---
tags:
- mteb
- transformers.js
- transformers
model-index:
- name: mxbai-angle-large-v1
  results:
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_counterfactual
      name: MTEB AmazonCounterfactualClassification (en)
      config: en
      split: test
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
    metrics:
    - type: accuracy
      value: 75.044776119403
    - type: ap
      value: 37.7362433623053
    - type: f1
      value: 68.92736573359774
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_polarity
      name: MTEB AmazonPolarityClassification
      config: default
      split: test
      revision: e2d317d38cd51312af73b3d32a06d1a08b442046
    metrics:
    - type: accuracy
      value: 93.84025000000001
    - type: ap
      value: 90.93190875404055
    - type: f1
      value: 93.8297833897293
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (en)
      config: en
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 49.184
    - type: f1
      value: 48.74163227751588
  - task:
      type: Retrieval
    dataset:
      type: arguana
      name: MTEB ArguAna
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 41.252
    - type: map_at_10
      value: 57.778
    - type: map_at_100
      value: 58.233000000000004
    - type: map_at_1000
      value: 58.23700000000001
    - type: map_at_3
      value: 53.449999999999996
    - type: map_at_5
      value: 56.376000000000005
    - type: mrr_at_1
      value: 41.679
    - type: mrr_at_10
      value: 57.92699999999999
    - type: mrr_at_100
      value: 58.389
    - type: mrr_at_1000
      value: 58.391999999999996
    - type: mrr_at_3
      value: 53.651
    - type: mrr_at_5
      value: 56.521
    - type: ndcg_at_1
      value: 41.252
    - type: ndcg_at_10
      value: 66.018
    - type: ndcg_at_100
      value: 67.774
    - type: ndcg_at_1000
      value: 67.84400000000001
    - type: ndcg_at_3
      value: 57.372
    - type: ndcg_at_5
      value: 62.646
    - type: precision_at_1
      value: 41.252
    - type: precision_at_10
      value: 9.189
    - type: precision_at_100
      value: 0.991
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 22.902
    - type: precision_at_5
      value: 16.302
    - type: recall_at_1
      value: 41.252
    - type: recall_at_10
      value: 91.892
    - type: recall_at_100
      value: 99.14699999999999
    - type: recall_at_1000
      value: 99.644
    - type: recall_at_3
      value: 68.706
    - type: recall_at_5
      value: 81.50800000000001
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-p2p
      name: MTEB ArxivClusteringP2P
      config: default
      split: test
      revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
    metrics:
    - type: v_measure
      value: 48.97294504317859
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-s2s
      name: MTEB ArxivClusteringS2S
      config: default
      split: test
      revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
    metrics:
    - type: v_measure
      value: 42.98071077674629
  - task:
      type: Reranking
    dataset:
      type: mteb/askubuntudupquestions-reranking
      name: MTEB AskUbuntuDupQuestions
      config: default
      split: test
      revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
    metrics:
    - type: map
      value: 65.16477858490782
    - type: mrr
      value: 78.23583080508287
  - task:
      type: STS
    dataset:
      type: mteb/biosses-sts
      name: MTEB BIOSSES
      config: default
      split: test
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
    metrics:
    - type: cos_sim_pearson
      value: 89.6277629421789
    - type: cos_sim_spearman
      value: 88.4056288400568
    - type: euclidean_pearson
      value: 87.94871847578163
    - type: euclidean_spearman
      value: 88.4056288400568
    - type: manhattan_pearson
      value: 87.73271254229648
    - type: manhattan_spearman
      value: 87.91826833762677
  - task:
      type: Classification
    dataset:
      type: mteb/banking77
      name: MTEB Banking77Classification
      config: default
      split: test
      revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
    metrics:
    - type: accuracy
      value: 87.81818181818181
    - type: f1
      value: 87.79879337316918
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-p2p
      name: MTEB BiorxivClusteringP2P
      config: default
      split: test
      revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
    metrics:
    - type: v_measure
      value: 39.91773608582761
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-s2s
      name: MTEB BiorxivClusteringS2S
      config: default
      split: test
      revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
    metrics:
    - type: v_measure
      value: 36.73059477462478
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackAndroidRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 32.745999999999995
    - type: map_at_10
      value: 43.632
    - type: map_at_100
      value: 45.206
    - type: map_at_1000
      value: 45.341
    - type: map_at_3
      value: 39.956
    - type: map_at_5
      value: 42.031
    - type: mrr_at_1
      value: 39.485
    - type: mrr_at_10
      value: 49.537
    - type: mrr_at_100
      value: 50.249
    - type: mrr_at_1000
      value: 50.294000000000004
    - type: mrr_at_3
      value: 46.757
    - type: mrr_at_5
      value: 48.481
    - type: ndcg_at_1
      value: 39.485
    - type: ndcg_at_10
      value: 50.058
    - type: ndcg_at_100
      value: 55.586
    - type: ndcg_at_1000
      value: 57.511
    - type: ndcg_at_3
      value: 44.786
    - type: ndcg_at_5
      value: 47.339999999999996
    - type: precision_at_1
      value: 39.485
    - type: precision_at_10
      value: 9.557
    - type: precision_at_100
      value: 1.552
    - type: precision_at_1000
      value: 0.202
    - type: precision_at_3
      value: 21.412
    - type: precision_at_5
      value: 15.479000000000001
    - type: recall_at_1
      value: 32.745999999999995
    - type: recall_at_10
      value: 62.056
    - type: recall_at_100
      value: 85.088
    - type: recall_at_1000
      value: 96.952
    - type: recall_at_3
      value: 46.959
    - type: recall_at_5
      value: 54.06999999999999
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackEnglishRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 31.898
    - type: map_at_10
      value: 42.142
    - type: map_at_100
      value: 43.349
    - type: map_at_1000
      value: 43.483
    - type: map_at_3
      value: 39.18
    - type: map_at_5
      value: 40.733000000000004
    - type: mrr_at_1
      value: 39.617999999999995
    - type: mrr_at_10
      value: 47.922
    - type: mrr_at_100
      value: 48.547000000000004
    - type: mrr_at_1000
      value: 48.597
    - type: mrr_at_3
      value: 45.86
    - type: mrr_at_5
      value: 46.949000000000005
    - type: ndcg_at_1
      value: 39.617999999999995
    - type: ndcg_at_10
      value: 47.739
    - type: ndcg_at_100
      value: 51.934999999999995
    - type: ndcg_at_1000
      value: 54.007000000000005
    - type: ndcg_at_3
      value: 43.748
    - type: ndcg_at_5
      value: 45.345
    - type: precision_at_1
      value: 39.617999999999995
    - type: precision_at_10
      value: 8.962
    - type: precision_at_100
      value: 1.436
    - type: precision_at_1000
      value: 0.192
    - type: precision_at_3
      value: 21.083
    - type: precision_at_5
      value: 14.752
    - type: recall_at_1
      value: 31.898
    - type: recall_at_10
      value: 57.587999999999994
    - type: recall_at_100
      value: 75.323
    - type: recall_at_1000
      value: 88.304
    - type: recall_at_3
      value: 45.275
    - type: recall_at_5
      value: 49.99
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGamingRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 40.458
    - type: map_at_10
      value: 52.942
    - type: map_at_100
      value: 53.974
    - type: map_at_1000
      value: 54.031
    - type: map_at_3
      value: 49.559999999999995
    - type: map_at_5
      value: 51.408
    - type: mrr_at_1
      value: 46.27
    - type: mrr_at_10
      value: 56.31699999999999
    - type: mrr_at_100
      value: 56.95099999999999
    - type: mrr_at_1000
      value: 56.98
    - type: mrr_at_3
      value: 53.835
    - type: mrr_at_5
      value: 55.252
    - type: ndcg_at_1
      value: 46.27
    - type: ndcg_at_10
      value: 58.964000000000006
    - type: ndcg_at_100
      value: 62.875
    - type: ndcg_at_1000
      value: 63.969
    - type: ndcg_at_3
      value: 53.297000000000004
    - type: ndcg_at_5
      value: 55.938
    - type: precision_at_1
      value: 46.27
    - type: precision_at_10
      value: 9.549000000000001
    - type: precision_at_100
      value: 1.2409999999999999
    - type: precision_at_1000
      value: 0.13799999999999998
    - type: precision_at_3
      value: 23.762
    - type: precision_at_5
      value: 16.262999999999998
    - type: recall_at_1
      value: 40.458
    - type: recall_at_10
      value: 73.446
    - type: recall_at_100
      value: 90.12400000000001
    - type: recall_at_1000
      value: 97.795
    - type: recall_at_3
      value: 58.123000000000005
    - type: recall_at_5
      value: 64.68
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGisRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 27.443
    - type: map_at_10
      value: 36.081
    - type: map_at_100
      value: 37.163000000000004
    - type: map_at_1000
      value: 37.232
    - type: map_at_3
      value: 33.308
    - type: map_at_5
      value: 34.724
    - type: mrr_at_1
      value: 29.492
    - type: mrr_at_10
      value: 38.138
    - type: mrr_at_100
      value: 39.065
    - type: mrr_at_1000
      value: 39.119
    - type: mrr_at_3
      value: 35.593
    - type: mrr_at_5
      value: 36.785000000000004
    - type: ndcg_at_1
      value: 29.492
    - type: ndcg_at_10
      value: 41.134
    - type: ndcg_at_100
      value: 46.300999999999995
    - type: ndcg_at_1000
      value: 48.106
    - type: ndcg_at_3
      value: 35.77
    - type: ndcg_at_5
      value: 38.032
    - type: precision_at_1
      value: 29.492
    - type: precision_at_10
      value: 6.249
    - type: precision_at_100
      value: 0.9299999999999999
    - type: precision_at_1000
      value: 0.11199999999999999
    - type: precision_at_3
      value: 15.065999999999999
    - type: precision_at_5
      value: 10.373000000000001
    - type: recall_at_1
      value: 27.443
    - type: recall_at_10
      value: 54.80199999999999
    - type: recall_at_100
      value: 78.21900000000001
    - type: recall_at_1000
      value: 91.751
    - type: recall_at_3
      value: 40.211000000000006
    - type: recall_at_5
      value: 45.599000000000004
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackMathematicaRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 18.731
    - type: map_at_10
      value: 26.717999999999996
    - type: map_at_100
      value: 27.897
    - type: map_at_1000
      value: 28.029
    - type: map_at_3
      value: 23.91
    - type: map_at_5
      value: 25.455
    - type: mrr_at_1
      value: 23.134
    - type: mrr_at_10
      value: 31.769
    - type: mrr_at_100
      value: 32.634
    - type: mrr_at_1000
      value: 32.707
    - type: mrr_at_3
      value: 28.938999999999997
    - type: mrr_at_5
      value: 30.531000000000002
    - type: ndcg_at_1
      value: 23.134
    - type: ndcg_at_10
      value: 32.249
    - type: ndcg_at_100
      value: 37.678
    - type: ndcg_at_1000
      value: 40.589999999999996
    - type: ndcg_at_3
      value: 26.985999999999997
    - type: ndcg_at_5
      value: 29.457
    - type: precision_at_1
      value: 23.134
    - type: precision_at_10
      value: 5.8709999999999996
    - type: precision_at_100
      value: 0.988
    - type: precision_at_1000
      value: 0.13799999999999998
    - type: precision_at_3
      value: 12.852
    - type: precision_at_5
      value: 9.428
    - type: recall_at_1
      value: 18.731
    - type: recall_at_10
      value: 44.419
    - type: recall_at_100
      value: 67.851
    - type: recall_at_1000
      value: 88.103
    - type: recall_at_3
      value: 29.919
    - type: recall_at_5
      value: 36.230000000000004
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackPhysicsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 30.324
    - type: map_at_10
      value: 41.265
    - type: map_at_100
      value: 42.559000000000005
    - type: map_at_1000
      value: 42.669000000000004
    - type: map_at_3
      value: 38.138
    - type: map_at_5
      value: 39.881
    - type: mrr_at_1
      value: 36.67
    - type: mrr_at_10
      value: 46.774
    - type: mrr_at_100
      value: 47.554
    - type: mrr_at_1000
      value: 47.593
    - type: mrr_at_3
      value: 44.338
    - type: mrr_at_5
      value: 45.723
    - type: ndcg_at_1
      value: 36.67
    - type: ndcg_at_10
      value: 47.367
    - type: ndcg_at_100
      value: 52.623
    - type: ndcg_at_1000
      value: 54.59
    - type: ndcg_at_3
      value: 42.323
    - type: ndcg_at_5
      value: 44.727
    - type: precision_at_1
      value: 36.67
    - type: precision_at_10
      value: 8.518
    - type: precision_at_100
      value: 1.2890000000000001
    - type: precision_at_1000
      value: 0.163
    - type: precision_at_3
      value: 19.955000000000002
    - type: precision_at_5
      value: 14.11
    - type: recall_at_1
      value: 30.324
    - type: recall_at_10
      value: 59.845000000000006
    - type: recall_at_100
      value: 81.77499999999999
    - type: recall_at_1000
      value: 94.463
    - type: recall_at_3
      value: 46.019
    - type: recall_at_5
      value: 52.163000000000004
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackProgrammersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.229
    - type: map_at_10
      value: 35.004000000000005
    - type: map_at_100
      value: 36.409000000000006
    - type: map_at_1000
      value: 36.521
    - type: map_at_3
      value: 31.793
    - type: map_at_5
      value: 33.432
    - type: mrr_at_1
      value: 30.365
    - type: mrr_at_10
      value: 40.502
    - type: mrr_at_100
      value: 41.372
    - type: mrr_at_1000
      value: 41.435
    - type: mrr_at_3
      value: 37.804
    - type: mrr_at_5
      value: 39.226
    - type: ndcg_at_1
      value: 30.365
    - type: ndcg_at_10
      value: 41.305
    - type: ndcg_at_100
      value: 47.028999999999996
    - type: ndcg_at_1000
      value: 49.375
    - type: ndcg_at_3
      value: 35.85
    - type: ndcg_at_5
      value: 38.12
    - type: precision_at_1
      value: 30.365
    - type: precision_at_10
      value: 7.808
    - type: precision_at_100
      value: 1.228
    - type: precision_at_1000
      value: 0.161
    - type: precision_at_3
      value: 17.352
    - type: precision_at_5
      value: 12.42
    - type: recall_at_1
      value: 24.229
    - type: recall_at_10
      value: 54.673
    - type: recall_at_100
      value: 78.766
    - type: recall_at_1000
      value: 94.625
    - type: recall_at_3
      value: 39.602
    - type: recall_at_5
      value: 45.558
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 26.695
    - type: map_at_10
      value: 36.0895
    - type: map_at_100
      value: 37.309416666666664
    - type: map_at_1000
      value: 37.42558333333334
    - type: map_at_3
      value: 33.19616666666666
    - type: map_at_5
      value: 34.78641666666667
    - type: mrr_at_1
      value: 31.486083333333337
    - type: mrr_at_10
      value: 40.34774999999999
    - type: mrr_at_100
      value: 41.17533333333333
    - type: mrr_at_1000
      value: 41.231583333333326
    - type: mrr_at_3
      value: 37.90075
    - type: mrr_at_5
      value: 39.266999999999996
    - type: ndcg_at_1
      value: 31.486083333333337
    - type: ndcg_at_10
      value: 41.60433333333334
    - type: ndcg_at_100
      value: 46.74525
    - type: ndcg_at_1000
      value: 48.96166666666667
    - type: ndcg_at_3
      value: 36.68825
    - type: ndcg_at_5
      value: 38.966499999999996
    - type: precision_at_1
      value: 31.486083333333337
    - type: precision_at_10
      value: 7.29675
    - type: precision_at_100
      value: 1.1621666666666666
    - type: precision_at_1000
      value: 0.1545
    - type: precision_at_3
      value: 16.8815
    - type: precision_at_5
      value: 11.974583333333333
    - type: recall_at_1
      value: 26.695
    - type: recall_at_10
      value: 53.651916666666665
    - type: recall_at_100
      value: 76.12083333333332
    - type: recall_at_1000
      value: 91.31191666666668
    - type: recall_at_3
      value: 40.03575
    - type: recall_at_5
      value: 45.876666666666665
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackStatsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 25.668000000000003
    - type: map_at_10
      value: 32.486
    - type: map_at_100
      value: 33.371
    - type: map_at_1000
      value: 33.458
    - type: map_at_3
      value: 30.261
    - type: map_at_5
      value: 31.418000000000003
    - type: mrr_at_1
      value: 28.988000000000003
    - type: mrr_at_10
      value: 35.414
    - type: mrr_at_100
      value: 36.149
    - type: mrr_at_1000
      value: 36.215
    - type: mrr_at_3
      value: 33.333
    - type: mrr_at_5
      value: 34.43
    - type: ndcg_at_1
      value: 28.988000000000003
    - type: ndcg_at_10
      value: 36.732
    - type: ndcg_at_100
      value: 41.331
    - type: ndcg_at_1000
      value: 43.575
    - type: ndcg_at_3
      value: 32.413
    - type: ndcg_at_5
      value: 34.316
    - type: precision_at_1
      value: 28.988000000000003
    - type: precision_at_10
      value: 5.7059999999999995
    - type: precision_at_100
      value: 0.882
    - type: precision_at_1000
      value: 0.11299999999999999
    - type: precision_at_3
      value: 13.65
    - type: precision_at_5
      value: 9.417
    - type: recall_at_1
      value: 25.668000000000003
    - type: recall_at_10
      value: 47.147
    - type: recall_at_100
      value: 68.504
    - type: recall_at_1000
      value: 85.272
    - type: recall_at_3
      value: 35.19
    - type: recall_at_5
      value: 39.925
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackTexRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 17.256
    - type: map_at_10
      value: 24.58
    - type: map_at_100
      value: 25.773000000000003
    - type: map_at_1000
      value: 25.899
    - type: map_at_3
      value: 22.236
    - type: map_at_5
      value: 23.507
    - type: mrr_at_1
      value: 20.957
    - type: mrr_at_10
      value: 28.416000000000004
    - type: mrr_at_100
      value: 29.447000000000003
    - type: mrr_at_1000
      value: 29.524
    - type: mrr_at_3
      value: 26.245
    - type: mrr_at_5
      value: 27.451999999999998
    - type: ndcg_at_1
      value: 20.957
    - type: ndcg_at_10
      value: 29.285
    - type: ndcg_at_100
      value: 35.003
    - type: ndcg_at_1000
      value: 37.881
    - type: ndcg_at_3
      value: 25.063000000000002
    - type: ndcg_at_5
      value: 26.983
    - type: precision_at_1
      value: 20.957
    - type: precision_at_10
      value: 5.344
    - type: precision_at_100
      value: 0.958
    - type: precision_at_1000
      value: 0.13799999999999998
    - type: precision_at_3
      value: 11.918
    - type: precision_at_5
      value: 8.596
    - type: recall_at_1
      value: 17.256
    - type: recall_at_10
      value: 39.644
    - type: recall_at_100
      value: 65.279
    - type: recall_at_1000
      value: 85.693
    - type: recall_at_3
      value: 27.825
    - type: recall_at_5
      value: 32.792
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackUnixRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 26.700000000000003
    - type: map_at_10
      value: 36.205999999999996
    - type: map_at_100
      value: 37.316
    - type: map_at_1000
      value: 37.425000000000004
    - type: map_at_3
      value: 33.166000000000004
    - type: map_at_5
      value: 35.032999999999994
    - type: mrr_at_1
      value: 31.436999999999998
    - type: mrr_at_10
      value: 40.61
    - type: mrr_at_100
      value: 41.415
    - type: mrr_at_1000
      value: 41.48
    - type: mrr_at_3
      value: 37.966
    - type: mrr_at_5
      value: 39.599000000000004
    - type: ndcg_at_1
      value: 31.436999999999998
    - type: ndcg_at_10
      value: 41.771
    - type: ndcg_at_100
      value: 46.784
    - type: ndcg_at_1000
      value: 49.183
    - type: ndcg_at_3
      value: 36.437000000000005
    - type: ndcg_at_5
      value: 39.291
    - type: precision_at_1
      value: 31.436999999999998
    - type: precision_at_10
      value: 6.987
    - type: precision_at_100
      value: 1.072
    - type: precision_at_1000
      value: 0.13899999999999998
    - type: precision_at_3
      value: 16.448999999999998
    - type: precision_at_5
      value: 11.866
    - type: recall_at_1
      value: 26.700000000000003
    - type: recall_at_10
      value: 54.301
    - type: recall_at_100
      value: 75.871
    - type: recall_at_1000
      value: 92.529
    - type: recall_at_3
      value: 40.201
    - type: recall_at_5
      value: 47.208
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWebmastersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.296
    - type: map_at_10
      value: 33.116
    - type: map_at_100
      value: 34.81
    - type: map_at_1000
      value: 35.032000000000004
    - type: map_at_3
      value: 30.105999999999998
    - type: map_at_5
      value: 31.839000000000002
    - type: mrr_at_1
      value: 29.051
    - type: mrr_at_10
      value: 37.803
    - type: mrr_at_100
      value: 38.856
    - type: mrr_at_1000
      value: 38.903999999999996
    - type: mrr_at_3
      value: 35.211
    - type: mrr_at_5
      value: 36.545
    - type: ndcg_at_1
      value: 29.051
    - type: ndcg_at_10
      value: 39.007
    - type: ndcg_at_100
      value: 45.321
    - type: ndcg_at_1000
      value: 47.665
    - type: ndcg_at_3
      value: 34.1
    - type: ndcg_at_5
      value: 36.437000000000005
    - type: precision_at_1
      value: 29.051
    - type: precision_at_10
      value: 7.668
    - type: precision_at_100
      value: 1.542
    - type: precision_at_1000
      value: 0.24
    - type: precision_at_3
      value: 16.14
    - type: precision_at_5
      value: 11.897
    - type: recall_at_1
      value: 24.296
    - type: recall_at_10
      value: 49.85
    - type: recall_at_100
      value: 78.457
    - type: recall_at_1000
      value: 92.618
    - type: recall_at_3
      value: 36.138999999999996
    - type: recall_at_5
      value: 42.223
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWordpressRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 20.591
    - type: map_at_10
      value: 28.902
    - type: map_at_100
      value: 29.886000000000003
    - type: map_at_1000
      value: 29.987000000000002
    - type: map_at_3
      value: 26.740000000000002
    - type: map_at_5
      value: 27.976
    - type: mrr_at_1
      value: 22.366
    - type: mrr_at_10
      value: 30.971
    - type: mrr_at_100
      value: 31.865
    - type: mrr_at_1000
      value: 31.930999999999997
    - type: mrr_at_3
      value: 28.927999999999997
    - type: mrr_at_5
      value: 30.231
    - type: ndcg_at_1
      value: 22.366
    - type: ndcg_at_10
      value: 33.641
    - type: ndcg_at_100
      value: 38.477
    - type: ndcg_at_1000
      value: 41.088
    - type: ndcg_at_3
      value: 29.486
    - type: ndcg_at_5
      value: 31.612000000000002
    - type: precision_at_1
      value: 22.366
    - type: precision_at_10
      value: 5.3420000000000005
    - type: precision_at_100
      value: 0.828
    - type: precision_at_1000
      value: 0.11800000000000001
    - type: precision_at_3
      value: 12.939
    - type: precision_at_5
      value: 9.094
    - type: recall_at_1
      value: 20.591
    - type: recall_at_10
      value: 46.052
    - type: recall_at_100
      value: 68.193
    - type: recall_at_1000
      value: 87.638
    - type: recall_at_3
      value: 34.966
    - type: recall_at_5
      value: 40.082
  - task:
      type: Retrieval
    dataset:
      type: climate-fever
      name: MTEB ClimateFEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 15.091
    - type: map_at_10
      value: 26.38
    - type: map_at_100
      value: 28.421999999999997
    - type: map_at_1000
      value: 28.621999999999996
    - type: map_at_3
      value: 21.597
    - type: map_at_5
      value: 24.12
    - type: mrr_at_1
      value: 34.266999999999996
    - type: mrr_at_10
      value: 46.864
    - type: mrr_at_100
      value: 47.617
    - type: mrr_at_1000
      value: 47.644
    - type: mrr_at_3
      value: 43.312
    - type: mrr_at_5
      value: 45.501000000000005
    - type: ndcg_at_1
      value: 34.266999999999996
    - type: ndcg_at_10
      value: 36.095
    - type: ndcg_at_100
      value: 43.447
    - type: ndcg_at_1000
      value: 46.661
    - type: ndcg_at_3
      value: 29.337999999999997
    - type: ndcg_at_5
      value: 31.824
    - type: precision_at_1
      value: 34.266999999999996
    - type: precision_at_10
      value: 11.472
    - type: precision_at_100
      value: 1.944
    - type: precision_at_1000
      value: 0.255
    - type: precision_at_3
      value: 21.933
    - type: precision_at_5
      value: 17.224999999999998
    - type: recall_at_1
      value: 15.091
    - type: recall_at_10
      value: 43.022
    - type: recall_at_100
      value: 68.075
    - type: recall_at_1000
      value: 85.76
    - type: recall_at_3
      value: 26.564
    - type: recall_at_5
      value: 33.594
  - task:
      type: Retrieval
    dataset:
      type: dbpedia-entity
      name: MTEB DBPedia
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 9.252
    - type: map_at_10
      value: 20.923
    - type: map_at_100
      value: 30.741000000000003
    - type: map_at_1000
      value: 32.542
    - type: map_at_3
      value: 14.442
    - type: map_at_5
      value: 17.399
    - type: mrr_at_1
      value: 70.25
    - type: mrr_at_10
      value: 78.17
    - type: mrr_at_100
      value: 78.444
    - type: mrr_at_1000
      value: 78.45100000000001
    - type: mrr_at_3
      value: 76.958
    - type: mrr_at_5
      value: 77.571
    - type: ndcg_at_1
      value: 58.375
    - type: ndcg_at_10
      value: 44.509
    - type: ndcg_at_100
      value: 49.897999999999996
    - type: ndcg_at_1000
      value: 57.269999999999996
    - type: ndcg_at_3
      value: 48.64
    - type: ndcg_at_5
      value: 46.697
    - type: precision_at_1
      value: 70.25
    - type: precision_at_10
      value: 36.05
    - type: precision_at_100
      value: 11.848
    - type: precision_at_1000
      value: 2.213
    - type: precision_at_3
      value: 52.917
    - type: precision_at_5
      value: 45.7
    - type: recall_at_1
      value: 9.252
    - type: recall_at_10
      value: 27.006999999999998
    - type: recall_at_100
      value: 57.008
    - type: recall_at_1000
      value: 80.697
    - type: recall_at_3
      value: 15.798000000000002
    - type: recall_at_5
      value: 20.4
  - task:
      type: Classification
    dataset:
      type: mteb/emotion
      name: MTEB EmotionClassification
      config: default
      split: test
      revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
    metrics:
    - type: accuracy
      value: 50.88
    - type: f1
      value: 45.545495028653384
  - task:
      type: Retrieval
    dataset:
      type: fever
      name: MTEB FEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 75.424
    - type: map_at_10
      value: 83.435
    - type: map_at_100
      value: 83.66900000000001
    - type: map_at_1000
      value: 83.685
    - type: map_at_3
      value: 82.39800000000001
    - type: map_at_5
      value: 83.07
    - type: mrr_at_1
      value: 81.113
    - type: mrr_at_10
      value: 87.77199999999999
    - type: mrr_at_100
      value: 87.862
    - type: mrr_at_1000
      value: 87.86500000000001
    - type: mrr_at_3
      value: 87.17099999999999
    - type: mrr_at_5
      value: 87.616
    - type: ndcg_at_1
      value: 81.113
    - type: ndcg_at_10
      value: 86.909
    - type: ndcg_at_100
      value: 87.746
    - type: ndcg_at_1000
      value: 88.017
    - type: ndcg_at_3
      value: 85.368
    - type: ndcg_at_5
      value: 86.28099999999999
    - type: precision_at_1
      value: 81.113
    - type: precision_at_10
      value: 10.363
    - type: precision_at_100
      value: 1.102
    - type: precision_at_1000
      value: 0.11399999999999999
    - type: precision_at_3
      value: 32.507999999999996
    - type: precision_at_5
      value: 20.138
    - type: recall_at_1
      value: 75.424
    - type: recall_at_10
      value: 93.258
    - type: recall_at_100
      value: 96.545
    - type: recall_at_1000
      value: 98.284
    - type: recall_at_3
      value: 89.083
    - type: recall_at_5
      value: 91.445
  - task:
      type: Retrieval
    dataset:
      type: fiqa
      name: MTEB FiQA2018
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 22.532
    - type: map_at_10
      value: 37.141999999999996
    - type: map_at_100
      value: 39.162
    - type: map_at_1000
      value: 39.322
    - type: map_at_3
      value: 32.885
    - type: map_at_5
      value: 35.093999999999994
    - type: mrr_at_1
      value: 44.29
    - type: mrr_at_10
      value: 53.516
    - type: mrr_at_100
      value: 54.24
    - type: mrr_at_1000
      value: 54.273
    - type: mrr_at_3
      value: 51.286
    - type: mrr_at_5
      value: 52.413
    - type: ndcg_at_1
      value: 44.29
    - type: ndcg_at_10
      value: 45.268
    - type: ndcg_at_100
      value: 52.125
    - type: ndcg_at_1000
      value: 54.778000000000006
    - type: ndcg_at_3
      value: 41.829
    - type: ndcg_at_5
      value: 42.525
    - type: precision_at_1
      value: 44.29
    - type: precision_at_10
      value: 12.5
    - type: precision_at_100
      value: 1.9720000000000002
    - type: precision_at_1000
      value: 0.245
    - type: precision_at_3
      value: 28.035
    - type: precision_at_5
      value: 20.093
    - type: recall_at_1
      value: 22.532
    - type: recall_at_10
      value: 52.419000000000004
    - type: recall_at_100
      value: 77.43299999999999
    - type: recall_at_1000
      value: 93.379
    - type: recall_at_3
      value: 38.629000000000005
    - type: recall_at_5
      value: 43.858000000000004
  - task:
      type: Retrieval
    dataset:
      type: hotpotqa
      name: MTEB HotpotQA
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 39.359
    - type: map_at_10
      value: 63.966
    - type: map_at_100
      value: 64.87
    - type: map_at_1000
      value: 64.92599999999999
    - type: map_at_3
      value: 60.409
    - type: map_at_5
      value: 62.627
    - type: mrr_at_1
      value: 78.717
    - type: mrr_at_10
      value: 84.468
    - type: mrr_at_100
      value: 84.655
    - type: mrr_at_1000
      value: 84.661
    - type: mrr_at_3
      value: 83.554
    - type: mrr_at_5
      value: 84.133
    - type: ndcg_at_1
      value: 78.717
    - type: ndcg_at_10
      value: 72.03399999999999
    - type: ndcg_at_100
      value: 75.158
    - type: ndcg_at_1000
      value: 76.197
    - type: ndcg_at_3
      value: 67.049
    - type: ndcg_at_5
      value: 69.808
    - type: precision_at_1
      value: 78.717
    - type: precision_at_10
      value: 15.201
    - type: precision_at_100
      value: 1.764
    - type: precision_at_1000
      value: 0.19
    - type: precision_at_3
      value: 43.313
    - type: precision_at_5
      value: 28.165000000000003
    - type: recall_at_1
      value: 39.359
    - type: recall_at_10
      value: 76.003
    - type: recall_at_100
      value: 88.197
    - type: recall_at_1000
      value: 95.003
    - type: recall_at_3
      value: 64.97
    - type: recall_at_5
      value: 70.41199999999999
  - task:
      type: Classification
    dataset:
      type: mteb/imdb
      name: MTEB ImdbClassification
      config: default
      split: test
      revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
    metrics:
    - type: accuracy
      value: 92.83200000000001
    - type: ap
      value: 89.33560571859861
    - type: f1
      value: 92.82322915005167
  - task:
      type: Retrieval
    dataset:
      type: msmarco
      name: MTEB MSMARCO
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 21.983
    - type: map_at_10
      value: 34.259
    - type: map_at_100
      value: 35.432
    - type: map_at_1000
      value: 35.482
    - type: map_at_3
      value: 30.275999999999996
    - type: map_at_5
      value: 32.566
    - type: mrr_at_1
      value: 22.579
    - type: mrr_at_10
      value: 34.882999999999996
    - type: mrr_at_100
      value: 35.984
    - type: mrr_at_1000
      value: 36.028
    - type: mrr_at_3
      value: 30.964999999999996
    - type: mrr_at_5
      value: 33.245000000000005
    - type: ndcg_at_1
      value: 22.564
    - type: ndcg_at_10
      value: 41.258
    - type: ndcg_at_100
      value: 46.824
    - type: ndcg_at_1000
      value: 48.037
    - type: ndcg_at_3
      value: 33.17
    - type: ndcg_at_5
      value: 37.263000000000005
    - type: precision_at_1
      value: 22.564
    - type: precision_at_10
      value: 6.572
    - type: precision_at_100
      value: 0.935
    - type: precision_at_1000
      value: 0.104
    - type: precision_at_3
      value: 14.130999999999998
    - type: precision_at_5
      value: 10.544
    - type: recall_at_1
      value: 21.983
    - type: recall_at_10
      value: 62.775000000000006
    - type: recall_at_100
      value: 88.389
    - type: recall_at_1000
      value: 97.603
    - type: recall_at_3
      value: 40.878
    - type: recall_at_5
      value: 50.690000000000005
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_domain
      name: MTEB MTOPDomainClassification (en)
      config: en
      split: test
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
    metrics:
    - type: accuracy
      value: 93.95120839033288
    - type: f1
      value: 93.73824125055208
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_intent
      name: MTEB MTOPIntentClassification (en)
      config: en
      split: test
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
    metrics:
    - type: accuracy
      value: 76.78978568171455
    - type: f1
      value: 57.50180552858304
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (en)
      config: en
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 76.24411566913248
    - type: f1
      value: 74.37851403532832
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (en)
      config: en
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 79.94620040349699
    - type: f1
      value: 80.21293397970435
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-p2p
      name: MTEB MedrxivClusteringP2P
      config: default
      split: test
      revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
    metrics:
    - type: v_measure
      value: 33.44403096245675
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-s2s
      name: MTEB MedrxivClusteringS2S
      config: default
      split: test
      revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
    metrics:
    - type: v_measure
      value: 31.659594631336812
  - task:
      type: Reranking
    dataset:
      type: mteb/mind_small
      name: MTEB MindSmallReranking
      config: default
      split: test
      revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
    metrics:
    - type: map
      value: 32.53833075108798
    - type: mrr
      value: 33.78840823218308
  - task:
      type: Retrieval
    dataset:
      type: nfcorpus
      name: MTEB NFCorpus
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 7.185999999999999
    - type: map_at_10
      value: 15.193999999999999
    - type: map_at_100
      value: 19.538
    - type: map_at_1000
      value: 21.178
    - type: map_at_3
      value: 11.208
    - type: map_at_5
      value: 12.745999999999999
    - type: mrr_at_1
      value: 48.916
    - type: mrr_at_10
      value: 58.141
    - type: mrr_at_100
      value: 58.656
    - type: mrr_at_1000
      value: 58.684999999999995
    - type: mrr_at_3
      value: 55.521
    - type: mrr_at_5
      value: 57.239
    - type: ndcg_at_1
      value: 47.059
    - type: ndcg_at_10
      value: 38.644
    - type: ndcg_at_100
      value: 36.272999999999996
    - type: ndcg_at_1000
      value: 44.996
    - type: ndcg_at_3
      value: 43.293
    - type: ndcg_at_5
      value: 40.819
    - type: precision_at_1
      value: 48.916
    - type: precision_at_10
      value: 28.607
    - type: precision_at_100
      value: 9.195
    - type: precision_at_1000
      value: 2.225
    - type: precision_at_3
      value: 40.454
    - type: precision_at_5
      value: 34.985
    - type: recall_at_1
      value: 7.185999999999999
    - type: recall_at_10
      value: 19.654
    - type: recall_at_100
      value: 37.224000000000004
    - type: recall_at_1000
      value: 68.663
    - type: recall_at_3
      value: 12.158
    - type: recall_at_5
      value: 14.674999999999999
  - task:
      type: Retrieval
    dataset:
      type: nq
      name: MTEB NQ
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 31.552000000000003
    - type: map_at_10
      value: 47.75
    - type: map_at_100
      value: 48.728
    - type: map_at_1000
      value: 48.754
    - type: map_at_3
      value: 43.156
    - type: map_at_5
      value: 45.883
    - type: mrr_at_1
      value: 35.66
    - type: mrr_at_10
      value: 50.269
    - type: mrr_at_100
      value: 50.974
    - type: mrr_at_1000
      value: 50.991
    - type: mrr_at_3
      value: 46.519
    - type: mrr_at_5
      value: 48.764
    - type: ndcg_at_1
      value: 35.632000000000005
    - type: ndcg_at_10
      value: 55.786
    - type: ndcg_at_100
      value: 59.748999999999995
    - type: ndcg_at_1000
      value: 60.339
    - type: ndcg_at_3
      value: 47.292
    - type: ndcg_at_5
      value: 51.766999999999996
    - type: precision_at_1
      value: 35.632000000000005
    - type: precision_at_10
      value: 9.267
    - type: precision_at_100
      value: 1.149
    - type: precision_at_1000
      value: 0.12
    - type: precision_at_3
      value: 21.601
    - type: precision_at_5
      value: 15.539
    - type: recall_at_1
      value: 31.552000000000003
    - type: recall_at_10
      value: 77.62400000000001
    - type: recall_at_100
      value: 94.527
    - type: recall_at_1000
      value: 98.919
    - type: recall_at_3
      value: 55.898
    - type: recall_at_5
      value: 66.121
  - task:
      type: Retrieval
    dataset:
      type: quora
      name: MTEB QuoraRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 71.414
    - type: map_at_10
      value: 85.37400000000001
    - type: map_at_100
      value: 86.01100000000001
    - type: map_at_1000
      value: 86.027
    - type: map_at_3
      value: 82.562
    - type: map_at_5
      value: 84.284
    - type: mrr_at_1
      value: 82.24000000000001
    - type: mrr_at_10
      value: 88.225
    - type: mrr_at_100
      value: 88.324
    - type: mrr_at_1000
      value: 88.325
    - type: mrr_at_3
      value: 87.348
    - type: mrr_at_5
      value: 87.938
    - type: ndcg_at_1
      value: 82.24000000000001
    - type: ndcg_at_10
      value: 88.97699999999999
    - type: ndcg_at_100
      value: 90.16
    - type: ndcg_at_1000
      value: 90.236
    - type: ndcg_at_3
      value: 86.371
    - type: ndcg_at_5
      value: 87.746
    - type: precision_at_1
      value: 82.24000000000001
    - type: precision_at_10
      value: 13.481000000000002
    - type: precision_at_100
      value: 1.534
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 37.86
    - type: precision_at_5
      value: 24.738
    - type: recall_at_1
      value: 71.414
    - type: recall_at_10
      value: 95.735
    - type: recall_at_100
      value: 99.696
    - type: recall_at_1000
      value: 99.979
    - type: recall_at_3
      value: 88.105
    - type: recall_at_5
      value: 92.17999999999999
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering
      name: MTEB RedditClustering
      config: default
      split: test
      revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
    metrics:
    - type: v_measure
      value: 60.22146692057259
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering-p2p
      name: MTEB RedditClusteringP2P
      config: default
      split: test
      revision: 282350215ef01743dc01b456c7f5241fa8937f16
    metrics:
    - type: v_measure
      value: 65.29273320614578
  - task:
      type: Retrieval
    dataset:
      type: scidocs
      name: MTEB SCIDOCS
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 5.023
    - type: map_at_10
      value: 14.161000000000001
    - type: map_at_100
      value: 16.68
    - type: map_at_1000
      value: 17.072000000000003
    - type: map_at_3
      value: 9.763
    - type: map_at_5
      value: 11.977
    - type: mrr_at_1
      value: 24.8
    - type: mrr_at_10
      value: 37.602999999999994
    - type: mrr_at_100
      value: 38.618
    - type: mrr_at_1000
      value: 38.659
    - type: mrr_at_3
      value: 34.117
    - type: mrr_at_5
      value: 36.082
    - type: ndcg_at_1
      value: 24.8
    - type: ndcg_at_10
      value: 23.316
    - type: ndcg_at_100
      value: 32.613
    - type: ndcg_at_1000
      value: 38.609
    - type: ndcg_at_3
      value: 21.697
    - type: ndcg_at_5
      value: 19.241
    - type: precision_at_1
      value: 24.8
    - type: precision_at_10
      value: 12.36
    - type: precision_at_100
      value: 2.593
    - type: precision_at_1000
      value: 0.402
    - type: precision_at_3
      value: 20.767
    - type: precision_at_5
      value: 17.34
    - type: recall_at_1
      value: 5.023
    - type: recall_at_10
      value: 25.069999999999997
    - type: recall_at_100
      value: 52.563
    - type: recall_at_1000
      value: 81.525
    - type: recall_at_3
      value: 12.613
    - type: recall_at_5
      value: 17.583
  - task:
      type: STS
    dataset:
      type: mteb/sickr-sts
      name: MTEB SICK-R
      config: default
      split: test
      revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
    metrics:
    - type: cos_sim_pearson
      value: 87.71506247604255
    - type: cos_sim_spearman
      value: 82.91813463738802
    - type: euclidean_pearson
      value: 85.5154616194479
    - type: euclidean_spearman
      value: 82.91815254466314
    - type: manhattan_pearson
      value: 85.5280917850374
    - type: manhattan_spearman
      value: 82.92276537286398
  - task:
      type: STS
    dataset:
      type: mteb/sts12-sts
      name: MTEB STS12
      config: default
      split: test
      revision: a0d554a64d88156834ff5ae9920b964011b16384
    metrics:
    - type: cos_sim_pearson
      value: 87.43772054228462
    - type: cos_sim_spearman
      value: 78.75750601716682
    - type: euclidean_pearson
      value: 85.76074482955764
    - type: euclidean_spearman
      value: 78.75651057223058
    - type: manhattan_pearson
      value: 85.73390291701668
    - type: manhattan_spearman
      value: 78.72699385957797
  - task:
      type: STS
    dataset:
      type: mteb/sts13-sts
      name: MTEB STS13
      config: default
      split: test
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
    metrics:
    - type: cos_sim_pearson
      value: 89.58144067172472
    - type: cos_sim_spearman
      value: 90.3524512966946
    - type: euclidean_pearson
      value: 89.71365391594237
    - type: euclidean_spearman
      value: 90.35239632843408
    - type: manhattan_pearson
      value: 89.66905421746478
    - type: manhattan_spearman
      value: 90.31508211683513
  - task:
      type: STS
    dataset:
      type: mteb/sts14-sts
      name: MTEB STS14
      config: default
      split: test
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
    metrics:
    - type: cos_sim_pearson
      value: 87.77692637102102
    - type: cos_sim_spearman
      value: 85.45710562643485
    - type: euclidean_pearson
      value: 87.42456979928723
    - type: euclidean_spearman
      value: 85.45709386240908
    - type: manhattan_pearson
      value: 87.40754529526272
    - type: manhattan_spearman
      value: 85.44834854173303
  - task:
      type: STS
    dataset:
      type: mteb/sts15-sts
      name: MTEB STS15
      config: default
      split: test
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
    metrics:
    - type: cos_sim_pearson
      value: 88.28491331695997
    - type: cos_sim_spearman
      value: 89.62037029566964
    - type: euclidean_pearson
      value: 89.02479391362826
    - type: euclidean_spearman
      value: 89.62036733618466
    - type: manhattan_pearson
      value: 89.00394756040342
    - type: manhattan_spearman
      value: 89.60867744215236
  - task:
      type: STS
    dataset:
      type: mteb/sts16-sts
      name: MTEB STS16
      config: default
      split: test
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
    metrics:
    - type: cos_sim_pearson
      value: 85.08911381280191
    - type: cos_sim_spearman
      value: 86.5791780765767
    - type: euclidean_pearson
      value: 86.16063473577861
    - type: euclidean_spearman
      value: 86.57917745378766
    - type: manhattan_pearson
      value: 86.13677924604175
    - type: manhattan_spearman
      value: 86.56115615768685
  - task:
      type: STS
    dataset:
      type: mteb/sts17-crosslingual-sts
      name: MTEB STS17 (en-en)
      config: en-en
      split: test
      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
    metrics:
    - type: cos_sim_pearson
      value: 89.58029496205235
    - type: cos_sim_spearman
      value: 89.49551253826998
    - type: euclidean_pearson
      value: 90.13714840963748
    - type: euclidean_spearman
      value: 89.49551253826998
    - type: manhattan_pearson
      value: 90.13039633601363
    - type: manhattan_spearman
      value: 89.4513453745516
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (en)
      config: en
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 69.01546399666435
    - type: cos_sim_spearman
      value: 69.33824484595624
    - type: euclidean_pearson
      value: 70.76511642998874
    - type: euclidean_spearman
      value: 69.33824484595624
    - type: manhattan_pearson
      value: 70.84320785047453
    - type: manhattan_spearman
      value: 69.54233632223537
  - task:
      type: STS
    dataset:
      type: mteb/stsbenchmark-sts
      name: MTEB STSBenchmark
      config: default
      split: test
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
    metrics:
    - type: cos_sim_pearson
      value: 87.26389196390119
    - type: cos_sim_spearman
      value: 89.09721478341385
    - type: euclidean_pearson
      value: 88.97208685922517
    - type: euclidean_spearman
      value: 89.09720927308881
    - type: manhattan_pearson
      value: 88.97513670502573
    - type: manhattan_spearman
      value: 89.07647853984004
  - task:
      type: Reranking
    dataset:
      type: mteb/scidocs-reranking
      name: MTEB SciDocsRR
      config: default
      split: test
      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
    metrics:
    - type: map
      value: 87.53075025771936
    - type: mrr
      value: 96.24327651288436
  - task:
      type: Retrieval
    dataset:
      type: scifact
      name: MTEB SciFact
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 60.428000000000004
    - type: map_at_10
      value: 70.088
    - type: map_at_100
      value: 70.589
    - type: map_at_1000
      value: 70.614
    - type: map_at_3
      value: 67.191
    - type: map_at_5
      value: 68.515
    - type: mrr_at_1
      value: 63.333
    - type: mrr_at_10
      value: 71.13000000000001
    - type: mrr_at_100
      value: 71.545
    - type: mrr_at_1000
      value: 71.569
    - type: mrr_at_3
      value: 68.944
    - type: mrr_at_5
      value: 70.078
    - type: ndcg_at_1
      value: 63.333
    - type: ndcg_at_10
      value: 74.72800000000001
    - type: ndcg_at_100
      value: 76.64999999999999
    - type: ndcg_at_1000
      value: 77.176
    - type: ndcg_at_3
      value: 69.659
    - type: ndcg_at_5
      value: 71.626
    - type: precision_at_1
      value: 63.333
    - type: precision_at_10
      value: 10
    - type: precision_at_100
      value: 1.09
    - type: precision_at_1000
      value: 0.11299999999999999
    - type: precision_at_3
      value: 27.111
    - type: precision_at_5
      value: 17.666999999999998
    - type: recall_at_1
      value: 60.428000000000004
    - type: recall_at_10
      value: 87.98899999999999
    - type: recall_at_100
      value: 96.167
    - type: recall_at_1000
      value: 100
    - type: recall_at_3
      value: 74.006
    - type: recall_at_5
      value: 79.05
  - task:
      type: PairClassification
    dataset:
      type: mteb/sprintduplicatequestions-pairclassification
      name: MTEB SprintDuplicateQuestions
      config: default
      split: test
      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
    metrics:
    - type: cos_sim_accuracy
      value: 99.87326732673267
    - type: cos_sim_ap
      value: 96.81770773701805
    - type: cos_sim_f1
      value: 93.6318407960199
    - type: cos_sim_precision
      value: 93.16831683168317
    - type: cos_sim_recall
      value: 94.1
    - type: dot_accuracy
      value: 99.87326732673267
    - type: dot_ap
      value: 96.8174218946665
    - type: dot_f1
      value: 93.6318407960199
    - type: dot_precision
      value: 93.16831683168317
    - type: dot_recall
      value: 94.1
    - type: euclidean_accuracy
      value: 99.87326732673267
    - type: euclidean_ap
      value: 96.81770773701807
    - type: euclidean_f1
      value: 93.6318407960199
    - type: euclidean_precision
      value: 93.16831683168317
    - type: euclidean_recall
      value: 94.1
    - type: manhattan_accuracy
      value: 99.87227722772278
    - type: manhattan_ap
      value: 96.83164126821747
    - type: manhattan_f1
      value: 93.54677338669335
    - type: manhattan_precision
      value: 93.5935935935936
    - type: manhattan_recall
      value: 93.5
    - type: max_accuracy
      value: 99.87326732673267
    - type: max_ap
      value: 96.83164126821747
    - type: max_f1
      value: 93.6318407960199
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering
      name: MTEB StackExchangeClustering
      config: default
      split: test
      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
    metrics:
    - type: v_measure
      value: 65.6212042420246
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering-p2p
      name: MTEB StackExchangeClusteringP2P
      config: default
      split: test
      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
    metrics:
    - type: v_measure
      value: 35.779230635982564
  - task:
      type: Reranking
    dataset:
      type: mteb/stackoverflowdupquestions-reranking
      name: MTEB StackOverflowDupQuestions
      config: default
      split: test
      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
    metrics:
    - type: map
      value: 55.217701909036286
    - type: mrr
      value: 56.17658995416349
  - task:
      type: Summarization
    dataset:
      type: mteb/summeval
      name: MTEB SummEval
      config: default
      split: test
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
    metrics:
    - type: cos_sim_pearson
      value: 30.954206018888453
    - type: cos_sim_spearman
      value: 32.71062599450096
    - type: dot_pearson
      value: 30.95420929056943
    - type: dot_spearman
      value: 32.71062599450096
  - task:
      type: Retrieval
    dataset:
      type: trec-covid
      name: MTEB TRECCOVID
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 0.22699999999999998
    - type: map_at_10
      value: 1.924
    - type: map_at_100
      value: 10.525
    - type: map_at_1000
      value: 24.973
    - type: map_at_3
      value: 0.638
    - type: map_at_5
      value: 1.0659999999999998
    - type: mrr_at_1
      value: 84
    - type: mrr_at_10
      value: 91.067
    - type: mrr_at_100
      value: 91.067
    - type: mrr_at_1000
      value: 91.067
    - type: mrr_at_3
      value: 90.667
    - type: mrr_at_5
      value: 91.067
    - type: ndcg_at_1
      value: 81
    - type: ndcg_at_10
      value: 75.566
    - type: ndcg_at_100
      value: 56.387
    - type: ndcg_at_1000
      value: 49.834
    - type: ndcg_at_3
      value: 80.899
    - type: ndcg_at_5
      value: 80.75099999999999
    - type: precision_at_1
      value: 84
    - type: precision_at_10
      value: 79
    - type: precision_at_100
      value: 57.56
    - type: precision_at_1000
      value: 21.8
    - type: precision_at_3
      value: 84.667
    - type: precision_at_5
      value: 85.2
    - type: recall_at_1
      value: 0.22699999999999998
    - type: recall_at_10
      value: 2.136
    - type: recall_at_100
      value: 13.861
    - type: recall_at_1000
      value: 46.299
    - type: recall_at_3
      value: 0.6649999999999999
    - type: recall_at_5
      value: 1.145
  - task:
      type: Retrieval
    dataset:
      type: webis-touche2020
      name: MTEB Touche2020
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 2.752
    - type: map_at_10
      value: 9.951
    - type: map_at_100
      value: 16.794999999999998
    - type: map_at_1000
      value: 18.251
    - type: map_at_3
      value: 5.288
    - type: map_at_5
      value: 6.954000000000001
    - type: mrr_at_1
      value: 38.775999999999996
    - type: mrr_at_10
      value: 50.458000000000006
    - type: mrr_at_100
      value: 51.324999999999996
    - type: mrr_at_1000
      value: 51.339999999999996
    - type: mrr_at_3
      value: 46.939
    - type: mrr_at_5
      value: 47.857
    - type: ndcg_at_1
      value: 36.735
    - type: ndcg_at_10
      value: 25.198999999999998
    - type: ndcg_at_100
      value: 37.938
    - type: ndcg_at_1000
      value: 49.145
    - type: ndcg_at_3
      value: 29.348000000000003
    - type: ndcg_at_5
      value: 25.804
    - type: precision_at_1
      value: 38.775999999999996
    - type: precision_at_10
      value: 22.041
    - type: precision_at_100
      value: 7.939
    - type: precision_at_1000
      value: 1.555
    - type: precision_at_3
      value: 29.932
    - type: precision_at_5
      value: 24.490000000000002
    - type: recall_at_1
      value: 2.752
    - type: recall_at_10
      value: 16.197
    - type: recall_at_100
      value: 49.166
    - type: recall_at_1000
      value: 84.18900000000001
    - type: recall_at_3
      value: 6.438000000000001
    - type: recall_at_5
      value: 9.093
  - task:
      type: Classification
    dataset:
      type: mteb/toxic_conversations_50k
      name: MTEB ToxicConversationsClassification
      config: default
      split: test
      revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
    metrics:
    - type: accuracy
      value: 71.47980000000001
    - type: ap
      value: 14.605194452178754
    - type: f1
      value: 55.07362924988948
  - task:
      type: Classification
    dataset:
      type: mteb/tweet_sentiment_extraction
      name: MTEB TweetSentimentExtractionClassification
      config: default
      split: test
      revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
    metrics:
    - type: accuracy
      value: 59.708545557441994
    - type: f1
      value: 60.04751270975683
  - task:
      type: Clustering
    dataset:
      type: mteb/twentynewsgroups-clustering
      name: MTEB TwentyNewsgroupsClustering
      config: default
      split: test
      revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
    metrics:
    - type: v_measure
      value: 53.21105960597211
  - task:
      type: PairClassification
    dataset:
      type: mteb/twittersemeval2015-pairclassification
      name: MTEB TwitterSemEval2015
      config: default
      split: test
      revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
    metrics:
    - type: cos_sim_accuracy
      value: 87.58419264469214
    - type: cos_sim_ap
      value: 78.55300004517404
    - type: cos_sim_f1
      value: 71.49673530889001
    - type: cos_sim_precision
      value: 68.20795400095831
    - type: cos_sim_recall
      value: 75.11873350923483
    - type: dot_accuracy
      value: 87.58419264469214
    - type: dot_ap
      value: 78.55297659559511
    - type: dot_f1
      value: 71.49673530889001
    - type: dot_precision
      value: 68.20795400095831
    - type: dot_recall
      value: 75.11873350923483
    - type: euclidean_accuracy
      value: 87.58419264469214
    - type: euclidean_ap
      value: 78.55300477331477
    - type: euclidean_f1
      value: 71.49673530889001
    - type: euclidean_precision
      value: 68.20795400095831
    - type: euclidean_recall
      value: 75.11873350923483
    - type: manhattan_accuracy
      value: 87.5663110210407
    - type: manhattan_ap
      value: 78.49982050876562
    - type: manhattan_f1
      value: 71.35488740722104
    - type: manhattan_precision
      value: 68.18946862226497
    - type: manhattan_recall
      value: 74.82849604221636
    - type: max_accuracy
      value: 87.58419264469214
    - type: max_ap
      value: 78.55300477331477
    - type: max_f1
      value: 71.49673530889001
  - task:
      type: PairClassification
    dataset:
      type: mteb/twitterurlcorpus-pairclassification
      name: MTEB TwitterURLCorpus
      config: default
      split: test
      revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
    metrics:
    - type: cos_sim_accuracy
      value: 89.09069740365584
    - type: cos_sim_ap
      value: 86.22749303724757
    - type: cos_sim_f1
      value: 78.36863452005407
    - type: cos_sim_precision
      value: 76.49560117302053
    - type: cos_sim_recall
      value: 80.33569448721897
    - type: dot_accuracy
      value: 89.09069740365584
    - type: dot_ap
      value: 86.22750233655673
    - type: dot_f1
      value: 78.36863452005407
    - type: dot_precision
      value: 76.49560117302053
    - type: dot_recall
      value: 80.33569448721897
    - type: euclidean_accuracy
      value: 89.09069740365584
    - type: euclidean_ap
      value: 86.22749355597347
    - type: euclidean_f1
      value: 78.36863452005407
    - type: euclidean_precision
      value: 76.49560117302053
    - type: euclidean_recall
      value: 80.33569448721897
    - type: manhattan_accuracy
      value: 89.08293553770326
    - type: manhattan_ap
      value: 86.21913616084771
    - type: manhattan_f1
      value: 78.3907031479847
    - type: manhattan_precision
      value: 75.0352013517319
    - type: manhattan_recall
      value: 82.06036341238065
    - type: max_accuracy
      value: 89.09069740365584
    - type: max_ap
      value: 86.22750233655673
    - type: max_f1
      value: 78.3907031479847
license: apache-2.0
language:
- en
library_name: sentence-transformers
pipeline_tag: feature-extraction
---
The crispy sentence embedding family from Mixedbread.
🍞 Looking for a simple end-to-end retrieval solution? Meet Omni, our multimodal and multilingual model. Get in touch for access.
# mixedbread-ai/mxbai-embed-large-v1 Here, we provide several ways to produce sentence embeddings. Please note that you have to provide the prompt `Represent this sentence for searching relevant passages:` for query if you want to use it for retrieval. Besides that you don't need any prompt. Our model also supports [Matryoshka Representation Learning and binary quantization](https://www.mixedbread.ai/blog/binary-mrl). ## Quickstart Here, we provide several ways to produce sentence embeddings. Please note that you have to provide the prompt `Represent this sentence for searching relevant passages: ` for query if you want to use it for retrieval. Besides that you don't need any prompt. ### sentence-transformers ``` python -m pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim from sentence_transformers.quantization import quantize_embeddings # 1. Specify preffered dimensions dimensions = 512 # 2. load model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=dimensions) # The prompt used for query retrieval tasks: # query_prompt = 'Represent this sentence for searching relevant passages: ' query = "A man is eating a piece of bread" docs = [ "A man is eating food.", "A man is eating pasta.", "The girl is carrying a baby.", "A man is riding a horse.", ] # 2. Encode query_embedding = model.encode(query, prompt_name="query") # Equivalent Alternatives: # query_embedding = model.encode(query_prompt + query) # query_embedding = model.encode(query, prompt=query_prompt) docs_embeddings = model.encode(docs) # Optional: Quantize the embeddings binary_query_embedding = quantize_embeddings(query_embedding, precision="ubinary") binary_docs_embeddings = quantize_embeddings(docs_embeddings, precision="ubinary") similarities = cos_sim(query_embedding, docs_embeddings) print('similarities:', similarities) ``` ### Transformers ```python from typing import Dict import torch import numpy as np from transformers import AutoModel, AutoTokenizer from sentence_transformers.util import cos_sim # For retrieval you need to pass this prompt. Please find our more in our blog post. def transform_query(query: str) -> str: """ For retrieval, add the prompt for query (not for documents). """ return f'Represent this sentence for searching relevant passages: {query}' # The model works really well with cls pooling (default) but also with mean pooling. def pooling(outputs: torch.Tensor, inputs: Dict, strategy: str = 'cls') -> np.ndarray: if strategy == 'cls': outputs = outputs[:, 0] elif strategy == 'mean': outputs = torch.sum( outputs * inputs["attention_mask"][:, :, None], dim=1) / torch.sum(inputs["attention_mask"], dim=1, keepdim=True) else: raise NotImplementedError return outputs.detach().cpu().numpy() # 1. load model model_id = 'mixedbread-ai/mxbai-embed-large-v1' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModel.from_pretrained(model_id).cuda() docs = [ transform_query('A man is eating a piece of bread'), "A man is eating food.", "A man is eating pasta.", "The girl is carrying a baby.", "A man is riding a horse.", ] # 2. encode inputs = tokenizer(docs, padding=True, return_tensors='pt') for k, v in inputs.items(): inputs[k] = v.cuda() outputs = model(**inputs).last_hidden_state embeddings = pooling(outputs, inputs, 'cls') similarities = cos_sim(embeddings[0], embeddings[1:]) print('similarities:', similarities) ``` ### Transformers.js If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ``` npm i @xenova/transformers ``` You can then use the model to compute embeddings like this: ```javascript import { pipeline, cos_sim } from '@xenova/transformers'; // Create a feature extraction pipeline const extractor = await pipeline('feature-extraction', 'mixedbread-ai/mxbai-embed-large-v1', { quantized: false, // Comment out this line to use the quantized version }); // Generate sentence embeddings const docs = [ 'Represent this sentence for searching relevant passages: A man is eating a piece of bread', 'A man is eating food.', 'A man is eating pasta.', 'The girl is carrying a baby.', 'A man is riding a horse.', ] const output = await extractor(docs, { pooling: 'cls' }); // Compute similarity scores const [source_embeddings, ...document_embeddings ] = output.tolist(); const similarities = document_embeddings.map(x => cos_sim(source_embeddings, x)); console.log(similarities); // [0.7919578577247139, 0.6369278664248345, 0.16512018371357193, 0.3620778366720027] ``` ### Using API You can use the model via our API as follows: ```python from mixedbread_ai.client import MixedbreadAI, EncodingFormat from sklearn.metrics.pairwise import cosine_similarity import os mxbai = MixedbreadAI(api_key="{MIXEDBREAD_API_KEY}") english_sentences = [ 'What is the capital of Australia?', 'Canberra is the capital of Australia.' ] res = mxbai.embeddings( input=english_sentences, model="mixedbread-ai/mxbai-embed-large-v1", normalized=True, encoding_format=[EncodingFormat.FLOAT, EncodingFormat.UBINARY, EncodingFormat.INT_8], dimensions=512 ) encoded_embeddings = res.data[0].embedding print(res.dimensions, encoded_embeddings.ubinary, encoded_embeddings.float_, encoded_embeddings.int_8) ``` The API comes with native int8 and binary quantization support! Check out the [docs](https://mixedbread.ai/docs) for more information. ### Infinity ```bash docker run --gpus all -v $PWD/data:/app/.cache -p "7997":"7997" \ michaelf34/infinity:0.0.68 \ v2 --model-id mixedbread-ai/mxbai-embed-large-v1 --revision "main" --dtype float16 --engine torch --port 7997 ``` ## Evaluation As of March 2024, our model archives SOTA performance for Bert-large sized models on the [MTEB](https://huggingface.co/spaces/mteb/leaderboard). It ourperforms commercial models like OpenAIs text-embedding-3-large and matches the performance of model 20x it's size like the [echo-mistral-7b](https://huggingface.co/jspringer/echo-mistral-7b-instruct-lasttoken). Our model was trained with no overlap of the MTEB data, which indicates that our model generalizes well across several domains, tasks and text length. We know there are some limitations with this model, which will be fixed in v2. | Model | Avg (56 datasets) | Classification (12 datasets) | Clustering (11 datasets) | PairClassification (3 datasets) | Reranking (4 datasets) | Retrieval (15 datasets) | STS (10 datasets) | Summarization (1 dataset) | | --------------------------------------------------------------------------------------------- | ----------------- | ---------------------------- | ------------------------ | ------------------------------- | ---------------------- | ----------------------- | ----------------- | ------------------------- | | **mxbai-embed-large-v1** | **64.68** | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85.00 | 32.71 | | [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 | | [mxbai-embed-2d-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-2d-large-v1) | 63.25 | 74.14 | 46.07 | 85.89 | 58.94 | 51.42 | 84.9 | 31.55 | | [nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) | 62.39 | 74.12 | 43.91 | 85.15 | 55.69 | 52.81 | 82.06 | 30.08 | | [jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) | 60.38 | 73.45 | 41.73 | 85.38 | 56.98 | 47.87 | 80.7 | 31.6 | | *Proprietary Models* | | | | | | | | | | [OpenAI text-embedding-3-large](https://openai.com/blog/new-embedding-models-and-api-updates) | 64.58 | 75.45 | 49.01 | 85.72 | 59.16 | 55.44 | 81.73 | 29.92 | | [Cohere embed-english-v3.0](https://txt.cohere.com/introducing-embed-v3/) | 64.47 | 76.49 | 47.43 | 85.84 | 58.01 | 55.00 | 82.62 | 30.18 | | [OpenAI text-embedding-ada-002](https://openai.com/blog/new-and-improved-embedding-model) | 60.99 | 70.93 | 45.90 | 84.89 | 56.32 | 49.25 | 80.97 | 30.80 | Please find more information in our [blog post](https://mixedbread.ai/blog/mxbai-embed-large-v1). ## Matryoshka and Binary Quantization Embeddings in their commonly used form (float arrays) have a high memory footprint when used at scale. Two approaches to solve this problem are Matryoshka Representation Learning (MRL) and (Binary) Quantization. While MRL reduces the number of dimensions of an embedding, binary quantization transforms the value of each dimension from a float32 into a lower precision (int8 or even binary). The model supports both approaches! You can also take it one step further, and combine both MRL and quantization. This combination of binary quantization and MRL allows you to reduce the memory usage of your embeddings significantly. This leads to much lower costs when using a vector database in particular. You can read more about the technology and its advantages in our [blog post](https://www.mixedbread.ai/blog/binary-mrl). ## Community Please join our [Discord Community](https://discord.gg/jDfMHzAVfU) and share your feedback and thoughts! We are here to help and also always happy to chat. ## License Apache 2.0 ## Citation ```bibtex @online{emb2024mxbai, title={Open Source Strikes Bread - New Fluffy Embeddings Model}, author={Sean Lee and Aamir Shakir and Darius Koenig and Julius Lipp}, year={2024}, url={https://www.mixedbread.ai/blog/mxbai-embed-large-v1}, } @article{li2023angle, title={AnglE-optimized Text Embeddings}, author={Li, Xianming and Li, Jing}, journal={arXiv preprint arXiv:2309.12871}, year={2023} } ```