PyTorch
English
nanogpt
custom_code
Eval Results
File size: 14,665 Bytes
788c379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import glob
import math
import os
import shutil
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import snapshot_download
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast

from .configuration_nanogpt import NanoGPTConfig


def _rms_norm(x: torch.Tensor) -> torch.Tensor:
    return F.rms_norm(x, (x.size(-1),))


def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
    assert x.ndim == 4
    d = x.shape[3] // 2
    x1, x2 = x[..., :d], x[..., d:]
    y1 = x1 * cos + x2 * sin
    y2 = x1 * (-sin) + x2 * cos
    out = torch.cat([y1, y2], 3)
    return out.to(x.dtype)


def _repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    if n_rep == 1:
        return x
    bs, n_kv_heads, slen, head_dim = x.shape
    return (
        x[:, :, None, :, :]
        .expand(bs, n_kv_heads, n_rep, slen, head_dim)
        .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
    )


class CausalSelfAttention(nn.Module):
    def __init__(self, config: NanoGPTConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
        self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
        self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)

    def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
        B, T, C = x.size()
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
        cos, sin = cos_sin
        q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin)
        q, k = _rms_norm(q), _rms_norm(k)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
        Tq = q.size(2)
        Tk = k.size(2)
        nrep = self.n_head // self.n_kv_head
        k, v = _repeat_kv(k, nrep), _repeat_kv(v, nrep)
        if Tq == Tk:
            y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        elif Tq == 1:
            y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
        else:
            attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device)
            prefix_len = Tk - Tq
            if prefix_len > 0:
                attn_mask[:, :prefix_len] = True
            attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        y = y.transpose(1, 2).contiguous().view(B, T, -1)
        y = self.c_proj(y)
        return y

    def forward_with_cache(
        self,
        x: torch.Tensor,
        cos_sin,
        past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        B, T, _ = x.size()
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
        cos, sin = cos_sin
        q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin)
        q, k = _rms_norm(q), _rms_norm(k)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if past_key_value is not None:
            past_k, past_v = past_key_value
            if past_k is not None and past_v is not None:
                k = torch.cat([past_k, k], dim=2)
                v = torch.cat([past_v, v], dim=2)

        present = (k, v) if use_cache else None

        Tq = q.size(2)
        Tk = k.size(2)
        nrep = self.n_head // self.n_kv_head
        k_rep = _repeat_kv(k, nrep)
        v_rep = _repeat_kv(v, nrep)

        attn_mask = None
        if attention_mask is not None:
            attn_mask = attention_mask.to(dtype=torch.bool, device=q.device)
            if attn_mask.dim() == 2:
                attn_mask = attn_mask[:, None, None, :]
            elif attn_mask.dim() == 4:
                pass
            else:
                raise ValueError("Unsupported attention_mask dimensions")
            if attn_mask.size(-1) != Tk:
                attn_mask = torch.nn.functional.pad(attn_mask, (Tk - attn_mask.size(-1), 0))
            attn_mask = (~attn_mask).to(dtype=q.dtype) * -1e4

        if Tq == Tk:
            y = F.scaled_dot_product_attention(q, k_rep, v_rep, attn_mask=attn_mask, is_causal=True)
        else:
            y = F.scaled_dot_product_attention(q, k_rep, v_rep, attn_mask=attn_mask, is_causal=False)

        y = y.transpose(1, 2).contiguous().view(B, T, -1)
        y = self.c_proj(y)
        return y, present


class MLP(nn.Module):
    def __init__(self, config: NanoGPTConfig):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.c_fc(x)
        x = F.relu(x).square()
        x = self.c_proj(x)
        return x


class Block(nn.Module):
    def __init__(self, config: NanoGPTConfig, layer_idx: int):
        super().__init__()
        self.attn = CausalSelfAttention(config, layer_idx)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
        x = x + self.attn(_rms_norm(x), cos_sin, kv_cache)
        x = x + self.mlp(_rms_norm(x))
        return x


class NanoGPTModel(PreTrainedModel):
    config_class = NanoGPTConfig

    _CANONICAL_WEIGHT_NAMES = (
        "pytorch_model.bin",
        "model.safetensors",
        "model.ckpt.index",
        "tf_model.h5",
        "flax_model.msgpack",
    )
    _PT_PATTERN = "model_*.pt"

    @classmethod
    def _snapshot_kwargs(cls, source_kwargs: Dict) -> Dict:
        keys = {
            "cache_dir",
            "force_download",
            "local_files_only",
            "proxies",
            "resume_download",
            "revision",
            "token",
            "use_auth_token",
        }
        return {k: source_kwargs[k] for k in keys if k in source_kwargs}

    @classmethod
    def _resolve_checkpoint_dir(cls, pretrained_model_name_or_path, subfolder=None, **kwargs):
        if os.path.isdir(pretrained_model_name_or_path):
            base_dir = pretrained_model_name_or_path
        else:
            snapshot_params = cls._snapshot_kwargs(kwargs)
            token = snapshot_params.pop("token", None)
            if token is None:
                token = snapshot_params.pop("use_auth_token", None)
            if token is not None:
                snapshot_params["token"] = token
            base_dir = snapshot_download(pretrained_model_name_or_path, **snapshot_params)
        if subfolder:
            base_dir = os.path.join(base_dir, subfolder)
        cls._ensure_canonical_weights(base_dir)
        return base_dir

    @classmethod
    def _ensure_canonical_weights(cls, checkpoint_dir):
        for name in cls._CANONICAL_WEIGHT_NAMES:
            candidate = os.path.join(checkpoint_dir, name)
            if os.path.isfile(candidate):
                return candidate
        pt_candidates = sorted(
            glob.glob(os.path.join(checkpoint_dir, cls._PT_PATTERN)),
            reverse=True,
        )
        if not pt_candidates:
            raise FileNotFoundError(
                f"No checkpoint weights found in {checkpoint_dir}. Expected one of {cls._CANONICAL_WEIGHT_NAMES} "
                f"or files matching {cls._PT_PATTERN}."
            )
        source_path = pt_candidates[0]
        target_path = os.path.join(checkpoint_dir, "pytorch_model.bin")
        if (
            not os.path.isfile(target_path)
            or os.path.getmtime(source_path) > os.path.getmtime(target_path)
        ):
            shutil.copyfile(source_path, target_path)
        return target_path

    def __init__(self, config: NanoGPTConfig):
        super().__init__(config)
        config.use_cache = getattr(config, "use_cache", True)
        config.num_hidden_layers = config.n_layer
        config.num_attention_heads = config.n_head
        config.hidden_size = config.n_embd
        self.transformer = nn.ModuleDict({
            "wte": nn.Embedding(config.vocab_size, config.n_embd),
            "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
        })
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.rotary_seq_len = config.sequence_len * 10
        head_dim = config.n_embd // config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.register_buffer("cos", cos, persistent=False)
        self.register_buffer("sin", sin, persistent=False)
        # ensure fp32 activations
        self.transformer.wte.to(dtype=torch.bfloat16)

        # following HF API expectations
        self.post_init()

    def _init_weights(self, module: nn.Module):
        if isinstance(module, nn.Linear):
            fan_out = module.weight.size(0)
            fan_in = module.weight.size(1)
            std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)

    def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None):
        if device is None:
            device = self.transformer.wte.weight.device
            # Handle meta device case - use CPU as fallback
            if device.type == 'meta':
                device = torch.device('cpu')
        channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
        inv_freq = 1.0 / (base ** (channel_range / head_dim))
        t = torch.arange(seq_len, dtype=torch.float32, device=device)
        freqs = torch.outer(t, inv_freq)
        cos, sin = freqs.cos(), freqs.sin()
        cos, sin = cos.bfloat16(), sin.bfloat16()
        cos, sin = cos[None, :, None, :], sin[None, :, None, :]
        return cos, sin

    def _apply_softcap(self, logits: torch.Tensor) -> torch.Tensor:
        softcap = 15
        return softcap * torch.tanh(logits / softcap)

    def _forward_impl(self, idx: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
        x = self.transformer.wte(idx)
        x = x.float()
        x = _rms_norm(x)
        for block in self.transformer.h:
            x = block(x, cos_sin, kv_cache)
        x = _rms_norm(x)
        logits = self.lm_head(x)
        return self._apply_softcap(logits)

    def forward(self, input_ids: torch.Tensor, labels=None, loss_reduction: str = 'mean', **kwargs):
        idx = input_ids
        B, T = idx.size()
        T0 = 0
        cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T]
        logits = self._forward_impl(idx, cos_sin, kv_cache=None)
        loss = None
        if labels is not None:
            loss = F.cross_entropy(
                logits.view(-1, logits.size(-1)),
                labels.view(-1),
                ignore_index=-1,
                reduction=loss_reduction,
            )
        return {"loss": loss, "logits": logits}


class NanoGPTChat(NanoGPTModel):
    """Chat-optimized variant with HF-friendly generate and support for KV cache."""

    def __init__(self, config: NanoGPTConfig):
        super().__init__(config)
        self.use_cache = getattr(config, "use_cache", True)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]
        return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}

    def _expand_past_length(self, past_key_values):
        if not past_key_values:
            return 0
        past_k, _ = past_key_values[0]
        if past_k is None:
            return 0
        return past_k.size(2)

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
        use_cache: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        loss_reduction: str = "mean",
        **kwargs,
    ) -> CausalLMOutputWithPast:
        idx = input_ids
        B, T = idx.size()
        use_cache = self.use_cache if use_cache is None else use_cache
        past_length = self._expand_past_length(past_key_values)
        T0 = past_length
        cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T]

        x = self.transformer.wte(idx)
        x = x.float()
        x = _rms_norm(x)

        presents = [] if use_cache else None
        for layer_idx, block in enumerate(self.transformer.h):
            past = None
            if past_key_values is not None and past_key_values[layer_idx] is not None:
                past = past_key_values[layer_idx]
            attn_output, present = block.attn.forward_with_cache(
                _rms_norm(x),
                cos_sin,
                past_key_value=past,
                attention_mask=attention_mask,
                use_cache=use_cache,
            )
            x = x + attn_output
            x = x + block.mlp(_rms_norm(x))
            if use_cache:
                presents.append(present)

        x = _rms_norm(x)
        logits = self.lm_head(x)
        loss = None
        if labels is not None:
            loss = F.cross_entropy(
                logits.view(-1, logits.size(-1)),
                labels.view(-1),
                ignore_index=-1,
                reduction=loss_reduction,
            )

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=presents,
        )