.norm_k(k)



            # Repack: back to (batch, seq_len, 3, heads, head_dim)

            qkv = torch.stack(

                [q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2

            )



        # Handle encoder states if present

        if encoder_hidden_states is not None:

            encoder_seq_len = encoder_hidden_states.shape[1]



            # Fused encoder QKV

            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)

            encoder_qkv = encoder_qkv.view(

                batch_size, encoder_seq_len, 3, attn.heads, head_dim

            )



            # Apply norms if needed

            if attn.norm_added_q is not None or attn.norm_added_k is not None:

                enc_q, enc_k, enc_v = encoder_qkv.unbind(dim=2)

                enc_q = enc_q.transpose(1, 2)

                enc_k = enc_k.transpose(1, 2)

                enc_v = enc_v.transpose(1, 2)



                if attn.norm_added_q is not None:

                    enc_q = attn.norm_added_q(enc_q)

                if attn.norm_added_k is not None:

                    enc_k = attn.norm_added_k(enc_k)



                encoder_qkv = torch.stack(

                    [

                        enc_q.transpose(1, 2),

                        enc_k.transpose(1, 2),

                        enc_v.transpose(1, 2),

                    ],

                    dim=2,

                )



            # Concatenate along sequence dimension

            qkv = torch.cat(

                [encoder_qkv, qkv], dim=1

            )  # (batch, encoder_seq + seq, 3, heads, head_dim)



        # Apply RoPE if needed

        if image_rotary_emb is not None:

            q, k, v = qkv.unbind(dim=2)  # Each is (batch, seq_len, heads, head_dim)



            # Transpose to (batch, heads, seq_len, head_dim) for RoPE

            q = q.transpose(1, 2)

            k = k.transpose(1, 2)

            v = v.transpose(1, 2)



            # Apply RoPE to q and k

            q = apply_rotary_emb(q, image_rotary_emb)

            k = apply_rotary_emb(k, image_rotary_emb)



            # Transpose back and repack

            qkv = torch.stack(

                [q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2

            )



        # Flash Attention 3 with packed QKV

        # Input shape: (batch, seq_len, 3, heads, head_dim)

        # Output shape: (batch, seq_len, heads, head_dim)

        hidden_states = self.flash_attn_qkvpacked_func(

            qkv,

            causal=False,

            # Don't pass num_heads_q for standard MHA

        )



        # Reshape output: (batch, seq_len, heads, head_dim) -> (batch, seq_len, heads * head_dim)

        hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim)

        hidden_states = hidden_states.to(qkv.dtype)



        # Split and process outputs

        if encoder_hidden_states is not None:

            encoder_seq_len = encoder_hidden_states.shape[1]

            encoder_hidden_states = hidden_states[:, :encoder_seq_len]

            hidden_states = hidden_states[:, encoder_seq_len:]



            # Output projections

            hidden_states = attn.to_out[0](hidden_states)

            hidden_states = attn.to_out[1](hidden_states)  # dropout

            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)



            # Reshape if needed

            if input_ndim == 4:

                hidden_states = hidden_states.transpose(-1, -2).reshape(

                    batch_size, channel, height, width

                )

            if context_input_ndim == 4:

                encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(

                    batch_size, channel, height, width

                )



            return hidden_states, encoder_hidden_states

        else:

            if input_ndim == 4:

                hidden_states = hidden_states.transpose(-1, -2).reshape(

                    batch_size, channel, height, width

                )

            return hidden_states

"""

class FluxFusedSDPAProcessor:
    """

    Fused QKV processor using PyTorch's scaled_dot_product_attention.

    Uses fused projections but splits for attention computation.

    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
            )

    def __call__(

        self,

        attn,

        hidden_states: FloatTensor,

        encoder_hidden_states: FloatTensor = None,

        attention_mask: FloatTensor = None,

        image_rotary_emb: Tensor = None,

    ) -> FloatTensor:
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        context_input_ndim = (
            encoder_hidden_states.ndim if encoder_hidden_states is not None else None
        )
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size = (
            encoder_hidden_states.shape[0]
            if encoder_hidden_states is not None
            else hidden_states.shape[0]
        )

        # Single attention case (no encoder states)
        if encoder_hidden_states is None:
            # Use fused QKV projection
            qkv = attn.to_qkv(hidden_states)  # (batch, seq_len, 3 * inner_dim)
            inner_dim = qkv.shape[-1] // 3
            head_dim = inner_dim // attn.heads
            seq_len = hidden_states.shape[1]

            # Split and reshape
            qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
            query, key, value = qkv.unbind(
                dim=2
            )  # Each is (batch, seq_len, heads, head_dim)

            # Transpose to (batch, heads, seq_len, head_dim)
            query = query.transpose(1, 2)
            key = key.transpose(1, 2)
            value = value.transpose(1, 2)

            # Apply norms if needed
            if attn.norm_q is not None:
                query = attn.norm_q(query)
            if attn.norm_k is not None:
                key = attn.norm_k(key)

            # Apply RoPE if needed
            if image_rotary_emb is not None:
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)

            # SDPA
            hidden_states = F.scaled_dot_product_attention(
                query,
                key,
                value,
                attn_mask=attention_mask,
                dropout_p=0.0,
                is_causal=False,
            )

            # Reshape back
            hidden_states = hidden_states.transpose(1, 2).reshape(
                batch_size, -1, attn.heads * head_dim
            )
            hidden_states = hidden_states.to(query.dtype)

            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(
                    batch_size, channel, height, width
                )

            return hidden_states

        # Joint attention case (with encoder states)
        else:
            # Process self-attention QKV
            qkv = attn.to_qkv(hidden_states)
            inner_dim = qkv.shape[-1] // 3
            head_dim = inner_dim // attn.heads
            seq_len = hidden_states.shape[1]

            qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
            query, key, value = qkv.unbind(dim=2)

            # Transpose to (batch, heads, seq_len, head_dim)
            query = query.transpose(1, 2)
            key = key.transpose(1, 2)
            value = value.transpose(1, 2)

            # Apply norms if needed
            if attn.norm_q is not None:
                query = attn.norm_q(query)
            if attn.norm_k is not None:
                key = attn.norm_k(key)

            # Process encoder QKV
            encoder_seq_len = encoder_hidden_states.shape[1]
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            encoder_qkv = encoder_qkv.view(
                batch_size, encoder_seq_len, 3, attn.heads, head_dim
            )
            encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2)

            # Transpose to (batch, heads, seq_len, head_dim)
            encoder_query = encoder_query.transpose(1, 2)
            encoder_key = encoder_key.transpose(1, 2)
            encoder_value = encoder_value.transpose(1, 2)

            # Apply encoder norms if needed
            if attn.norm_added_q is not None:
                encoder_query = attn.norm_added_q(encoder_query)
            if attn.norm_added_k is not None:
                encoder_key = attn.norm_added_k(encoder_key)

            # Concatenate encoder and self-attention
            query = torch.cat([encoder_query, query], dim=2)
            key = torch.cat([encoder_key, key], dim=2)
            value = torch.cat([encoder_value, value], dim=2)

            # Apply RoPE if needed
            if image_rotary_emb is not None:
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)

            # SDPA
            hidden_states = F.scaled_dot_product_attention(
                query,
                key,
                value,
                attn_mask=attention_mask,
                dropout_p=0.0,
                is_causal=False,
            )

            # Reshape: (batch, heads, seq_len, head_dim) -> (batch, seq_len, heads * head_dim)
            hidden_states = hidden_states.transpose(1, 2).reshape(
                batch_size, -1, attn.heads * head_dim
            )
            hidden_states = hidden_states.to(query.dtype)

            # Split encoder and self outputs
            encoder_hidden_states = hidden_states[:, :encoder_seq_len]
            hidden_states = hidden_states[:, encoder_seq_len:]

            # Output projections
            hidden_states = attn.to_out[0](hidden_states)
            hidden_states = attn.to_out[1](hidden_states)  # dropout
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            # Reshape if needed
            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(
                    batch_size, channel, height, width
                )
            if context_input_ndim == 4:
                encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
                    batch_size, channel, height, width
                )

            return hidden_states, encoder_hidden_states


class FluxSingleFusedSDPAProcessor:
    """

    Fused QKV processor for single attention (no encoder states).

    Simpler version for self-attention only blocks.

    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
            )

    def __call__(

        self,

        attn,

        hidden_states: Tensor,

        encoder_hidden_states: Tensor = None,

        attention_mask: FloatTensor = None,

        image_rotary_emb: Tensor = None,

    ) -> Tensor:
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, seq_len, _ = hidden_states.shape

        # Use fused QKV projection
        qkv = attn.to_qkv(hidden_states)  # (batch, seq_len, 3 * inner_dim)
        inner_dim = qkv.shape[-1] // 3
        head_dim = inner_dim // attn.heads

        # Split and reshape in one go
        qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
        qkv = qkv.permute(2, 0, 3, 1, 4)  # (3, B, H, L, D) – still strided
        query, key, value = [
            t.contiguous() for t in qkv.unbind(0)  # make each view dense
        ]
        # Now each is (batch, heads, seq_len, head_dim)

        # Apply norms if needed
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        # SDPA
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        # Reshape back
        hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
        hidden_states = hidden_states.to(query.dtype)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        return hidden_states

#################################
##### TRANSFORMER MERGE #########
#################################

from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
    Attention,
    AttentionProcessor,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (
    AdaLayerNormContinuous,
    AdaLayerNormZero,
    AdaLayerNormZeroSingle,
)
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_version,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import (
    CombinedTimestepGuidanceTextProjEmbeddings,
    CombinedTimestepTextProjEmbeddings,
    FluxPosEmbed,
)

from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

is_flash_attn_available = False
"""try:

    from flash_attn_interface import flash_attn_func



    is_flash_attn_available = True

except:

    pass"""


class FluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(

        self,

        attn: Attention,

        hidden_states: torch.FloatTensor,

        encoder_hidden_states: torch.FloatTensor = None,

        attention_mask: Optional[torch.FloatTensor] = None,

        image_rotary_emb: Optional[torch.Tensor] = None,

    ) -> torch.FloatTensor:
        batch_size, _, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(
                    encoder_hidden_states_query_proj
                )
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(
                    encoder_hidden_states_key_proj
                )

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if attention_mask is not None:
            #print ('Attention Used')
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = (attention_mask > 0).bool()
            # Edit 17 - match attn dtype to query d-type
            attention_mask = attention_mask.to(
                device=hidden_states.device, dtype=query.dtype
            )

        hidden_states = F.scaled_dot_product_attention(
            query,
            key,
            value,
            dropout_p=0.0,
            is_causal=False,
            attn_mask=attention_mask,
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        return hidden_states


def expand_flux_attention_mask(

    hidden_states: torch.Tensor,

    attn_mask: torch.Tensor,

) -> torch.Tensor:
    """

    Expand a mask so that the image is included.

    """
    bsz = attn_mask.shape[0]
    assert bsz == hidden_states.shape[0]
    residual_seq_len = hidden_states.shape[1]
    mask_seq_len = attn_mask.shape[1]

    expanded_mask = torch.ones(bsz, residual_seq_len)
    expanded_mask[:, :mask_seq_len] = attn_mask

    return expanded_mask


@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
    r"""

    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.



    Reference: https://arxiv.org/abs/2403.03206



    Parameters:

        dim (`int`): The number of channels in the input and output.

        num_attention_heads (`int`): The number of heads to use for multi-head attention.

        attention_head_dim (`int`): The number of channels in each head.

        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the

            processing of `context` conditions.

    """

    def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm = AdaLayerNormZeroSingle(dim)
        self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)

        processor = FluxAttnProcessor2_0()
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            processor=processor,
            qk_norm="rms_norm",
            eps=1e-6,
            pre_only=True,
        )

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        temb: torch.FloatTensor,

        image_rotary_emb=None,

        attention_mask: Optional[torch.Tensor] = None,

    ):
        residual = hidden_states
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))

        if attention_mask is not None:
            attention_mask = expand_flux_attention_mask(
                hidden_states,
                attention_mask,
            )

        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            image_rotary_emb=image_rotary_emb,
            attention_mask=attention_mask,
        )

        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states

        if hidden_states.dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states


@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
    r"""

    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.



    Reference: https://arxiv.org/abs/2403.03206



    Parameters:

        dim (`int`): The number of channels in the input and output.

        num_attention_heads (`int`): The number of heads to use for multi-head attention.

        attention_head_dim (`int`): The number of channels in each head.

        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the

            processing of `context` conditions.

    """

    def __init__(

        self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6

    ):
        super().__init__()

        self.norm1 = AdaLayerNormZero(dim)

        self.norm1_context = AdaLayerNormZero(dim)

        if hasattr(F, "scaled_dot_product_attention"):
            processor = FluxAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(
            dim=dim, dim_out=dim, activation_fn="gelu-approximate"
        )

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        encoder_hidden_states: torch.FloatTensor,

        temb: torch.FloatTensor,

        image_rotary_emb=None,

        attention_mask: Optional[torch.Tensor] = None,

    ):
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
            hidden_states, emb=temb
        )

        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
            self.norm1_context(encoder_hidden_states, emb=temb)
        )

        if attention_mask is not None:
            attention_mask = expand_flux_attention_mask(
                torch.cat([encoder_hidden_states, hidden_states], dim=1),
                attention_mask,
            )

        # Attention.
        attention_outputs = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            attention_mask=attention_mask,
        )
        if len(attention_outputs) == 2:
            attn_output, context_attn_output = attention_outputs
        elif len(attention_outputs) == 3:
            attn_output, context_attn_output, ip_attn_output = attention_outputs

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = (
            norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        )

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output
        if len(attention_outputs) == 3:
            hidden_states = hidden_states + ip_attn_output

        # Process attention outputs for the `encoder_hidden_states`.
        context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
        encoder_hidden_states = encoder_hidden_states + context_attn_output

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = (
            norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
            + c_shift_mlp[:, None]
        )

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = (
            encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
        )

        if encoder_hidden_states.dtype == torch.float16:
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

        return encoder_hidden_states, hidden_states


class LibreFluxTransformer2DModel(
    ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
):
    """

    The Transformer model introduced in Flux.



    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/



    Parameters:

        patch_size (`int`): Patch size to turn the input data into small patches.

        in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.

        num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.

        num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.

        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.

        num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.

        joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.

        pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.

        guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        patch_size: int = 1,

        in_channels: int = 64,

        num_layers: int = 19,

        num_single_layers: int = 38,

        attention_head_dim: int = 128,

        num_attention_heads: int = 24,

        joint_attention_dim: int = 4096,

        pooled_projection_dim: int = 768,

        guidance_embeds: bool = False,

        axes_dims_rope: Tuple[int] = (16, 56, 56),

    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = (
            self.config.num_attention_heads * self.config.attention_head_dim
        )

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings  ### 3 input forward (timestep, guidance, pooled_projection)
            if guidance_embeds
            else CombinedTimestepTextProjEmbeddings  #### 2 input forward (timestep, pooled_projection)
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim,
            pooled_projection_dim=self.config.pooled_projection_dim,
        )

        self.context_embedder = nn.Linear(
            self.config.joint_attention_dim, self.inner_dim
        )
        self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(
            self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
        )
        self.proj_out = nn.Linear(
            self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
        )

        self.gradient_checkpointing = False
        # added for users to disable checkpointing every nth step
        self.gradient_checkpointing_interval = None

    def set_gradient_checkpointing_interval(self, value: int):
        self.gradient_checkpointing_interval = value

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""

        Returns:

            `dict` of attention processors: A dictionary containing all attention processors used in the model with

            indexed by its weight name.

        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(

            name: str,

            module: torch.nn.Module,

            processors: Dict[str, AttentionProcessor],

        ):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(

        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]

    ):
        r"""

        Sets the attention processor to use to compute attention.



        Parameters:

            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):

                The instantiated processor class or a dictionary of processor classes that will be set as the processor

                for **all** `Attention` layers.



                If `processor` is a dict, the key needs to define the path to the corresponding cross attention

                processor. This is strongly recommended when setting trainable attention processors.



        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def forward(

        self,

        hidden_states: torch.Tensor,

        encoder_hidden_states: torch.Tensor = None,

        pooled_projections: torch.Tensor = None,

        timestep: torch.LongTensor = None,

        img_ids: torch.Tensor = None,

        txt_ids: torch.Tensor = None,

        guidance: torch.Tensor = None,

        joint_attention_kwargs: Optional[Dict[str, Any]] = None,

        controlnet_block_samples=None,

        controlnet_single_block_samples=None,

        return_dict: bool = True,

        attention_mask: Optional[torch.Tensor] = None,

        controlnet_blocks_repeat: bool = False,

    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """

        The [`FluxTransformer2DModel`] forward method.



        Args:

            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):

                Input `hidden_states`.

            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):

                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected

                from the embeddings of input conditions.

            timestep ( `torch.LongTensor`):

                Used to indicate denoising step.

            block_controlnet_hidden_states: (`list` of `torch.Tensor`):

                A list of tensors that if specified are added to the residuals of transformer blocks.

            joint_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain

                tuple.



        Returns:

            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a

            `tuple` where the first element is the sample tensor.

        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if (
                joint_attention_kwargs is not None
                and joint_attention_kwargs.get("scale", None) is not None
            ):
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None

        #print( self.time_text_embed)
        temb = (
            self.time_text_embed(timestep,pooled_projections)
            # Edit 1 # Charlie   NOT NEEDED - UNDONE
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            img_ids = img_ids[0]

        ids = torch.cat((txt_ids, img_ids), dim=0)

        image_rotary_emb = self.pos_embed(ids)

        # IP adapter
        if (
            joint_attention_kwargs is not None
            and "ip_adapter_image_embeds" in joint_attention_kwargs
        ):
            ip_adapter_image_embeds = joint_attention_kwargs.pop(
                "ip_adapter_image_embeds"
            )
            ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
            joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})

        for index_block, block in enumerate(self.transformer_blocks):
            if (
                self.training
                and self.gradient_checkpointing
                and (
                    self.gradient_checkpointing_interval is None
                    or index_block % self.gradient_checkpointing_interval == 0
                )
            ):

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                encoder_hidden_states, hidden_states = (
                    torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        temb,
                        image_rotary_emb,
                        attention_mask,
                        **ckpt_kwargs,
                    )
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    attention_mask=attention_mask,
                )

            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(
                    controlnet_block_samples
                )
                interval_control = int(np.ceil(interval_control))
                # For Xlabs ControlNet.
                if controlnet_blocks_repeat:
                    hidden_states = (
                        hidden_states
                        + controlnet_block_samples[
                            index_block % len(controlnet_block_samples)
                        ]
                    )
                else:
                    hidden_states = (
                        hidden_states
                        + controlnet_block_samples[index_block // interval_control]
                    )

        # Flux places the text tokens in front of the image tokens in the
        # sequence.
        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if (
                self.training
                and self.gradient_checkpointing
                or (
                    self.gradient_checkpointing_interval is not None
                    and index_block % self.gradient_checkpointing_interval == 0
                )
            ):

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    attention_mask,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    attention_mask=attention_mask,
                )

            # controlnet residual
            if controlnet_single_block_samples is not None:
                interval_control = len(self.single_transformer_blocks) / len(
                    controlnet_single_block_samples
                )
                interval_control = int(np.ceil(interval_control))
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

####################################
##### CONTROL NET MODEL MERGE ######
####################################


from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class FluxControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[torch.Tensor]
    controlnet_single_block_samples: Tuple[torch.Tensor]


class LibreFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        patch_size: int = 1,

        in_channels: int = 64,

        num_layers: int = 19,

        num_single_layers: int = 38,

        attention_head_dim: int = 128,

        num_attention_heads: int = 24,

        joint_attention_dim: int = 4096,

        pooled_projection_dim: int = 768,

        guidance_embeds: bool = False,

        axes_dims_rope: List[int] = [16, 56, 56],

        num_mode: int = None,

        conditioning_embedding_channels: int = None,

    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)

        # edit 19
        #text_time_guidance_cls = (
        #    CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        #)

        text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings
        text_time_cls = CombinedTimestepTextProjEmbeddings

        self.time_text_embed = text_time_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )
        self.time_text_guidance_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )

        self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
        self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_single_layers)
            ]
        )

        # controlnet_blocks
        self.controlnet_blocks = nn.ModuleList([])
        for _ in range(len(self.transformer_blocks)):
            self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.controlnet_single_blocks = nn.ModuleList([])
        for _ in range(len(self.single_transformer_blocks)):
            self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.union = num_mode is not None
        if self.union:
            self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)

        if conditioning_embedding_channels is not None:
            self.input_hint_block = ControlNetConditioningEmbedding(
                conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
            )
            self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
        else:
            self.input_hint_block = None
            self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self):
        r"""

        Returns:

            `dict` of attention processors: A dictionary containing all attention processors used in the model with

            indexed by its weight name.

        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor):
        r"""

        Sets the attention processor to use to compute attention.



        Parameters:

            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):

                The instantiated processor class or a dictionary of processor classes that will be set as the processor

                for **all** `Attention` layers.



                If `processor` is a dict, the key needs to define the path to the corresponding cross attention

                processor. This is strongly recommended when setting trainable attention processors.



        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @classmethod
    def from_transformer(

        cls,

        transformer,

        num_layers: int = 4,

        num_single_layers: int = 10,

        attention_head_dim: int = 128,

        num_attention_heads: int = 24,

        load_weights_from_transformer=True,

    ):
        config = dict(transformer.config)
        config["num_layers"] = num_layers
        config["num_single_layers"] = num_single_layers
        config["attention_head_dim"] = attention_head_dim
        config["num_attention_heads"] = num_attention_heads

        controlnet = cls.from_config(config)

        if load_weights_from_transformer:
            controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
            controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
            controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
            controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
            controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
            controlnet.single_transformer_blocks.load_state_dict(
                transformer.single_transformer_blocks.state_dict(), strict=False
            )

            controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)

        return controlnet

    # Edit 13 Adding attention masking to forward
    def forward(

        self,

        hidden_states: torch.Tensor,

        controlnet_cond: torch.Tensor,

        controlnet_mode: torch.Tensor = None,

        conditioning_scale: float = 1.0,

        encoder_hidden_states: torch.Tensor = None,

        pooled_projections: torch.Tensor = None,

        timestep: torch.LongTensor = None,

        img_ids: torch.Tensor = None,

        txt_ids: torch.Tensor = None,

        guidance: torch.Tensor = None,

        joint_attention_kwargs: Optional[Dict[str, Any]] = None,

        return_dict: bool = True,

        attention_mask: Optional[torch.Tensor] = None,  # <-- 1. ADD ARGUMENT HERE



    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """

        The [`FluxTransformer2DModel`] forward method.



        Args:

            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):

                Input `hidden_states`.

            controlnet_cond (`torch.Tensor`):

                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.

            controlnet_mode (`torch.Tensor`):

                The mode tensor of shape `(batch_size, 1)`.

            conditioning_scale (`float`, defaults to `1.0`):

                The scale factor for ControlNet outputs.

            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):

                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected

                from the embeddings of input conditions.

            timestep ( `torch.LongTensor`):

                Used to indicate denoising step.

            block_controlnet_hidden_states: (`list` of `torch.Tensor`):

                A list of tensors that if specified are added to the residuals of transformer blocks.

            joint_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain

                tuple.



        Returns:

            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a

            `tuple` where the first element is the sample tensor.

        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        if self.input_hint_block is not None:
            controlnet_cond = self.input_hint_block(controlnet_cond)
            batch_size, channels, height_pw, width_pw = controlnet_cond.shape
            height = height_pw // self.config.patch_size
            width = width_pw // self.config.patch_size
            controlnet_cond = controlnet_cond.reshape(
                batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
            )
            controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
            controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
        # add
        hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None

        #print ('Guidance:', guidance)
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            # edit 19
            else self.time_text_guidance_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if self.union:
            # union mode
            if controlnet_mode is None:
                raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
            # union mode emb
            controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
            encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
            txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        block_samples = ()
        for index_block, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    attention_mask,  # Edit 13
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    attention_mask=attention_mask, #  Edit 13

                )
            block_samples = block_samples + (hidden_states,)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        single_block_samples = ()
        for index_block, block in enumerate(self.single_transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    attention_mask,  # <-- 2. PASS MASK TO GRADIENT CHECKPOINTING  #  Edit 13
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    attention_mask=attention_mask,  # <-- 2. PASS MASK TO BLOCK  Edit 13

                )
            single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)

        # controlnet block
        controlnet_block_samples = ()
        for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
            block_sample = controlnet_block(block_sample)
            controlnet_block_samples = controlnet_block_samples + (block_sample,)

        controlnet_single_block_samples = ()
        for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
            single_block_sample = controlnet_block(single_block_sample)
            controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)

        # scaling
        controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
        controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]

        controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
        controlnet_single_block_samples = (
            None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
        )

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (controlnet_block_samples, controlnet_single_block_samples)

        return FluxControlNetOutput(
            controlnet_block_samples=controlnet_block_samples,
            controlnet_single_block_samples=controlnet_single_block_samples,
        )


####################################
##### ACTUAL PIPELINE STUFF ########
####################################


from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

# TODO(Chris): why won't this emit messages at the INFO level???
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> import torch

        >>> from diffusers.utils import load_image

        >>> from diffusers import FluxControlNetPipeline

        >>> from diffusers import FluxControlNetModel



        >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"

        >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)

        >>> pipe = FluxControlNetPipeline.from_pretrained(

        ...     base_model, controlnet=controlnet, torch_dtype=torch.bfloat16

        ... )

        >>> pipe.to("cuda")

        >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        >>> prompt = "A girl in city, 25 years old, cool, futuristic"

        >>> image = pipe(

        ...     prompt,

        ...     control_image=control_image,

        ...     controlnet_conditioning_scale=0.6,

        ...     num_inference_steps=28,

        ...     guidance_scale=3.5,

        ... ).images[0]

        >>> image.save("flux.png")

        ```

"""

def _maybe_to(x: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
    if device is None and dtype is None:
        return x
    need_dev = device is not None and str(getattr(x, "device", None)) != str(device)
    need_dt  = dtype  is not None and getattr(x, "dtype", None) != dtype
    return x.to(device=device if need_dev else x.device, dtype=dtype if need_dt else x.dtype) if (need_dev or need_dt) else x


# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(

    image_seq_len,

    base_seq_len: int = 256,

    max_seq_len: int = 4096,

    base_shift: float = 0.5,

    max_shift: float = 1.16,

):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(

    scheduler,

    num_inference_steps: Optional[int] = None,

    device: Optional[Union[str, torch.device]] = None,

    timesteps: Optional[List[int]] = None,

    sigmas: Optional[List[float]] = None,

    **kwargs,

):
    """

    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles

    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.



    Args:

        scheduler (`SchedulerMixin`):

            The scheduler to get timesteps from.

        num_inference_steps (`int`):

            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`

            must be `None`.

        device (`str` or `torch.device`, *optional*):

            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

        timesteps (`List[int]`, *optional*):

            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,

            `num_inference_steps` and `sigmas` must be `None`.

        sigmas (`List[float]`, *optional*):

            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,

            `num_inference_steps` and `timesteps` must be `None`.



    Returns:

        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the

        second element is the number of inference steps.

    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
    r"""

    The Flux pipeline for text-to-image generation.



    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/



    Args:

        transformer ([`FluxTransformer2DModel`]):

            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.

        scheduler ([`FlowMatchEulerDiscreteScheduler`]):

            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.

        vae ([`AutoencoderKL`]):

            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

        text_encoder ([`CLIPTextModel`]):

            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically

            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.

        text_encoder_2 ([`T5EncoderModel`]):

            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically

            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.

        tokenizer (`CLIPTokenizer`):

            Tokenizer of class

            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).

        tokenizer_2 (`T5TokenizerFast`):

            Second Tokenizer of class

            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).

    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(

        self,

        scheduler: FlowMatchEulerDiscreteScheduler,

        vae: AutoencoderKL,

        text_encoder: CLIPTextModel,

        tokenizer: CLIPTokenizer,

        text_encoder_2: T5EncoderModel,

        tokenizer_2: T5TokenizerFast,

        transformer: LibreFluxTransformer2DModel,

        controlnet: Union[

            LibreFluxControlNetModel, List[LibreFluxControlNetModel], Tuple[LibreFluxControlNetModel],

        ],

    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
            controlnet=controlnet,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 64

    def _get_t5_prompt_embeds(

        self,

        prompt: Union[str, List[str]] = None,

        num_images_per_prompt: int = 1,

        max_sequence_length: int = 512,

        device: Optional[torch.device] = None,

        dtype: Optional[torch.dtype] = None,

    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(text_input_ids.to(self.text_encoder_2.device), output_hidden_states=False)[0]
        #prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings for each generation per prompt
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        #  ADD THIS: Get the attention mask and repeat it for each image
        prompt_attention_mask = text_inputs.attention_mask.to(device=device, dtype=dtype)
        prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)

        # ADD THIS: Return the attention mask
        return prompt_embeds, prompt_attention_mask

    def _get_clip_prompt_embeds(

        self,

        prompt: Union[str, List[str]],

        num_images_per_prompt: int = 1,

        device: Optional[torch.device] = None,

    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(text_input_ids.to(self.text_encoder.device), output_hidden_states=False)
        #prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    def encode_prompt(

        self,

        prompt: Union[str, List[str]],

        prompt_2: Union[str, List[str]],

        device: Optional[torch.device] = None,

        num_images_per_prompt: int = 1,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        max_sequence_length: int = 512,

        lora_scale: Optional[float] = None,

    ):
        device = device or self._execution_device

        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )

            #  ADD THIS: Initialize mask and capture it from the T5 embedder
            prompt_attention_mask = None
            prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                unscale_lora_layers(self.text_encoder, lora_scale)
        if self.text_encoder_2 is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        #  FIX: Get batch_size and create text_ids with the correct shape
        batch_size = prompt_embeds.shape[0]
        dtype = self.transformer.dtype
        text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)

        return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask

    def check_inputs(

        self,

        prompt,

        prompt_2,

        height,

        width,

        prompt_embeds=None,

        pooled_prompt_embeds=None,

        callback_on_step_end_tensor_inputs=None,

        max_sequence_length=None,

    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
    # FIX: Correctly creates batched image IDs
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]

        latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1, 1)

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape[1:]

        latent_image_ids = latent_image_ids.reshape(
            batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )

        return latent_image_ids.to(device=device, dtype=dtype)

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        height = height // vae_scale_factor
        width = width // vae_scale_factor

        latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)

        return latents

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
    def prepare_latents(

        self,

        batch_size,

        num_channels_latents,

        height,

        width,

        dtype,

        device,

        generator,

        latents=None,

    ):
        height = 2 * (int(height) // self.vae_scale_factor)
        width = 2 * (int(width) // self.vae_scale_factor)

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
            return latents.to(device=device, dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)

        latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)

        return latents, latent_image_ids

    # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
    def prepare_image(

        self,

        image,

        width,

        height,

        batch_size,

        num_images_per_prompt,

        device,

        dtype,

        do_classifier_free_guidance=False,

        guess_mode=False,

    ):
        if isinstance(image, torch.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        prompt_2: Optional[Union[str, List[str]]] = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        num_inference_steps: int = 28,

        timesteps: List[int] = None,

        guidance_scale: float = 7.0,

        control_image: PipelineImageInput = None,

        control_mode: Optional[Union[int, List[int]]] = None,

        control_image_undo_centering: bool = False,

        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,

        num_images_per_prompt: Optional[int] = 1,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        joint_attention_kwargs: Optional[Dict[str, Any]] = None,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        max_sequence_length: int = 512,

        negative_prompt: Optional[Union[str, List[str]]] = "",

        negative_prompt_2: Optional[Union[str, List[str]]] = "",

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

    ):
        r"""

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is

                will be used instead

            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The height in pixels of the generated image. This is set to 1024 by default for the best results.

            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The width in pixels of the generated image. This is set to 1024 by default for the best results.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument

                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is

                passed will be used. Must be in descending order.

            guidance_scale (`float`, *optional*, defaults to 7.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:

                    `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is

                specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted

                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or

                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,

                images must be passed as a list such that each element of the list can be correctly batched for input

                to a single ControlNet.

            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):

                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added

                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set

                the corresponding scale as a list.

            control_mode (`int` or `List[int]`,, *optional*, defaults to None):

                The control mode when applying ControlNet-Union.

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.

                If not provided, pooled text embeddings will be generated from `prompt` input argument.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.

            joint_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.

            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.



        Examples:



        Returns:

            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`

            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated

            images.

        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        dtype = self.transformer.dtype

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
        # 💡 ADD THIS: Capture the attention_mask from encode_prompt
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
            attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        # ✨ FIX: Encode negative prompts for CFG
        do_classifier_free_guidance = guidance_scale > 1.0
        if do_classifier_free_guidance:
            if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None:
                negative_prompt = negative_prompt or ""
                negative_prompt_2 = negative_prompt_2 or negative_prompt
                (negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, negative_attention_mask) = self.encode_prompt(
                    prompt=negative_prompt, prompt_2=negative_prompt_2, device=device,
                    num_images_per_prompt=num_images_per_prompt,
                    max_sequence_length=max_sequence_length, lora_scale=lora_scale,
                )


        # 3. Prepare control image
        num_channels_latents = self.transformer.config.in_channels // 4

        if type(self.controlnet) == FullyShardedDataParallel:
            inner_module = self.controlnet._fsdp_wrapped_module
        else:
            inner_module = self.controlnet

        if isinstance(inner_module, LibreFluxControlNetModel):
            control_image = self.prepare_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=dtype,
            )

            if control_image_undo_centering:
                if not self.image_processor.do_normalize:
                    raise ValueError(
                        "`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor"
                    )
                control_image = control_image*0.5 + 0.5

            height, width = control_image.shape[-2:]

            #logger.warning(
            #    f"pipeline_flux_controlnet, control_image: {control_image.min()} {control_image.max()}"
            #)

            # vae encode
            control_image = _maybe_to(control_image, device=self.vae.device)
            control_image = self.vae.encode(control_image).latent_dist.sample()
            control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
            control_image = _maybe_to(control_image, device=device)
            # pack
            height_control_image, width_control_image = control_image.shape[2:]
            control_image = self._pack_latents(
                control_image,
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height_control_image,
                width_control_image,
            )

            # set control mode
            if control_mode is not None:
                control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
                control_mode = control_mode.reshape([-1, 1])


            # set control mode
            control_mode_ = []
            if isinstance(control_mode, list):
                for cmode in control_mode:
                    if cmode is None:
                        control_mode_.append(-1)
                    else:
                        control_mode_.append(cmode)
            control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
            control_mode = control_mode.reshape([-1, 1])

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )

        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        target_device = self.transformer.device
        self.controlnet.to(target_device)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue


                # FIX: BATCH INPUTS FOR CFG
                if do_classifier_free_guidance:
                    latent_model_input = torch.cat([latents] * 2)
                    current_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
                    current_pooled_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
                    current_attention_mask = torch.cat([negative_attention_mask, attention_mask])
                    current_text_ids = torch.cat([negative_text_ids, text_ids])
                    current_img_ids = torch.cat([latent_image_ids] * 2)
                    current_control_image = torch.cat([control_image] * 2) if isinstance(control_image, torch.Tensor) else [torch.cat([c_img] * 2) for c_img in control_image]
                else:
                    latent_model_input = latents
                    current_prompt_embeds = prompt_embeds
                    current_pooled_embeds = pooled_prompt_embeds
                    current_attention_mask = attention_mask
                    current_text_ids = text_ids
                    current_img_ids = latent_image_ids
                    current_control_image = control_image

                # FIX: Integrate with device handling
                target_device = self.transformer.device

                # Move all inputs to the target device
                latent_model_input   = _maybe_to(latent_model_input,   device=target_device)
                current_prompt_embeds = _maybe_to(current_prompt_embeds, device=target_device)
                current_pooled_embeds = _maybe_to(current_pooled_embeds, device=target_device)
                current_attention_mask = _maybe_to(current_attention_mask, device=target_device)
                current_text_ids      = _maybe_to(current_text_ids,    device=target_device)
                current_img_ids       = _maybe_to(current_img_ids,     device=target_device)
                if isinstance(current_control_image, torch.Tensor):
                    current_control_image = _maybe_to(current_control_image, device=target_device)
                else:
                    current_control_image = [ _maybe_to(c, device=target_device) for c in current_control_image ]
                control_mode = _maybe_to(control_mode, device=target_device) if control_mode is not None else None
                
                t_model = t.expand(latent_model_input.shape[0]).to(target_device)


                # Model calls
                controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
                    hidden_states=latent_model_input,
                    controlnet_cond=current_control_image,
                    controlnet_mode=control_mode,
                    conditioning_scale=controlnet_conditioning_scale,
                    timestep=(t_model / 1000),
                    guidance=None,
                    pooled_projections=current_pooled_embeds,
                    encoder_hidden_states=current_prompt_embeds,
                    attention_mask=current_attention_mask,
                    txt_ids=current_text_ids,
                    img_ids=current_img_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False
                )

                controlnet_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_block_samples]
                controlnet_single_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_single_block_samples]

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=(t_model / 1000),
                    guidance=None,
                    pooled_projections=current_pooled_embeds,
                    encoder_hidden_states=current_prompt_embeds,
                    attention_mask=current_attention_mask,
                    controlnet_block_samples=controlnet_block_samples,
                    controlnet_single_block_samples=controlnet_single_block_samples,
                    txt_ids=current_text_ids,
                    img_ids=current_img_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False
                )[0]

                # FIX: Apply CFG formula
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

                ## Probably not needed
                #noise_pred = noise_pred.to(latents.device)

                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

            latents = _maybe_to(latents, device=self.vae.device)
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)