Upload folder using huggingface_hub
Browse files- config.json +1 -0
- tokenizer_nanogpt.py +32 -3
config.json
CHANGED
|
@@ -6,6 +6,7 @@
|
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "configuration_nanogpt.NanoGPTConfig",
|
| 8 |
"AutoModel": "modeling_nanogpt.NanoGPTModel",
|
|
|
|
| 9 |
"AutoTokenizer": "tokenizer_nanogpt.NanoGPTTokenizer"
|
| 10 |
},
|
| 11 |
"sequence_len": 2048,
|
|
|
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "configuration_nanogpt.NanoGPTConfig",
|
| 8 |
"AutoModel": "modeling_nanogpt.NanoGPTModel",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_nanogpt.NanoGPTModel",
|
| 10 |
"AutoTokenizer": "tokenizer_nanogpt.NanoGPTTokenizer"
|
| 11 |
},
|
| 12 |
"sequence_len": 2048,
|
tokenizer_nanogpt.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import pickle
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class NanoGPTTokenizer:
|
|
@@ -20,9 +22,36 @@ class NanoGPTTokenizer:
|
|
| 20 |
|
| 21 |
@classmethod
|
| 22 |
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
return cls(enc)
|
| 27 |
|
| 28 |
def encode(self, text, prepend=None):
|
|
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
from huggingface_hub.utils import HfHubHTTPError
|
| 5 |
|
| 6 |
|
| 7 |
class NanoGPTTokenizer:
|
|
|
|
| 22 |
|
| 23 |
@classmethod
|
| 24 |
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
|
| 25 |
+
"""
|
| 26 |
+
Load tokenizer from either:
|
| 27 |
+
- Local directory path
|
| 28 |
+
- Hugging Face Hub repo ID
|
| 29 |
+
- Cached directory (handled automatically)
|
| 30 |
+
"""
|
| 31 |
+
# First, try to load from local path
|
| 32 |
+
local_tok_path = os.path.join(pretrained_model_name_or_path, "tokenizer.pkl")
|
| 33 |
+
|
| 34 |
+
if os.path.isfile(local_tok_path):
|
| 35 |
+
# Local file exists, load it directly
|
| 36 |
+
with open(local_tok_path, "rb") as f:
|
| 37 |
+
enc = pickle.load(f)
|
| 38 |
+
else:
|
| 39 |
+
# Try to download from Hugging Face Hub
|
| 40 |
+
try:
|
| 41 |
+
# This handles cache automatically and returns the cached file path
|
| 42 |
+
tok_path = hf_hub_download(
|
| 43 |
+
repo_id=pretrained_model_name_or_path,
|
| 44 |
+
filename="tokenizer.pkl",
|
| 45 |
+
**kwargs
|
| 46 |
+
)
|
| 47 |
+
with open(tok_path, "rb") as f:
|
| 48 |
+
enc = pickle.load(f)
|
| 49 |
+
except (HfHubHTTPError, OSError) as e:
|
| 50 |
+
raise ValueError(
|
| 51 |
+
f"Could not load tokenizer.pkl from {pretrained_model_name_or_path}. "
|
| 52 |
+
f"Make sure the path exists or the repo is accessible on the Hub."
|
| 53 |
+
) from e
|
| 54 |
+
|
| 55 |
return cls(enc)
|
| 56 |
|
| 57 |
def encode(self, text, prepend=None):
|