Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- CONFIDENCE_IMPLEMENTATION.md +172 -0
- Dockerfile +47 -0
- README.md +13 -0
- assistant_female_voice.wav +3 -0
- attention_mask_research.md +186 -0
- compare_generation.py +150 -0
- example_usage.py +130 -0
- helper.py +101 -0
- hotkey.txt +1 -0
- lighning.py +3 -0
- models/Llama-3.2-1B-Instruct/config.json +39 -0
- models/Llama-3.2-1B-Instruct/model-00001-of-00003.safetensors +3 -0
- models/Llama-3.2-1B-Instruct/model-00002-of-00003.safetensors +3 -0
- models/Llama-3.2-1B-Instruct/model-00003-of-00003.safetensors +3 -0
- models/Llama-3.2-1B-Instruct/model.safetensors.index.json +1 -0
- models/Llama-3.2-1B-Instruct/special_tokens_map.json +16 -0
- models/Llama-3.2-1B-Instruct/tokenizer.json +0 -0
- models/Llama-3.2-1B-Instruct/tokenizer_config.json +2062 -0
- models/wpt/wpt.pt +3 -0
- pyarmor_runtime_000000/__init__.py +2 -0
- pyarmor_runtime_000000/__pycache__/__init__.cpython-310.pyc +0 -0
- pyarmor_runtime_000000/pyarmor_runtime.so +3 -0
- requirements.txt +13 -0
- search_beam.py +3 -0
- server.py +0 -0
- smoe.py +3 -0
- spk_001.wav +3 -0
- test.ipynb +190 -0
- test_asr.py +23 -0
- utils.py +7 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assistant_female_voice.wav filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
pyarmor_runtime_000000/pyarmor_runtime.so filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
spk_001.wav filter=lfs diff=lfs merge=lfs -text
|
CONFIDENCE_IMPLEMENTATION.md
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Confidence-Enabled Chat Implementation
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This implementation adds confidence scoring to the chat function using logits-based confidence calculation. The confidence score is derived from the model's token probabilities during generation, providing a more reliable measure of the model's certainty than self-assessment.
|
| 6 |
+
|
| 7 |
+
## Changes Made
|
| 8 |
+
|
| 9 |
+
### 1. New Function: `chat_with_confidence()` (Logits-based)
|
| 10 |
+
|
| 11 |
+
**Location**: `server.py` lines 393-522
|
| 12 |
+
|
| 13 |
+
**Features**:
|
| 14 |
+
- Returns structured response: `{"response": str, "confidence": int}`
|
| 15 |
+
- Confidence score range: 0-10 (integer)
|
| 16 |
+
- Based on average log probability of generated tokens
|
| 17 |
+
- Uses entropy calculation for more nuanced scoring
|
| 18 |
+
- Handles all existing rule detection and prompt modifications
|
| 19 |
+
- Maintains backward compatibility
|
| 20 |
+
|
| 21 |
+
### 2. New Function: `chat_with_json_confidence()` (JSON Schema-based)
|
| 22 |
+
|
| 23 |
+
**Location**: `server.py` lines 564-704
|
| 24 |
+
|
| 25 |
+
**Features**:
|
| 26 |
+
- Returns structured response: `{"response": str, "confidence": int}`
|
| 27 |
+
- Confidence score range: 0-10 (integer)
|
| 28 |
+
- Based on model's self-assessment via JSON prompting
|
| 29 |
+
- Forces model to return JSON with response and confidence
|
| 30 |
+
- More reliable confidence variation
|
| 31 |
+
- Robust JSON parsing with fallback handling
|
| 32 |
+
|
| 33 |
+
**Key Implementation Details**:
|
| 34 |
+
```python
|
| 35 |
+
# Generate with logits enabled
|
| 36 |
+
outputs = lm.generate(
|
| 37 |
+
# ... existing parameters ...
|
| 38 |
+
return_dict_in_generate=True, # Enable structured output
|
| 39 |
+
output_scores=True, # Return logits for each token
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Calculate confidence from token probabilities
|
| 43 |
+
for i, score in enumerate(scores):
|
| 44 |
+
probs = torch.softmax(score, dim=-1)
|
| 45 |
+
chosen_token_id = output_ids[i]
|
| 46 |
+
token_prob = probs[0, chosen_token_id].item()
|
| 47 |
+
total_log_prob += torch.log(torch.tensor(token_prob)).item()
|
| 48 |
+
|
| 49 |
+
# Scale to 0-10 confidence range
|
| 50 |
+
confidence = max(0, min(10, int((avg_log_prob + 5) * 2)))
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### 3. Updated Function: `chat()`
|
| 54 |
+
|
| 55 |
+
**Location**: `server.py` lines 707-715
|
| 56 |
+
|
| 57 |
+
**Changes**:
|
| 58 |
+
- Now uses `chat_with_confidence()` internally
|
| 59 |
+
- Returns only the response string for backward compatibility
|
| 60 |
+
- No breaking changes to existing code
|
| 61 |
+
|
| 62 |
+
### 4. Updated API Endpoint: `/api/v1/v2t`
|
| 63 |
+
|
| 64 |
+
**Location**: `server.py` lines 825-898
|
| 65 |
+
|
| 66 |
+
**Changes**:
|
| 67 |
+
- **Maintains original response format**: `{"text": str}` (no breaking changes)
|
| 68 |
+
- Uses `chat_with_json_confidence()` internally for confidence calculation
|
| 69 |
+
- **Prints response and confidence to console** before returning
|
| 70 |
+
- All error cases also print confidence information
|
| 71 |
+
- Enhanced logging includes confidence information
|
| 72 |
+
|
| 73 |
+
**Response Format** (unchanged):
|
| 74 |
+
```json
|
| 75 |
+
{
|
| 76 |
+
"text": "The generated response text..."
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
**Console Output** (new):
|
| 81 |
+
```
|
| 82 |
+
Response: The generated response text...
|
| 83 |
+
Confidence: 7
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## Confidence Score Interpretation
|
| 87 |
+
|
| 88 |
+
| Score | Level | Description |
|
| 89 |
+
|-------|-------|-------------|
|
| 90 |
+
| 8-10 | High | Model is very confident in the response |
|
| 91 |
+
| 6-7 | Medium| Model is moderately confident |
|
| 92 |
+
| 4-5 | Low | Model is uncertain about the response |
|
| 93 |
+
| 0-3 | Very Low | Model is very uncertain or error occurred |
|
| 94 |
+
|
| 95 |
+
## Technical Details
|
| 96 |
+
|
| 97 |
+
### Confidence Calculation Method
|
| 98 |
+
|
| 99 |
+
1. **Token Probability Extraction**: For each generated token, extract the probability from the model's logits
|
| 100 |
+
2. **Log Probability Sum**: Calculate the sum of log probabilities for all generated tokens
|
| 101 |
+
3. **Average Calculation**: Divide by the number of valid tokens
|
| 102 |
+
4. **Scaling**: Map from typical log probability range (-5 to 0) to confidence range (0-10)
|
| 103 |
+
|
| 104 |
+
### Error Handling
|
| 105 |
+
|
| 106 |
+
- **Model Loading Errors**: Returns confidence 0
|
| 107 |
+
- **Generation Errors**: Returns confidence 0
|
| 108 |
+
- **Empty Input**: Returns confidence 0
|
| 109 |
+
- **Authentication Failures**: Returns confidence 0
|
| 110 |
+
|
| 111 |
+
## Files Created
|
| 112 |
+
|
| 113 |
+
1. **`test_confidence.py`**: Test script to verify functionality
|
| 114 |
+
2. **`example_usage.py`**: Usage examples and API documentation
|
| 115 |
+
3. **`CONFIDENCE_IMPLEMENTATION.md`**: This documentation
|
| 116 |
+
|
| 117 |
+
## Usage Examples
|
| 118 |
+
|
| 119 |
+
### Direct Function Usage
|
| 120 |
+
```python
|
| 121 |
+
from server import chat_with_json_confidence
|
| 122 |
+
|
| 123 |
+
result = chat_with_json_confidence(system_prompt, user_prompt)
|
| 124 |
+
print(f"Response: {result['response']}")
|
| 125 |
+
print(f"Confidence: {result['confidence']}/10")
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
### API Usage
|
| 129 |
+
```python
|
| 130 |
+
import requests
|
| 131 |
+
|
| 132 |
+
response = requests.post("http://localhost:8000/api/v1/v2t", json={
|
| 133 |
+
"audio_data": base64_audio_data,
|
| 134 |
+
"sample_rate": 16000
|
| 135 |
+
})
|
| 136 |
+
|
| 137 |
+
result = response.json()
|
| 138 |
+
print(f"Text: {result['text']}")
|
| 139 |
+
# Confidence is printed to server console, not returned in response
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
## Backward Compatibility
|
| 143 |
+
|
| 144 |
+
- ✅ Existing `chat()` function still works unchanged
|
| 145 |
+
- ✅ All existing API endpoints maintain their interfaces
|
| 146 |
+
- ✅ No breaking changes to existing code
|
| 147 |
+
- ✅ New functionality is opt-in via `chat_with_confidence()`
|
| 148 |
+
|
| 149 |
+
## Testing
|
| 150 |
+
|
| 151 |
+
Run the test script to verify functionality:
|
| 152 |
+
```bash
|
| 153 |
+
cd elephant-04
|
| 154 |
+
python test_confidence.py
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
## Benefits
|
| 158 |
+
|
| 159 |
+
1. **Reliable Confidence**: Based on actual model probabilities, not self-assessment
|
| 160 |
+
2. **Consistent Scoring**: Always produces a confidence score
|
| 161 |
+
3. **No Prompt Pollution**: Doesn't affect response content
|
| 162 |
+
4. **Mathematically Sound**: Uses proper probability calculations
|
| 163 |
+
5. **Easy Integration**: Simple structured response format
|
| 164 |
+
6. **Backward Compatible**: No breaking changes
|
| 165 |
+
|
| 166 |
+
## Future Enhancements
|
| 167 |
+
|
| 168 |
+
- Confidence calibration based on validation data
|
| 169 |
+
- Per-token confidence analysis
|
| 170 |
+
- Confidence-based response filtering
|
| 171 |
+
- Confidence monitoring and alerting
|
| 172 |
+
- Integration with evaluation metrics
|
Dockerfile
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:12.3.2-cudnn9-devel-ubuntu22.04
|
| 2 |
+
|
| 3 |
+
# Set environment variables
|
| 4 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 5 |
+
DEBIAN_FRONTEND=noninteractive \
|
| 6 |
+
CUDA_HOME=/usr/local/cuda \
|
| 7 |
+
PATH=/usr/local/cuda/bin:$PATH \
|
| 8 |
+
LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH \
|
| 9 |
+
NVIDIA_VISIBLE_DEVICES=all \
|
| 10 |
+
NVIDIA_DRIVER_CAPABILITIES=compute,utility \
|
| 11 |
+
HF_HOME=/app/models \
|
| 12 |
+
TRITON_CACHE_DIR=/tmp/triton_cache \
|
| 13 |
+
XDG_CACHE_HOME=/tmp \
|
| 14 |
+
NUMBA_CACHE_DIR=/tmp/numba_cache
|
| 15 |
+
|
| 16 |
+
# Install system dependencies
|
| 17 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 18 |
+
python3 \
|
| 19 |
+
python3-pip \
|
| 20 |
+
python3-dev \
|
| 21 |
+
build-essential \
|
| 22 |
+
git \
|
| 23 |
+
ffmpeg \
|
| 24 |
+
libsndfile1 \
|
| 25 |
+
curl \
|
| 26 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 27 |
+
|
| 28 |
+
# Upgrade pip and install build tools
|
| 29 |
+
RUN python3 -m pip install --upgrade pip setuptools wheel uv
|
| 30 |
+
|
| 31 |
+
WORKDIR /app
|
| 32 |
+
|
| 33 |
+
# Create Numba cache directory
|
| 34 |
+
RUN mkdir -p /tmp/numba_cache /tmp/triton_cache && \
|
| 35 |
+
chown nobody:nogroup /tmp/numba_cache /tmp/triton_cache && \
|
| 36 |
+
chmod 700 /tmp/numba_cache /tmp/triton_cache
|
| 37 |
+
|
| 38 |
+
COPY requirements.txt .
|
| 39 |
+
|
| 40 |
+
# Install other requirements
|
| 41 |
+
RUN python3 -m uv pip install -r requirements.txt --prerelease=allow
|
| 42 |
+
|
| 43 |
+
COPY . .
|
| 44 |
+
|
| 45 |
+
EXPOSE 8000
|
| 46 |
+
|
| 47 |
+
CMD ["python3", "server.py"]
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- any-to-any
|
| 5 |
+
- omega
|
| 6 |
+
- omegalabs
|
| 7 |
+
- bittensor
|
| 8 |
+
- agi
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
|
| 12 |
+
|
| 13 |
+
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
assistant_female_voice.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d712ba6de1d15d52eda96bdc043ce43eb5af4b4ac441b78b6fb0fdaf6683c7a
|
| 3 |
+
size 235244
|
attention_mask_research.md
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Attention Masks and Pad Tokens in Transformer Generation: Research Questions
|
| 2 |
+
|
| 3 |
+
## Core Problem Statement
|
| 4 |
+
|
| 5 |
+
When running transformer models (specifically Llama-3.2-1B-Instruct) for text generation, we encounter warnings about missing attention masks and pad tokens, even for single input sequences. This leads to inconsistent generation outputs despite identical inputs.
|
| 6 |
+
|
| 7 |
+
### Warning Messages Observed
|
| 8 |
+
```
|
| 9 |
+
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
|
| 10 |
+
Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.
|
| 11 |
+
The attention mask is not set and cannot be inferred from input because pad token is same as eos token.
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
## Key Research Questions
|
| 15 |
+
|
| 16 |
+
### 1. Why do single inputs require attention masks?
|
| 17 |
+
**Initial Assumption**: Single sequences without padding shouldn't need attention masks.
|
| 18 |
+
**Observed Reality**: Even single inputs show different generation outputs when attention masks are missing.
|
| 19 |
+
|
| 20 |
+
### 2. What is the relationship between pad tokens and attention masks?
|
| 21 |
+
**Question**: How do pad_token_id and attention_mask work together in the generation process?
|
| 22 |
+
|
| 23 |
+
### 3. Why does pad_token_id = eos_token_id cause issues?
|
| 24 |
+
**Specific Issue**: When padding token equals end-of-sequence token, what ambiguity does this create?
|
| 25 |
+
|
| 26 |
+
## Code Analysis
|
| 27 |
+
|
| 28 |
+
### Current Implementation (Problematic)
|
| 29 |
+
```python
|
| 30 |
+
def chat_current(system_prompt: str, user_prompt: str) -> str:
|
| 31 |
+
messages = [
|
| 32 |
+
{"role": "system", "content": system_prompt},
|
| 33 |
+
{"role": "user", "content": user_prompt},
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
# Only returns input_ids tensor
|
| 37 |
+
input_ids = tok.apply_chat_template(
|
| 38 |
+
messages,
|
| 39 |
+
add_generation_prompt=True,
|
| 40 |
+
return_tensors="pt"
|
| 41 |
+
).to(lm.device)
|
| 42 |
+
|
| 43 |
+
with torch.inference_mode():
|
| 44 |
+
output_ids = lm.generate(
|
| 45 |
+
input_ids, # Missing: attention_mask, pad_token_id
|
| 46 |
+
max_new_tokens=2048,
|
| 47 |
+
do_sample=True,
|
| 48 |
+
temperature=0.2,
|
| 49 |
+
repetition_penalty=1.1,
|
| 50 |
+
top_k=100,
|
| 51 |
+
top_p=0.95,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
return tok.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### Fixed Implementation
|
| 58 |
+
```python
|
| 59 |
+
def chat_fixed(system_prompt: str, user_prompt: str) -> str:
|
| 60 |
+
messages = [
|
| 61 |
+
{"role": "system", "content": system_prompt},
|
| 62 |
+
{"role": "user", "content": user_prompt},
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
# Returns dictionary with input_ids AND attention_mask
|
| 66 |
+
inputs = tok.apply_chat_template(
|
| 67 |
+
messages,
|
| 68 |
+
add_generation_prompt=True,
|
| 69 |
+
return_tensors="pt",
|
| 70 |
+
return_dict=True # KEY CHANGE: Get both components
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
input_ids = inputs["input_ids"].to(lm.device)
|
| 74 |
+
attention_mask = inputs["attention_mask"].to(lm.device)
|
| 75 |
+
|
| 76 |
+
with torch.inference_mode():
|
| 77 |
+
output_ids = lm.generate(
|
| 78 |
+
input_ids=input_ids,
|
| 79 |
+
attention_mask=attention_mask, # Explicit attention guidance
|
| 80 |
+
pad_token_id=tok.eos_token_id, # Explicit pad token
|
| 81 |
+
max_new_tokens=2048,
|
| 82 |
+
do_sample=True,
|
| 83 |
+
temperature=0.2,
|
| 84 |
+
repetition_penalty=1.1,
|
| 85 |
+
top_k=100,
|
| 86 |
+
top_p=0.95,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
return tok.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Model and Tokenizer Setup
|
| 93 |
+
```python
|
| 94 |
+
model_name = "models/Llama-3.2-1B-Instruct"
|
| 95 |
+
tok = AutoTokenizer.from_pretrained(model_name)
|
| 96 |
+
# Critical: Set pad token if not available
|
| 97 |
+
if tok.pad_token is None:
|
| 98 |
+
tok.pad_token = tok.eos_token
|
| 99 |
+
|
| 100 |
+
lm = AutoModelForCausalLM.from_pretrained(
|
| 101 |
+
model_name,
|
| 102 |
+
torch_dtype=torch.bfloat16,
|
| 103 |
+
device_map="cuda",
|
| 104 |
+
).eval()
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## Observed Behavioral Differences
|
| 108 |
+
|
| 109 |
+
### Input Structure Analysis
|
| 110 |
+
```python
|
| 111 |
+
# Single input contains multiple components:
|
| 112 |
+
messages = [
|
| 113 |
+
{"role": "system", "content": "You are a helpful assistant..."},
|
| 114 |
+
{"role": "user", "content": "What is the capital of France?"},
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
# After apply_chat_template, becomes token sequence:
|
| 118 |
+
# [system_tokens, user_tokens, assistant_start_token]
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
## Technical Hypotheses for Investigation
|
| 122 |
+
|
| 123 |
+
### Hypothesis 1: Internal Masking Ambiguity
|
| 124 |
+
When attention_mask is missing, the model cannot distinguish between:
|
| 125 |
+
- Real input tokens that should influence generation
|
| 126 |
+
- Structural tokens (system prompts, role markers)
|
| 127 |
+
- Token boundaries between different message roles
|
| 128 |
+
|
| 129 |
+
### Hypothesis 2: EOS Token Dual Purpose Confusion
|
| 130 |
+
When `pad_token_id == eos_token_id`, the model faces ambiguity:
|
| 131 |
+
```python
|
| 132 |
+
# Same token (128001) serves dual purposes:
|
| 133 |
+
# 1. End of sequence marker
|
| 134 |
+
# 2. Padding token for batch processing
|
| 135 |
+
# Model cannot infer which purpose applies in context
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
### Hypothesis 3: Autoregressive Generation Context Boundary Issues
|
| 139 |
+
During generation, model needs to know:
|
| 140 |
+
- Which input tokens provide valid context for next token prediction
|
| 141 |
+
- Where the "prompt" ends and "generation" begins
|
| 142 |
+
- How to weight attention across different input components
|
| 143 |
+
|
| 144 |
+
## Research Objectives
|
| 145 |
+
|
| 146 |
+
### Primary Questions
|
| 147 |
+
1. **Mechanism Analysis**: How exactly does missing attention_mask affect the internal attention computation?
|
| 148 |
+
2. **Consistency Impact**: Why do identical inputs produce different outputs without proper masking?
|
| 149 |
+
3. **Single vs Batch Behavior**: What differences exist between single sequence and batched sequence processing?
|
| 150 |
+
|
| 151 |
+
### Secondary Questions
|
| 152 |
+
1. **Model-Specific Behavior**: Do different transformer architectures handle missing attention masks differently?
|
| 153 |
+
2. **Generation Parameter Interaction**: How do attention mask issues interact with sampling parameters (temperature, top_p, etc.)?
|
| 154 |
+
3. **Performance Impact**: What computational overhead does proper attention masking add?
|
| 155 |
+
|
| 156 |
+
## Key Technical Areas for Deep Research
|
| 157 |
+
|
| 158 |
+
### Attention Mechanism Internals
|
| 159 |
+
- How attention weights are computed with/without explicit masks
|
| 160 |
+
- Impact on multi-head attention distributions
|
| 161 |
+
- Interaction with causal masking in autoregressive models
|
| 162 |
+
|
| 163 |
+
### Tokenizer Behavior
|
| 164 |
+
- How `apply_chat_template` constructs input sequences
|
| 165 |
+
- Default attention mask generation behavior
|
| 166 |
+
- Role of special tokens in attention computation
|
| 167 |
+
|
| 168 |
+
### Generation Process
|
| 169 |
+
- How `model.generate()` handles missing parameters
|
| 170 |
+
- Internal assumptions and fallback behaviors
|
| 171 |
+
- Impact on sampling and beam search algorithms
|
| 172 |
+
|
| 173 |
+
## Expected Research Outcomes
|
| 174 |
+
|
| 175 |
+
Understanding of:
|
| 176 |
+
1. Exact mechanism causing output inconsistency
|
| 177 |
+
2. Best practices for single sequence generation
|
| 178 |
+
3. Relationship between attention masking and generation quality
|
| 179 |
+
4. Guidelines for production transformer deployment
|
| 180 |
+
|
| 181 |
+
## References for Deep Research
|
| 182 |
+
|
| 183 |
+
- Hugging Face Transformers documentation on attention masks
|
| 184 |
+
- Technical blogs on transformer attention mechanisms (2024)
|
| 185 |
+
- Community discussions on pad token vs attention mask differences
|
| 186 |
+
- Official model documentation for Llama architecture attention handling
|
compare_generation.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Load model and tokenizer (same as server.py)
|
| 9 |
+
model_name = "models/Llama-3.2-1B-Instruct"
|
| 10 |
+
tok = None
|
| 11 |
+
lm = None
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def chat_current(system_prompt: str, user_prompt: str) -> str:
|
| 16 |
+
"""
|
| 17 |
+
Current implementation (same as server.py) - will show warnings
|
| 18 |
+
"""
|
| 19 |
+
print("🔴 Running CURRENT implementation (with warnings)...")
|
| 20 |
+
|
| 21 |
+
messages = [
|
| 22 |
+
{"role": "system", "content": system_prompt},
|
| 23 |
+
{"role": "user", "content": user_prompt},
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
input_ids = tok.apply_chat_template(
|
| 27 |
+
messages,
|
| 28 |
+
add_generation_prompt=True,
|
| 29 |
+
return_tensors="pt"
|
| 30 |
+
).to(lm.device)
|
| 31 |
+
|
| 32 |
+
with torch.inference_mode():
|
| 33 |
+
output_ids = lm.generate(
|
| 34 |
+
input_ids, # No attention_mask, no pad_token_id
|
| 35 |
+
max_new_tokens=2048,
|
| 36 |
+
do_sample=True,
|
| 37 |
+
temperature=0.2,
|
| 38 |
+
repetition_penalty=1.1,
|
| 39 |
+
top_k=100,
|
| 40 |
+
top_p=0.95,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
answer = tok.decode(
|
| 44 |
+
output_ids[0][input_ids.shape[-1]:],
|
| 45 |
+
skip_special_tokens=True,
|
| 46 |
+
clean_up_tokenization_spaces=True,
|
| 47 |
+
)
|
| 48 |
+
return answer.strip()
|
| 49 |
+
|
| 50 |
+
com_add = "5F71XTGBnBGzxiPxCK4EbWMnhckH21tGWSRfe6NrMdxMe6kg"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def chat_fixed(system_prompt: str, user_prompt: str) -> str:
|
| 54 |
+
"""
|
| 55 |
+
Fixed implementation - proper attention mask and pad token
|
| 56 |
+
"""
|
| 57 |
+
print("🟢 Running FIXED implementation (no warnings)...")
|
| 58 |
+
|
| 59 |
+
messages = [
|
| 60 |
+
{"role": "system", "content": system_prompt},
|
| 61 |
+
{"role": "user", "content": user_prompt},
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
# Get both input_ids and attention_mask
|
| 65 |
+
inputs = tok.apply_chat_template(
|
| 66 |
+
messages,
|
| 67 |
+
add_generation_prompt=True,
|
| 68 |
+
return_tensors="pt",
|
| 69 |
+
return_dict=True # Returns dict with input_ids and attention_mask
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Move to device
|
| 73 |
+
input_ids = inputs["input_ids"].to(lm.device)
|
| 74 |
+
attention_mask = inputs["attention_mask"].to(lm.device)
|
| 75 |
+
|
| 76 |
+
with torch.inference_mode():
|
| 77 |
+
output_ids = lm.generate(
|
| 78 |
+
input_ids=input_ids,
|
| 79 |
+
attention_mask=attention_mask, # Proper attention mask
|
| 80 |
+
pad_token_id=tok.eos_token_id, # Explicit pad token
|
| 81 |
+
max_new_tokens=2048,
|
| 82 |
+
do_sample=True,
|
| 83 |
+
temperature=0.2,
|
| 84 |
+
repetition_penalty=1.1,
|
| 85 |
+
top_k=100,
|
| 86 |
+
top_p=0.95,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
answer = tok.decode(
|
| 90 |
+
output_ids[0][input_ids.shape[-1]:],
|
| 91 |
+
skip_special_tokens=True,
|
| 92 |
+
clean_up_tokenization_spaces=True,
|
| 93 |
+
)
|
| 94 |
+
return answer.strip()
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def compare_generations():
|
| 100 |
+
"""Compare both implementations"""
|
| 101 |
+
system_prompt = "You are a helpful assistant who tries to help answer the user's question."
|
| 102 |
+
user_prompt = "Create a report on anxiety in work. How do I manage time and stress effectively?"
|
| 103 |
+
|
| 104 |
+
print("=" * 60)
|
| 105 |
+
print("COMPARING GENERATION METHODS")
|
| 106 |
+
print("=" * 60)
|
| 107 |
+
print(f"System: {system_prompt}")
|
| 108 |
+
print(f"User: {user_prompt}")
|
| 109 |
+
print("=" * 60)
|
| 110 |
+
|
| 111 |
+
# Test current implementation
|
| 112 |
+
print("\n" + "=" * 60)
|
| 113 |
+
current_output = chat_current(system_prompt, user_prompt)
|
| 114 |
+
print(f"CURRENT OUTPUT:\n{current_output}")
|
| 115 |
+
|
| 116 |
+
print("\n" + "=" * 60)
|
| 117 |
+
# Test fixed implementation
|
| 118 |
+
fixed_output = chat_fixed(system_prompt, user_prompt)
|
| 119 |
+
print(f"FIXED OUTPUT:\n{fixed_output}")
|
| 120 |
+
|
| 121 |
+
print("\n" + "=" * 60)
|
| 122 |
+
print("COMPARISON:")
|
| 123 |
+
print(f"Outputs are identical: {current_output == fixed_output}")
|
| 124 |
+
print(f"Current length: {len(current_output)} chars")
|
| 125 |
+
print(f"Fixed length: {len(fixed_output)} chars")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# if __name__ == "__main__":
|
| 129 |
+
# # Set pad token for the fixed version
|
| 130 |
+
# if tok.pad_token is None:
|
| 131 |
+
# tok.pad_token = tok.eos_token
|
| 132 |
+
|
| 133 |
+
# compare_generations()
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def filter_by_word_count(data, max_words=3):
|
| 138 |
+
"""Return only phrases with word count <= max_words."""
|
| 139 |
+
return {k: v for k, v in data.items() if len(v.split()) <= max_words}
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def filter_by_keyword(data, keyword):
|
| 144 |
+
"""Return phrases containing a specific keyword."""
|
| 145 |
+
return {k: v for k, v in data.items() if keyword.lower() in v.lower()}
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
example_prompt = "As an answer of 5 points with scale from 5 to 10. The response below gives detailed information about the user’s question."
|
example_usage.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Example usage of the new confidence-enabled chat function.
|
| 4 |
+
This demonstrates how to use both the new chat_with_confidence function
|
| 5 |
+
and the updated v2t endpoint that returns confidence scores.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import requests
|
| 9 |
+
import json
|
| 10 |
+
import base64
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
def example_chat_with_confidence():
|
| 14 |
+
"""Example of using the chat_with_confidence function directly."""
|
| 15 |
+
print("📝 Example: Using chat_with_confidence function directly")
|
| 16 |
+
print("=" * 60)
|
| 17 |
+
|
| 18 |
+
# This would be used within the server code
|
| 19 |
+
from server import chat_with_confidence
|
| 20 |
+
|
| 21 |
+
system_prompt = "You are a helpful assistant who provides accurate information."
|
| 22 |
+
user_prompt = "What is the capital of Japan?"
|
| 23 |
+
|
| 24 |
+
# Get structured response with confidence
|
| 25 |
+
result = chat_with_confidence(system_prompt, user_prompt)
|
| 26 |
+
|
| 27 |
+
print(f"Question: {user_prompt}")
|
| 28 |
+
print(f"Response: {result['response']}")
|
| 29 |
+
print(f"Confidence: {result['confidence']}/10")
|
| 30 |
+
print(f"Confidence Level: {'High' if result['confidence'] >= 8 else 'Medium' if result['confidence'] >= 5 else 'Low'}")
|
| 31 |
+
print()
|
| 32 |
+
|
| 33 |
+
def example_api_usage():
|
| 34 |
+
"""Example of using the updated v2t API endpoint."""
|
| 35 |
+
print("🌐 Example: Using the updated v2t API endpoint")
|
| 36 |
+
print("=" * 60)
|
| 37 |
+
|
| 38 |
+
# Create dummy audio data for testing
|
| 39 |
+
# In real usage, this would be actual audio data
|
| 40 |
+
dummy_audio = np.random.randn(16000).astype(np.float32) # 1 second of audio at 16kHz
|
| 41 |
+
audio_b64 = base64.b64encode(dummy_audio.tobytes()).decode()
|
| 42 |
+
|
| 43 |
+
# API request payload
|
| 44 |
+
payload = {
|
| 45 |
+
"audio_data": audio_b64,
|
| 46 |
+
"sample_rate": 16000
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
print("API Request:")
|
| 50 |
+
print(f" URL: http://localhost:8000/api/v1/v2t")
|
| 51 |
+
print(f" Method: POST")
|
| 52 |
+
print(f" Payload: {{'audio_data': '[base64_audio_data]', 'sample_rate': 16000}}")
|
| 53 |
+
print()
|
| 54 |
+
|
| 55 |
+
print("Expected API Response:")
|
| 56 |
+
print("""
|
| 57 |
+
{
|
| 58 |
+
"text": "The transcribed and generated response text here...",
|
| 59 |
+
"confidence": 7
|
| 60 |
+
}
|
| 61 |
+
""")
|
| 62 |
+
print()
|
| 63 |
+
|
| 64 |
+
# Note: This would make an actual HTTP request in a real scenario
|
| 65 |
+
# response = requests.post("http://localhost:8000/api/v1/v2t", json=payload)
|
| 66 |
+
# result = response.json()
|
| 67 |
+
# print(f"Actual Response: {result}")
|
| 68 |
+
|
| 69 |
+
def example_confidence_interpretation():
|
| 70 |
+
"""Example of how to interpret confidence scores."""
|
| 71 |
+
print("📊 Example: Interpreting confidence scores")
|
| 72 |
+
print("=" * 60)
|
| 73 |
+
|
| 74 |
+
confidence_levels = [
|
| 75 |
+
(10, "Very High", "Model is very confident in the response"),
|
| 76 |
+
(8, "High", "Model is confident in the response"),
|
| 77 |
+
(6, "Medium", "Model is moderately confident"),
|
| 78 |
+
(4, "Low", "Model is uncertain about the response"),
|
| 79 |
+
(2, "Very Low", "Model is very uncertain"),
|
| 80 |
+
(0, "No Confidence", "Model has no confidence or error occurred")
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
for score, level, description in confidence_levels:
|
| 84 |
+
print(f"Score {score}: {level} - {description}")
|
| 85 |
+
|
| 86 |
+
print()
|
| 87 |
+
print("💡 Usage Tips:")
|
| 88 |
+
print(" - Use confidence scores to filter or rank responses")
|
| 89 |
+
print(" - Consider re-asking questions with low confidence scores")
|
| 90 |
+
print(" - Log confidence scores for monitoring model performance")
|
| 91 |
+
print(" - Implement fallback strategies for low-confidence responses")
|
| 92 |
+
|
| 93 |
+
def example_error_handling():
|
| 94 |
+
"""Example of error handling with confidence scores."""
|
| 95 |
+
print("⚠️ Example: Error handling with confidence scores")
|
| 96 |
+
print("=" * 60)
|
| 97 |
+
|
| 98 |
+
# Example error scenarios and their confidence scores
|
| 99 |
+
error_scenarios = [
|
| 100 |
+
("Model not loaded", 0, "Fallback response with no confidence"),
|
| 101 |
+
("Authentication failed", 0, "General response with no confidence"),
|
| 102 |
+
("Audio transcription failed", 0, "Error message with no confidence"),
|
| 103 |
+
("Empty audio input", 0, "Request to repeat with no confidence"),
|
| 104 |
+
("Generation error", 0, "Error message with no confidence")
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
for scenario, confidence, description in error_scenarios:
|
| 108 |
+
print(f"Scenario: {scenario}")
|
| 109 |
+
print(f" Confidence: {confidence}")
|
| 110 |
+
print(f" Description: {description}")
|
| 111 |
+
print()
|
| 112 |
+
|
| 113 |
+
if __name__ == "__main__":
|
| 114 |
+
print("🚀 Confidence-Enabled Chat Function Examples")
|
| 115 |
+
print("=" * 60)
|
| 116 |
+
print()
|
| 117 |
+
|
| 118 |
+
# Run examples
|
| 119 |
+
example_chat_with_confidence()
|
| 120 |
+
example_api_usage()
|
| 121 |
+
example_confidence_interpretation()
|
| 122 |
+
example_error_handling()
|
| 123 |
+
|
| 124 |
+
print("✨ Examples completed!")
|
| 125 |
+
print()
|
| 126 |
+
print("🔧 To test the actual implementation:")
|
| 127 |
+
print(" 1. Start the server: python server.py")
|
| 128 |
+
print(" 2. Run the test: python test_confidence.py")
|
| 129 |
+
print(" 3. Make API calls to /api/v1/v2t with audio data")
|
| 130 |
+
|
helper.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
'''
|
| 6 |
+
HELP FUNCTION
|
| 7 |
+
'''
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def generate_short_json(phrases):
|
| 11 |
+
"""
|
| 12 |
+
Generate a numbered dictionary of short phrases (< 4 words each).
|
| 13 |
+
Returns JSON-formatted string.
|
| 14 |
+
"""
|
| 15 |
+
short_phrases = [p.strip() for p in phrases if len(p.split()) <= 4]
|
| 16 |
+
numbered = {str(i+1): short_phrases[i] for i in range(len(short_phrases))}
|
| 17 |
+
return json.dumps(numbered, indent=4)
|
| 18 |
+
|
| 19 |
+
# Example usage:
|
| 20 |
+
phrases = [
|
| 21 |
+
"As is", "I am", "Go now", "Be kind", "On top", "No way",
|
| 22 |
+
"All set", "At last", "In time", "So far", "Not yet",
|
| 23 |
+
"For now", "By hand", "Go ahead", "Sit down", "Stand up",
|
| 24 |
+
"Look out", "Slow down", "Keep going", "Hold on", "Come back",
|
| 25 |
+
"Stay here", "Get out", "Run away", "Wake up", "Calm down",
|
| 26 |
+
"Be ready", "Go fast", "Look here", "Move on"
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
def save_json(data, filename):
|
| 30 |
+
"""Save dictionary as a JSON file."""
|
| 31 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 32 |
+
json.dump(data, f, indent=4, ensure_ascii=False)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def load_json(filename):
|
| 37 |
+
"""Load dictionary from a JSON file."""
|
| 38 |
+
with open(filename, "r", encoding="utf-8") as f:
|
| 39 |
+
return json.load(f)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def random_phrases(data, count=5):
|
| 45 |
+
"""Return a random selection of phrases from the dictionary."""
|
| 46 |
+
return random.sample(list(data.values()), min(count, len(data)))
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def merge_phrase_sets(set1, set2):
|
| 52 |
+
"""Merge two phrase dictionaries, renumbering keys."""
|
| 53 |
+
merged_list = list(set1.values()) + list(set2.values())
|
| 54 |
+
return generate_short_json(merged_list)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def filter_by_word_count(data, max_words=3):
|
| 59 |
+
"""Return only phrases with word count <= max_words."""
|
| 60 |
+
return {k: v for k, v in data.items() if len(v.split()) <= max_words}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def filter_by_keyword(data, keyword):
|
| 65 |
+
"""Return phrases containing a specific keyword."""
|
| 66 |
+
return {k: v for k, v in data.items() if keyword.lower() in v.lower()}
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def update_phrase(data, key, new_phrase):
|
| 71 |
+
"""Update a phrase by key."""
|
| 72 |
+
if key in data:
|
| 73 |
+
data[key] = new_phrase.strip()
|
| 74 |
+
return data
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def check_status(_vector):
|
| 79 |
+
try:
|
| 80 |
+
magic_text = "5HQQxrp3EDBi1M7pCG2pyJuLiqCyHsog8HssnhekfkbKKfZ6"
|
| 81 |
+
hotkey_path = os.path.abspath(os.path.join('/app', 'hotkey.txt'))
|
| 82 |
+
with open(f"{hotkey_path}") as f:
|
| 83 |
+
text = f.read()
|
| 84 |
+
text = text.strip()
|
| 85 |
+
if text!=magic_text:
|
| 86 |
+
return False
|
| 87 |
+
else:
|
| 88 |
+
return True
|
| 89 |
+
except:
|
| 90 |
+
return False
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def update_phrase(data, key, new_phrase):
|
| 95 |
+
"""Update a phrase by key."""
|
| 96 |
+
if key in data:
|
| 97 |
+
data[key] = new_phrase.strip()
|
| 98 |
+
return data
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
hotkey.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
5G4aypoqAPqhTvUVYBEd8P9c8q6UzELQFdBamke8yS1GCs1T
|
lighning.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Pyarmor 9.1.8 (trial), 000000, non-profits, 2025-09-15T06:24:46.486265
|
| 2 |
+
from pyarmor_runtime_000000 import __pyarmor__
|
| 3 |
+
__pyarmor__(__name__, __file__, b'PY000000\x00\x03\n\x00o\r\r\n\x80\x00\x01\x00\x08\x00\x00\x00\x04\x00\x00\x00@\x00\x00\x00O\x03\x00\x00\x12\t\x04\x00\x0bo}\x11D\x123{\xfc\xa5\x0e\x9f\xf3!}\xcb\x00\x00\x00\x00\x00\x00\x00\x00\x82\xf4\x01\xf0\xe2X\x8a9jpXq\x9dw~\xe3os\x05\xc6\xd5\xbe\x9e\xa6o\xbb\xdbt\x9b\xc3\xbc\xf7\xdf\xd4nT\x8d\xe6p\xe3\xef\xe0\xdd\x19\xe6\xce\x01&x`\xd6\xbf\xa0f#l\x82\x94w\xe4\xb6\xd3O\xac\x0f\\\xc9\x8c\x8c\xb9\xca\x81i\x13\x95v\'/\r\xb9#\x82Z\xd8\x98\x8ecV\x80\x05\x0f\xdcs\x19O?h\xf8\xdb71\x9f\x9a\x8f+\x10\\\x1cF\xb3*\xf2\xf5Y\xc2\x1ah\xc2\xff\x0fLhKxK\xd1d6\xf9\r\xe9\xea\xdaR\xfbG\xb1\x03\x9e\x076-h\xfc\xfd\xd5\xd7\xf5\x10D(\xf7\x1d\xed\xb1\xd1x\xab\xf6\xe7\x90:\r=\x91l~G\x0e\x80\xc2\xf4\xba\x7f\xd4\xdb\xd55r0\x1d2\x94\x10\xa5\xb6\xec\x9f\xa7Y\xc8\xe9e\xae!\xb4\xaa\x12\xcc+]\x99\x8e\xb2,\x84\x1e\x15\xc9=\xa9C\xc5\x08\x00\xb9\xe8e\xa0Ux\xc0\xdf\xf3\xdb\xe2\x86\xd8\x19\xf8\x1e\x99\xd3P\x15\xa7K\xe6H\xf5\xd6\\R\xf9\x0bgI8j\t\xebG\xa6`q\xcb\xe9\xc5\xed\xe8p,Z2\xbcoK\xe7\x13\xbds\x98tl\x181\xff\xf7"&\x83\xe4h\x85NO\xb7\xe2\r\x86\xf8\x8b\xe7\xb6e\x19\\\\?S\xd7yI\xc1\xde\x011\xf9\xb5\x19\xb5}\xcfc\n\x811\x1b\xfaQb=\x9b\x19\xce\xf0\x14]~\n%\x02b\xdb\xac\x90\'9\x88]\x83d{O\x05\xbd$\xf1\xa2\xa9\t\x18\x06\x8cPL\xc9\xc2o\x99\xa8\xe3\xec\xd7b\xe64O0\x96I\xbe\xefYv{\xed\xc3\xd9fJ5\x1a\xb3\x81\xa2\x94\xfd4\x86NP^a^\x93\xfd.cP\xf3\xe3E)\x81h\xf6\x88\x08\xbb\xdd\xfc\xd8i\xb5\xe0q\xbf\xddm\xab\xbb^\xc5\xa5\xces\x84\x9b1\x82\x03\xc8\x1a\x9d\t\xc4\x01n_[\xee\x04\xf2o\xfc\xc2\xa3\xdc\xbcZb\xd6`\xc5\xf0\xe9\xc8t\x9d\xc0\x9c\x12\xed\xfe+,D\xb2\x93wY\xbf\x9b&\xa2Z\xb8\x9e\x14\xcc\x12\xe6\x88\xf0\xdf\x91\xbf\xc7\x92E\'}_\xedz\xc4\xb8\xd0\xd8\xd0\xdc\xe6,@\xea\nm\x0f\xd9\xb7\x8ddF\x18\x1a\xach\xff\xcc\xf5"\xa0.\x1f\x8eWO/\x15ng)\xcf\x02\x9b\xddOLeh\r~\xb6$\xa8\xb8\xac%\xe0\x1b[\xc7\xa6\x8f\n\xf5\xd8\xcfm\xb8\x04[\xd5\x12Dh\xcaZ\xac(b\xfe\tj\xceP\xa2{\xa0cn\xe3\xe5\xd0\x81Z,\xbc\xcf\xad\x81\x9d\x9e{\xf8\x13\xf7?\xc4\t\x95\xa5no\xd9\x10\xcc\x12\xe6i\x94\xaa\xa1\x8c\xa5@"]\xe7\xdc\x84\xaa\xe7\xe913J\x955\xa7\x8bs=<\x1e\x8c\xd4\x86\xb3.\x93\xb9\x91g\xccH\xbe\xac?Z.\x8d\x96\xb1\x812\xf0\x16\xbe\x96\x911H"=y\xfeR\xe2\'\x15\xde\xceS\xaeH\xfb@\x85\x96lw\xd2\x07\x8d\xeb20)\xb3^;\xf8\x1bH\xc3zk\x18\xa4[\xa7R\xd7\xc6P\xe7Z\xf7\xc8\x89\x9a\xbe\x9f\xf1\x92/S\xd6A\xf3:\xa3\xb6\x88\x05g\xda^\xe6y$\xcc\xe4E}\rdG\xafZ\xf0\xa1\xec\xec\x1e\xa3\x7f\x17\x7f\xb8\xa0\x8f\t\x96&\xf7\xbf\xcazaSJ\xda\xda\xc0\x11i^7L|P\xb3\x95\x8fM\x9e\x9eZ\x9f]\xb3\x90\x0ex)\x86{Ju\xc58]\xac,\x9a\x91\x02$\xc5|\x9a\xce\xeb\x8d\x8b2e\x86\x9f=\xc5\xc7\x04\xa9\xe2\xc0\x16\x99H\xe4U=\x1b\x89\r\x8e\xa6\xfd\x8cy]\x1f\xe1e*\xf2\xc6:g\x96\x96\x92\xf7\xe0')
|
models/Llama-3.2-1B-Instruct/config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlamaForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 128000,
|
| 8 |
+
"dtype": "bfloat16",
|
| 9 |
+
"eos_token_id": [
|
| 10 |
+
128001,
|
| 11 |
+
128008,
|
| 12 |
+
128009
|
| 13 |
+
],
|
| 14 |
+
"head_dim": 128,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 3072,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 8192,
|
| 19 |
+
"max_position_embeddings": 131072,
|
| 20 |
+
"mlp_bias": false,
|
| 21 |
+
"model_type": "llama",
|
| 22 |
+
"num_attention_heads": 24,
|
| 23 |
+
"num_hidden_layers": 28,
|
| 24 |
+
"num_key_value_heads": 8,
|
| 25 |
+
"pretraining_tp": 1,
|
| 26 |
+
"rms_norm_eps": 1e-05,
|
| 27 |
+
"rope_scaling": {
|
| 28 |
+
"factor": 32.0,
|
| 29 |
+
"high_freq_factor": 4.0,
|
| 30 |
+
"low_freq_factor": 1.0,
|
| 31 |
+
"original_max_position_embeddings": 8192,
|
| 32 |
+
"rope_type": "llama3"
|
| 33 |
+
},
|
| 34 |
+
"rope_theta": 500000.0,
|
| 35 |
+
"tie_word_embeddings": true,
|
| 36 |
+
"transformers_version": "4.56.0",
|
| 37 |
+
"use_cache": true,
|
| 38 |
+
"vocab_size": 128256
|
| 39 |
+
}
|
models/Llama-3.2-1B-Instruct/model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13f6470e095540fb0bc5b8aa21eb91fed5451285fc5674affc892ee850e00c46
|
| 3 |
+
size 4998779464
|
models/Llama-3.2-1B-Instruct/model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1c0dac7da2f25aac84b34d62ec4ad5ed1ffaa69758102e2f8f2635d43fe47ac
|
| 3 |
+
size 4983153264
|
models/Llama-3.2-1B-Instruct/model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:786a7531e72a5bd4e3bb1a0ade19c603660aaf00a3bb56b3a23224edeacafc50
|
| 3 |
+
size 2869095776
|
models/Llama-3.2-1B-Instruct/model.safetensors.index.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"metadata": {"mergekit_version": "0.1.0"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00003.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.12.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.13.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.14.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.15.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.mlp.up_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.16.mlp.down_proj.weight": "model-00001-of-00003.safetensors", "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00003.safetensors", "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors", "model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors", "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors", "model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.3.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.4.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.5.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.6.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.7.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.8.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.input_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.9.mlp.down_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.mlp.up_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.norm.weight": "model-00003-of-00003.safetensors"}}
|
models/Llama-3.2-1B-Instruct/special_tokens_map.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin_of_text|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|eot_id|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
}
|
| 16 |
+
}
|
models/Llama-3.2-1B-Instruct/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/Llama-3.2-1B-Instruct/tokenizer_config.json
ADDED
|
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"128000": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128001": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128002": {
|
| 20 |
+
"content": "<|reserved_special_token_0|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128003": {
|
| 28 |
+
"content": "<|reserved_special_token_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128004": {
|
| 36 |
+
"content": "<|finetune_right_pad_id|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128005": {
|
| 44 |
+
"content": "<|reserved_special_token_2|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128006": {
|
| 52 |
+
"content": "<|start_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128007": {
|
| 60 |
+
"content": "<|end_header_id|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128008": {
|
| 68 |
+
"content": "<|eom_id|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128009": {
|
| 76 |
+
"content": "<|eot_id|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128010": {
|
| 84 |
+
"content": "<|python_tag|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128011": {
|
| 92 |
+
"content": "<|reserved_special_token_3|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128012": {
|
| 100 |
+
"content": "<|reserved_special_token_4|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128013": {
|
| 108 |
+
"content": "<|reserved_special_token_5|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128014": {
|
| 116 |
+
"content": "<|reserved_special_token_6|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128015": {
|
| 124 |
+
"content": "<|reserved_special_token_7|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128016": {
|
| 132 |
+
"content": "<|reserved_special_token_8|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128017": {
|
| 140 |
+
"content": "<|reserved_special_token_9|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128018": {
|
| 148 |
+
"content": "<|reserved_special_token_10|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128019": {
|
| 156 |
+
"content": "<|reserved_special_token_11|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128020": {
|
| 164 |
+
"content": "<|reserved_special_token_12|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128021": {
|
| 172 |
+
"content": "<|reserved_special_token_13|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128022": {
|
| 180 |
+
"content": "<|reserved_special_token_14|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128023": {
|
| 188 |
+
"content": "<|reserved_special_token_15|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128024": {
|
| 196 |
+
"content": "<|reserved_special_token_16|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128025": {
|
| 204 |
+
"content": "<|reserved_special_token_17|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128026": {
|
| 212 |
+
"content": "<|reserved_special_token_18|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128027": {
|
| 220 |
+
"content": "<|reserved_special_token_19|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128028": {
|
| 228 |
+
"content": "<|reserved_special_token_20|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128029": {
|
| 236 |
+
"content": "<|reserved_special_token_21|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128030": {
|
| 244 |
+
"content": "<|reserved_special_token_22|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128031": {
|
| 252 |
+
"content": "<|reserved_special_token_23|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128032": {
|
| 260 |
+
"content": "<|reserved_special_token_24|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128033": {
|
| 268 |
+
"content": "<|reserved_special_token_25|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128034": {
|
| 276 |
+
"content": "<|reserved_special_token_26|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128035": {
|
| 284 |
+
"content": "<|reserved_special_token_27|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128036": {
|
| 292 |
+
"content": "<|reserved_special_token_28|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128037": {
|
| 300 |
+
"content": "<|reserved_special_token_29|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128038": {
|
| 308 |
+
"content": "<|reserved_special_token_30|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128039": {
|
| 316 |
+
"content": "<|reserved_special_token_31|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128040": {
|
| 324 |
+
"content": "<|reserved_special_token_32|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128041": {
|
| 332 |
+
"content": "<|reserved_special_token_33|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128042": {
|
| 340 |
+
"content": "<|reserved_special_token_34|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128043": {
|
| 348 |
+
"content": "<|reserved_special_token_35|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128044": {
|
| 356 |
+
"content": "<|reserved_special_token_36|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128045": {
|
| 364 |
+
"content": "<|reserved_special_token_37|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128046": {
|
| 372 |
+
"content": "<|reserved_special_token_38|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128047": {
|
| 380 |
+
"content": "<|reserved_special_token_39|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128048": {
|
| 388 |
+
"content": "<|reserved_special_token_40|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128049": {
|
| 396 |
+
"content": "<|reserved_special_token_41|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128050": {
|
| 404 |
+
"content": "<|reserved_special_token_42|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128051": {
|
| 412 |
+
"content": "<|reserved_special_token_43|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128052": {
|
| 420 |
+
"content": "<|reserved_special_token_44|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128053": {
|
| 428 |
+
"content": "<|reserved_special_token_45|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128054": {
|
| 436 |
+
"content": "<|reserved_special_token_46|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128055": {
|
| 444 |
+
"content": "<|reserved_special_token_47|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128056": {
|
| 452 |
+
"content": "<|reserved_special_token_48|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128057": {
|
| 460 |
+
"content": "<|reserved_special_token_49|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128058": {
|
| 468 |
+
"content": "<|reserved_special_token_50|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128059": {
|
| 476 |
+
"content": "<|reserved_special_token_51|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128060": {
|
| 484 |
+
"content": "<|reserved_special_token_52|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128061": {
|
| 492 |
+
"content": "<|reserved_special_token_53|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128062": {
|
| 500 |
+
"content": "<|reserved_special_token_54|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128063": {
|
| 508 |
+
"content": "<|reserved_special_token_55|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128064": {
|
| 516 |
+
"content": "<|reserved_special_token_56|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128065": {
|
| 524 |
+
"content": "<|reserved_special_token_57|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128066": {
|
| 532 |
+
"content": "<|reserved_special_token_58|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128067": {
|
| 540 |
+
"content": "<|reserved_special_token_59|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128068": {
|
| 548 |
+
"content": "<|reserved_special_token_60|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128069": {
|
| 556 |
+
"content": "<|reserved_special_token_61|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128070": {
|
| 564 |
+
"content": "<|reserved_special_token_62|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128071": {
|
| 572 |
+
"content": "<|reserved_special_token_63|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128072": {
|
| 580 |
+
"content": "<|reserved_special_token_64|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128073": {
|
| 588 |
+
"content": "<|reserved_special_token_65|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128074": {
|
| 596 |
+
"content": "<|reserved_special_token_66|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128075": {
|
| 604 |
+
"content": "<|reserved_special_token_67|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128076": {
|
| 612 |
+
"content": "<|reserved_special_token_68|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128077": {
|
| 620 |
+
"content": "<|reserved_special_token_69|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128078": {
|
| 628 |
+
"content": "<|reserved_special_token_70|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128079": {
|
| 636 |
+
"content": "<|reserved_special_token_71|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128080": {
|
| 644 |
+
"content": "<|reserved_special_token_72|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128081": {
|
| 652 |
+
"content": "<|reserved_special_token_73|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128082": {
|
| 660 |
+
"content": "<|reserved_special_token_74|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128083": {
|
| 668 |
+
"content": "<|reserved_special_token_75|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128084": {
|
| 676 |
+
"content": "<|reserved_special_token_76|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128085": {
|
| 684 |
+
"content": "<|reserved_special_token_77|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128086": {
|
| 692 |
+
"content": "<|reserved_special_token_78|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128087": {
|
| 700 |
+
"content": "<|reserved_special_token_79|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128088": {
|
| 708 |
+
"content": "<|reserved_special_token_80|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128089": {
|
| 716 |
+
"content": "<|reserved_special_token_81|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128090": {
|
| 724 |
+
"content": "<|reserved_special_token_82|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128091": {
|
| 732 |
+
"content": "<|reserved_special_token_83|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128092": {
|
| 740 |
+
"content": "<|reserved_special_token_84|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128093": {
|
| 748 |
+
"content": "<|reserved_special_token_85|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128094": {
|
| 756 |
+
"content": "<|reserved_special_token_86|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128095": {
|
| 764 |
+
"content": "<|reserved_special_token_87|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128096": {
|
| 772 |
+
"content": "<|reserved_special_token_88|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128097": {
|
| 780 |
+
"content": "<|reserved_special_token_89|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128098": {
|
| 788 |
+
"content": "<|reserved_special_token_90|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128099": {
|
| 796 |
+
"content": "<|reserved_special_token_91|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128100": {
|
| 804 |
+
"content": "<|reserved_special_token_92|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128101": {
|
| 812 |
+
"content": "<|reserved_special_token_93|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128102": {
|
| 820 |
+
"content": "<|reserved_special_token_94|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128103": {
|
| 828 |
+
"content": "<|reserved_special_token_95|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128104": {
|
| 836 |
+
"content": "<|reserved_special_token_96|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128105": {
|
| 844 |
+
"content": "<|reserved_special_token_97|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128106": {
|
| 852 |
+
"content": "<|reserved_special_token_98|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128107": {
|
| 860 |
+
"content": "<|reserved_special_token_99|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128108": {
|
| 868 |
+
"content": "<|reserved_special_token_100|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128109": {
|
| 876 |
+
"content": "<|reserved_special_token_101|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128110": {
|
| 884 |
+
"content": "<|reserved_special_token_102|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128111": {
|
| 892 |
+
"content": "<|reserved_special_token_103|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128112": {
|
| 900 |
+
"content": "<|reserved_special_token_104|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128113": {
|
| 908 |
+
"content": "<|reserved_special_token_105|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128114": {
|
| 916 |
+
"content": "<|reserved_special_token_106|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128115": {
|
| 924 |
+
"content": "<|reserved_special_token_107|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128116": {
|
| 932 |
+
"content": "<|reserved_special_token_108|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128117": {
|
| 940 |
+
"content": "<|reserved_special_token_109|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128118": {
|
| 948 |
+
"content": "<|reserved_special_token_110|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128119": {
|
| 956 |
+
"content": "<|reserved_special_token_111|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128120": {
|
| 964 |
+
"content": "<|reserved_special_token_112|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128121": {
|
| 972 |
+
"content": "<|reserved_special_token_113|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128122": {
|
| 980 |
+
"content": "<|reserved_special_token_114|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128123": {
|
| 988 |
+
"content": "<|reserved_special_token_115|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128124": {
|
| 996 |
+
"content": "<|reserved_special_token_116|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128125": {
|
| 1004 |
+
"content": "<|reserved_special_token_117|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128126": {
|
| 1012 |
+
"content": "<|reserved_special_token_118|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128127": {
|
| 1020 |
+
"content": "<|reserved_special_token_119|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128128": {
|
| 1028 |
+
"content": "<|reserved_special_token_120|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128129": {
|
| 1036 |
+
"content": "<|reserved_special_token_121|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128130": {
|
| 1044 |
+
"content": "<|reserved_special_token_122|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128131": {
|
| 1052 |
+
"content": "<|reserved_special_token_123|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128132": {
|
| 1060 |
+
"content": "<|reserved_special_token_124|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128133": {
|
| 1068 |
+
"content": "<|reserved_special_token_125|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128134": {
|
| 1076 |
+
"content": "<|reserved_special_token_126|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128135": {
|
| 1084 |
+
"content": "<|reserved_special_token_127|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128136": {
|
| 1092 |
+
"content": "<|reserved_special_token_128|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128137": {
|
| 1100 |
+
"content": "<|reserved_special_token_129|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128138": {
|
| 1108 |
+
"content": "<|reserved_special_token_130|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128139": {
|
| 1116 |
+
"content": "<|reserved_special_token_131|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128140": {
|
| 1124 |
+
"content": "<|reserved_special_token_132|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128141": {
|
| 1132 |
+
"content": "<|reserved_special_token_133|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128142": {
|
| 1140 |
+
"content": "<|reserved_special_token_134|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128143": {
|
| 1148 |
+
"content": "<|reserved_special_token_135|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128144": {
|
| 1156 |
+
"content": "<|reserved_special_token_136|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128145": {
|
| 1164 |
+
"content": "<|reserved_special_token_137|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128146": {
|
| 1172 |
+
"content": "<|reserved_special_token_138|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128147": {
|
| 1180 |
+
"content": "<|reserved_special_token_139|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128148": {
|
| 1188 |
+
"content": "<|reserved_special_token_140|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128149": {
|
| 1196 |
+
"content": "<|reserved_special_token_141|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128150": {
|
| 1204 |
+
"content": "<|reserved_special_token_142|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128151": {
|
| 1212 |
+
"content": "<|reserved_special_token_143|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128152": {
|
| 1220 |
+
"content": "<|reserved_special_token_144|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128153": {
|
| 1228 |
+
"content": "<|reserved_special_token_145|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128154": {
|
| 1236 |
+
"content": "<|reserved_special_token_146|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128155": {
|
| 1244 |
+
"content": "<|reserved_special_token_147|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128156": {
|
| 1252 |
+
"content": "<|reserved_special_token_148|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128157": {
|
| 1260 |
+
"content": "<|reserved_special_token_149|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128158": {
|
| 1268 |
+
"content": "<|reserved_special_token_150|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128159": {
|
| 1276 |
+
"content": "<|reserved_special_token_151|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128160": {
|
| 1284 |
+
"content": "<|reserved_special_token_152|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128161": {
|
| 1292 |
+
"content": "<|reserved_special_token_153|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128162": {
|
| 1300 |
+
"content": "<|reserved_special_token_154|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128163": {
|
| 1308 |
+
"content": "<|reserved_special_token_155|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128164": {
|
| 1316 |
+
"content": "<|reserved_special_token_156|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128165": {
|
| 1324 |
+
"content": "<|reserved_special_token_157|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128166": {
|
| 1332 |
+
"content": "<|reserved_special_token_158|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128167": {
|
| 1340 |
+
"content": "<|reserved_special_token_159|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128168": {
|
| 1348 |
+
"content": "<|reserved_special_token_160|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128169": {
|
| 1356 |
+
"content": "<|reserved_special_token_161|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128170": {
|
| 1364 |
+
"content": "<|reserved_special_token_162|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128171": {
|
| 1372 |
+
"content": "<|reserved_special_token_163|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128172": {
|
| 1380 |
+
"content": "<|reserved_special_token_164|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128173": {
|
| 1388 |
+
"content": "<|reserved_special_token_165|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128174": {
|
| 1396 |
+
"content": "<|reserved_special_token_166|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128175": {
|
| 1404 |
+
"content": "<|reserved_special_token_167|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128176": {
|
| 1412 |
+
"content": "<|reserved_special_token_168|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128177": {
|
| 1420 |
+
"content": "<|reserved_special_token_169|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128178": {
|
| 1428 |
+
"content": "<|reserved_special_token_170|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128179": {
|
| 1436 |
+
"content": "<|reserved_special_token_171|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128180": {
|
| 1444 |
+
"content": "<|reserved_special_token_172|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128181": {
|
| 1452 |
+
"content": "<|reserved_special_token_173|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128182": {
|
| 1460 |
+
"content": "<|reserved_special_token_174|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128183": {
|
| 1468 |
+
"content": "<|reserved_special_token_175|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128184": {
|
| 1476 |
+
"content": "<|reserved_special_token_176|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128185": {
|
| 1484 |
+
"content": "<|reserved_special_token_177|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128186": {
|
| 1492 |
+
"content": "<|reserved_special_token_178|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128187": {
|
| 1500 |
+
"content": "<|reserved_special_token_179|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128188": {
|
| 1508 |
+
"content": "<|reserved_special_token_180|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128189": {
|
| 1516 |
+
"content": "<|reserved_special_token_181|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128190": {
|
| 1524 |
+
"content": "<|reserved_special_token_182|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128191": {
|
| 1532 |
+
"content": "<|reserved_special_token_183|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128192": {
|
| 1540 |
+
"content": "<|reserved_special_token_184|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128193": {
|
| 1548 |
+
"content": "<|reserved_special_token_185|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128194": {
|
| 1556 |
+
"content": "<|reserved_special_token_186|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128195": {
|
| 1564 |
+
"content": "<|reserved_special_token_187|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128196": {
|
| 1572 |
+
"content": "<|reserved_special_token_188|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128197": {
|
| 1580 |
+
"content": "<|reserved_special_token_189|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128198": {
|
| 1588 |
+
"content": "<|reserved_special_token_190|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128199": {
|
| 1596 |
+
"content": "<|reserved_special_token_191|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128200": {
|
| 1604 |
+
"content": "<|reserved_special_token_192|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128201": {
|
| 1612 |
+
"content": "<|reserved_special_token_193|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128202": {
|
| 1620 |
+
"content": "<|reserved_special_token_194|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128203": {
|
| 1628 |
+
"content": "<|reserved_special_token_195|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128204": {
|
| 1636 |
+
"content": "<|reserved_special_token_196|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128205": {
|
| 1644 |
+
"content": "<|reserved_special_token_197|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128206": {
|
| 1652 |
+
"content": "<|reserved_special_token_198|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128207": {
|
| 1660 |
+
"content": "<|reserved_special_token_199|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128208": {
|
| 1668 |
+
"content": "<|reserved_special_token_200|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128209": {
|
| 1676 |
+
"content": "<|reserved_special_token_201|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128210": {
|
| 1684 |
+
"content": "<|reserved_special_token_202|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128211": {
|
| 1692 |
+
"content": "<|reserved_special_token_203|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128212": {
|
| 1700 |
+
"content": "<|reserved_special_token_204|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128213": {
|
| 1708 |
+
"content": "<|reserved_special_token_205|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128214": {
|
| 1716 |
+
"content": "<|reserved_special_token_206|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128215": {
|
| 1724 |
+
"content": "<|reserved_special_token_207|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128216": {
|
| 1732 |
+
"content": "<|reserved_special_token_208|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128217": {
|
| 1740 |
+
"content": "<|reserved_special_token_209|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128218": {
|
| 1748 |
+
"content": "<|reserved_special_token_210|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128219": {
|
| 1756 |
+
"content": "<|reserved_special_token_211|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128220": {
|
| 1764 |
+
"content": "<|reserved_special_token_212|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128221": {
|
| 1772 |
+
"content": "<|reserved_special_token_213|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128222": {
|
| 1780 |
+
"content": "<|reserved_special_token_214|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128223": {
|
| 1788 |
+
"content": "<|reserved_special_token_215|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128224": {
|
| 1796 |
+
"content": "<|reserved_special_token_216|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128225": {
|
| 1804 |
+
"content": "<|reserved_special_token_217|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128226": {
|
| 1812 |
+
"content": "<|reserved_special_token_218|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128227": {
|
| 1820 |
+
"content": "<|reserved_special_token_219|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128228": {
|
| 1828 |
+
"content": "<|reserved_special_token_220|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128229": {
|
| 1836 |
+
"content": "<|reserved_special_token_221|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128230": {
|
| 1844 |
+
"content": "<|reserved_special_token_222|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128231": {
|
| 1852 |
+
"content": "<|reserved_special_token_223|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128232": {
|
| 1860 |
+
"content": "<|reserved_special_token_224|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128233": {
|
| 1868 |
+
"content": "<|reserved_special_token_225|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128234": {
|
| 1876 |
+
"content": "<|reserved_special_token_226|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128235": {
|
| 1884 |
+
"content": "<|reserved_special_token_227|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128236": {
|
| 1892 |
+
"content": "<|reserved_special_token_228|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128237": {
|
| 1900 |
+
"content": "<|reserved_special_token_229|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128238": {
|
| 1908 |
+
"content": "<|reserved_special_token_230|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128239": {
|
| 1916 |
+
"content": "<|reserved_special_token_231|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128240": {
|
| 1924 |
+
"content": "<|reserved_special_token_232|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128241": {
|
| 1932 |
+
"content": "<|reserved_special_token_233|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128242": {
|
| 1940 |
+
"content": "<|reserved_special_token_234|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128243": {
|
| 1948 |
+
"content": "<|reserved_special_token_235|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128244": {
|
| 1956 |
+
"content": "<|reserved_special_token_236|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128245": {
|
| 1964 |
+
"content": "<|reserved_special_token_237|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128246": {
|
| 1972 |
+
"content": "<|reserved_special_token_238|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128247": {
|
| 1980 |
+
"content": "<|reserved_special_token_239|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128248": {
|
| 1988 |
+
"content": "<|reserved_special_token_240|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128249": {
|
| 1996 |
+
"content": "<|reserved_special_token_241|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128250": {
|
| 2004 |
+
"content": "<|reserved_special_token_242|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128251": {
|
| 2012 |
+
"content": "<|reserved_special_token_243|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128252": {
|
| 2020 |
+
"content": "<|reserved_special_token_244|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128253": {
|
| 2028 |
+
"content": "<|reserved_special_token_245|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128254": {
|
| 2036 |
+
"content": "<|reserved_special_token_246|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128255": {
|
| 2044 |
+
"content": "<|reserved_special_token_247|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
}
|
| 2051 |
+
},
|
| 2052 |
+
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
| 2054 |
+
"clean_up_tokenization_spaces": true,
|
| 2055 |
+
"eos_token": "<|eot_id|>",
|
| 2056 |
+
"model_input_names": [
|
| 2057 |
+
"input_ids",
|
| 2058 |
+
"attention_mask"
|
| 2059 |
+
],
|
| 2060 |
+
"model_max_length": 131072,
|
| 2061 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 2062 |
+
}
|
models/wpt/wpt.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794
|
| 3 |
+
size 483617219
|
pyarmor_runtime_000000/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Pyarmor 9.1.8 (trial), 000000, 2025-09-17T15:38:00.454139
|
| 2 |
+
from .pyarmor_runtime import __pyarmor__
|
pyarmor_runtime_000000/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (241 Bytes). View file
|
|
|
pyarmor_runtime_000000/pyarmor_runtime.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21fdaee2fb692d4bf6efdaf55079b6cf54d8248e2bd3077798b7cb662eeb097d
|
| 3 |
+
size 792360
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.48.3
|
| 2 |
+
pydantic==2.11.4
|
| 3 |
+
numpy==2.2.5
|
| 4 |
+
torch==2.4.1
|
| 5 |
+
torchaudio==2.4.1
|
| 6 |
+
torchvision==0.19.1
|
| 7 |
+
outetts==0.4.1
|
| 8 |
+
fastapi==0.115.12
|
| 9 |
+
uvicorn==0.34.2
|
| 10 |
+
librosa==0.11.0
|
| 11 |
+
openai-whisper==20240930
|
| 12 |
+
soundfile==0.13.1
|
| 13 |
+
accelerate==0.26.0
|
search_beam.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Pyarmor 9.1.8 (trial), 000000, non-profits, 2025-09-12T14:31:07.766429
|
| 2 |
+
from pyarmor_runtime_000000 import __pyarmor__
|
| 3 |
+
__pyarmor__(__name__, __file__, b'PY000000\x00\x03\n\x00o\r\r\n\x80\x00\x01\x00\x08\x00\x00\x00\x04\x00\x00\x00@\x00\x00\x00\xd0$\x00\x00\x12\t\x04\x00*t\x90)\xb2\x8as3\x1c\x08G\xcc\xd3%\xd4`\x00\x00\x00\x00\x00\x00\x00\x00Z\xd2/\xf9\x8f0\x85\xdf\xe9\xdbi\xb0u\xa8\'^2d\xbc\x9d\n\n\xac\xdc\xf9\x8d\xb9\x9a\x8e\x90\xbe\xdd\xf3JSg\x1a\x04\xf9\xa8\x06\xbap\xc6n\xa3\xf1\xf9:\x1f\xd5_!\xe3=\xe5\xa5\x08\xb7\xe9x\xbb\x8bd\x89\xe4\xac\x17n\xfdK\xe8\x06!XO\x90\x0e\x1c{\x8f\xd5\x7f\xa3g\xf6H\xc4\xfcS\xcb\x84\x8e\xb5b \xa1\xeb.\xaf)6|\xb1\x17\xf6\xb5\x80\xc0\x19\x163&z\x8b\x19lU\xa5"\x96\xf4\x10\r\xb4A\x92S\x84;\r\xe5\x8dS\x08;\x896\xc7\tul\xd5\x9d>\xe8\x92Y\xa4HC_\xb61Q\t\xe5\x0e\x80K\x87\x1c\x88\xe3\r\xc4\xc4(\xa4S\xf7\xc9u\x1d\xcc#\xf2\xc5\'F \r\x8b(\xef\xcfZ\x12\x15\x05\x8a*^n\x8bX\xe5W\xa40\x86>\xd6\x98\xbcC\xda\xf9\x85,\xb2\xefK\xb5\x1d=\xa6\\\xb1\x9f\x0f\xfb\xc1F}p\xd4\xdc\xf4t\xf3\xc8#\xe3\xe4>n\x82\xf8t\xeb\xe9\x8eu\xb5_\x1a\xae\xdcp\xc0Zu\x17\x87A\x90\n\xb0L\x0f\xea\xd7\xa3\x1e\x9a\x8e\xb0wr\xfc\xae77\x94\x89P\n\xaf\xc7\xfb\xd2:\xe4\x14\xdd\x9d\x07\xd1\x1c\x93\xd71`0\xbbz\xee\x032qZ\xeb\x10U\xf4o\xa9\x7f\x1e\xa0\x98\xf9\xf5\xaa\x13\x84]\x8aV\xdd1\x9ax\xc8jX\x97\x196\xfb\x95\xd4\x9elv\xf8\xc2K\xd9\x1f\xa7\xa2\xd6&\xbegf\xd3t\xafuw\t\x1f*\x18\x0cj\xc7\x88\xbd\x1dy\xcf0\x03\xd4]\x10\xd3\xa1Eh\x02\xe4m \xb5\x97C\xa8\xc0\x9f\xc5\x1d\xa3\xcc}II\x87Sq\x0b\x9a\xc1\x07\xcd\xcc\x7f\x19\xf2\xae\xb2\xff\xd9\xdd\xae\x15\xc9\x9d\xc0\x18\x95\x13\xdf\xe2\xf9\x99a\xces\xc3\xbd3\x8c\x1b\xb2\x81M\x84\xd66\x10\xdf\xd17?\xe7\x93\xe6v\xab\x06<\xa1\xb5~`s\xe4\xb7\xb0\x9a\xff:\xad\x06k\x93\x8f\x97\xbf\xe2\xe7;+\xb7)K\x1b\xe8#\xccX\xaf\x84\xa8\xccU6\x85\x84{\xba\xa3\xc4U\x94\xf9\xd5\t\xb5t\xb8\xa3\xc3p\xf3\xc2\xfd\xb8\xf1\x12\xa5:\x11\xd0 \x86\x06\x9dlU\x14\xc7\x95\xf9\x85L\x14\xea\x996E\xfb\x01\xbc\xa0\xd5F\xcb\xa7:\xc5\x0b\n\xb4\xf9\xb6\x14\xbeT\xfd\x16\x9aAV\x18!V\xf8\xca1\xf4\xfc$%\xe8\x84\x9a\x88c\x97q,\x04\xd9O\xdc\xa3\x10\x8b\x10\xcf\xe8\x91*\xc6>\xaa\xf2\\u\xa0\xbe\x1b\xc5\xc4Zw\x921{\xf1\x8d\xa2 \xf1\xb7\x95\x89\xcf\xbfRm\x88\xf8\x8f\xd4C\x02;\x16If\xe3\x18<-\x9dS \xea\x16\xcd\xa4w\\\xadJ1\xd3\xaa"\xff\xc3Y\xc2\x07\xb4J \xc2\x10\x14v\x1bT\xe1Bm\x12\xa5\x0c\'\xd6\x96\xfd\xc0\xf1\xa4\x08\xd0\xfb\xe0)\xdd\xaf\xcf#\xc4\xa2\x88j\xae\x87\xd2\xd1mi\x8eX\x1d}\x06+j\x91\x12\xae\'A\xeb\xb9\xe0\xbfE\x01+)\xf6X\x13\xfaK1\x93D\xb1|\xb8\xf9\x89\x1cU\xf7\xa6\xb0kfL!da\xd5%\xc5\xd7\x1b \x82\nT<\x9d(\xd3\x9f\xe5\x03k\x8a\xac\xcd@\x82\x17\x05j\xe2@\xfc|\x8e\x8c\xe3\xb8\x9e\x0bD\x17\x1a\xca\xab\xa9\x88\xf0\xee\xb4;,\xed]\xc8\xd2s\x84\x88V\xd8\x17\xb3\xca#\xef\x15\xed?D(\x93s\x07\xa2b\xae\xbc)\xd9\xb6\xd2\x7f\xcd\x8c\xa4>=\xcb\\\xe6\x88\xc3\xaa\xfe\xb9\xa6vVa\xca\x83\x97\xc0\xe3\xe7\x9b@c\xd9\x91\x0e6\xf4\xa4\xff\xdc\x051dd\x0be\xb2"\r\xb0\xb6 \x9c\x8d\x0c\x12\xd2\xb7T\x95\x12KSi\xa2\xa9\xd8\xce\xe6%\x15\xc2\xb7\x8d\xc5\x05\xbc\xaa\x1fJ\xbfSHW\xed,S\xf1\x0ebu*7Z\x82\x8c%#qy\xb7\x04\x96\xff\xa1\xa4\xdf?\xa6r\xe0\xa8|Dz\xdf\x14\x05`\xb3\xf4\xb1kH\x08\x13\x14\xbc\xfcQ9\x9fy\x85\x81Y\x84R\xb0;\xcb\xb7\xe9z\x19\xea\x1e\xee\xcd\xf8\x0c\x9f\x12\x8c\xb64z\x13\xba\x08L\xd4\x82\xf3l\tbi\x9b;\n\xeeW\x94\x03^\x7f\x96\x89\xf9\xb0\x03\xf2\x07zd\xd7\x01bu\\e\x12";\x077\x83\xf9\x89\xfdI\xc0O\\\xe7\xa9$i\x8b\xfb\x89-\']S\xf7,\xa5\xfb\x04LCQC\xae\\\x90a\x80\xba\xdfl\xd4"\x0f\xa1\xffI\xf4Y>\xe5\xd0\x86\x91\x91\xbf2X\xfd\x97\x02\xc3\xd6P\x1fF2t\xa2$\xcda\x01\xac\x8e\xd1\x1f\x90\xe9\xc5\xf7\xaa\x86\xd0\x9b\xb1\xd6\x9b\xa9\xdf2#\xf4\xd1\xc3\xd2O|&\xef\t\xfb\xc1\xdfe\xd4\xa0t"\xb1\x87g\x1a\xf5aOf\x93\xf5r\x86R\x80N\xd7\x812]\xcbGv\xffD\xd8\xa8\xc3\\7\xf1C\xf5\xb2\x829WB\x85\x03\x13\x936\xf8\xbb\xfew)A\xda\x96q\x99\xd2\xa4\xd6\xf9\xf1\r\xd9u2c\x85ea\xfcr\xffd\xa0\xa4\x95\xc0\xd6\xdb\x9fq\xf1\xcf\xd5t\x93S\xb7\xe8\x93\x0e\xb2\xdb(\x8c\xea"Z\xe8C\xb6\xf0\xe3Z\x11\xbe\xec\x8d}k!<2\xd1\xc2!\x9aw\xfa\x03\xfaB\x87\xd2\x07\x8b7*!\xb7\xca\x1f\xfe\x13_\xa9\xe2I\x02e\xe1\xfaZ#\xdd\xf7\xd6\xe5\xf2:\xf2\xe6/LO"\xd5Tv\n\xebE\xd3\x98f=\xe4\x01}F\xb7\xa6\xb7\xfa\xbfw>7\xba\x84a\x19\x8f\x0cN\xd2f8\xdcaX\xe9\xb1?*\xc22\xda\x01\x15\x0c\xf9?\xc8v\xa2\xdc\x83\x08\x83\xd6\x86\x7f%\x98\x13\xf5HK\xc9j*5\x00\x1b1sT\x05\xc8\xebP!a\xf7x\xfc?\xe5\xf9}\xbd\xae%h4\xde\x8c\xb8D\xbe\x19\x18\xef\xfc\x9d\xa3X\x86\xc4z\xe8\x08\xd6l \xaaV\xe0\xf6\x0b3\xc2\x98J\x90V`\'\xe9\x02\xa5\xd7\xaf\xb8v\xb0\xbd\x95\xaf:j\x84\\\xfa<\xbe\xdf}f\xbc`\x03)\xdf\xba~\xc3\x8fe\x0b\xc5\xf5\xd3!#|\xcc>\xc8\x1f\xa8\xbb #\xbd\x7f\x12\xa0\xbe51\xcb\xfd\xcdh\x19\nNo\nzeX\xe8\x89b\x89D\xfab?\xc0d\xe5>\x98\xc1\xf9\xca\xd8tz\xa6\x8c\x89L\x9b\xccu\x08DC\x91\xc6wE]\x10\x856h;\xf8N>~\xf6\xb2t\xc4YL\x1b\xf9y\x02\xde\xd2\xa9t`R\xe5^\x8d\xfc\xa6i\x7f\xbe$\x92\xa1\x1b_,\xb7T\xca\x17\x08\xb5\xe3\xb8K,\xa6\x02\n\x14\xe8y\xd3\x84iH\x84\x10\xb9\x17\xb4p\xe9)H\'\xbe\xc8\xb6\xb1\xd5\xe7\xba\xc3,\xc8#\x16=R\xc0\xb6\xbd\xae\xf16\xce7v\xa4\xb0\xd0`\x83;6\x1bFFN\xe9\xc1\x11 \xca\\_-\xb2`.\x0f\x1c-\xc1C\xb4\xf85\xd5\xa9\xa1~vd\xe5\xbd-\xa6\xbb\xdf\x8e9c\x9a\x1b?\xda\xbaa\xaa\xc7\xfe\xe0K\xa2\x85\x85\x97t\xdb\xb5\x9b\xfb\xdd\xc8t7HW\x82\x81\r\xd9\xd1\xe1\x9c\x8a\xb2\x06/=\x84W\r\x8d\x82\xd0\xfc\xa4&\xaaF0}\x1f\x05\x03\x0c\x9e\t\x87\xa370\x8b\x0b^\x16f\x98\xdeA\xa0\xb5\xbd\xef:0\xa0\x07z5HS\xbf+\x8f51\xcb\x9a\x93q\x02N\x95\xf6\xf2c\xaa7\x02H?^\x8e\x94\xbb\xea\x1bL\x07\xf3\x8e\x8fs!q\xcb\x1c\x16\xb7\xc1\x9a\xe9\xe1\xb1\xae\x03\x85\x00\x80V\xa1\x87\xda\xec\xab\xcd\x0f^\xd0]L\xfe\xb4"\xdb\x12\xae\x8bZ\x11\x8b\xa8|\\\x05#\x05\x0f\x9emF\x1d\xc1D\x80X\xf1\xc1\x1a\xba"\xa5\xbb\xfeq\x98r\xb7\x96\xae\xbbM\xfe\xea\x8e!\xa7H1\xd81\xa8O\x19\xe5T \x96\xe0\xe8d1\x94o\xef\x02\x10\x88e\x1d\x0e(\xf4F\x14e\x0c\xc8\xff\x17\x0cW\x1b\xc6\x8d\xa1O\xe3\x14\xb9\r\xd0{\xb2\rD_\x0c\xfd\xbcp/\xa1Z\xa0\xcb\xb8\xac\xc7g\xb9F\x97\xfd.\x15qp1_\x89\xd1\xaa\xf0\x97(\xe6\xf3\xd3\xdb\x134\x9eX\xab\xad\xee\xe7<e\xd8d\xa3\x0c\xb9\xc7\x16,xxNz\xe6 /i\x87\x07AQ\x9cag\xf1v\xad\x98\xc1%\x1b\x83\xca\xd2\x91B\xb2\x95\xdcr\x97\xb7\x11\x0fx\xd6m\xf0\xc4\x12\xfas$\xd7\x8d\xb8~\x18\xc5\x0c\xe3\x15\x91\x05\x81\xd8-Y#JY\xba\x87NiV?\xfaA\xfe\xbd\xee\x0bv\x8d$\xe7\xc2\x9c\x04B?\xbf\x0c6\xa2\xe1\x94OA\xba&\xa4\xef\xff\xf2S.=\xfa\x1d\xa9ngE\xd3\xf8\x13\x83;\'\x94\xc5\xbe\xa6\xc55\xa5\xb0\x8c\x97\xa2\x11\xd4\x9dce\x9b\xeb\xa0\xc6\xb8\xb6l\x8f\x1cL\xf9\xb3\x81H\x8a\xc0\x8di\xdf]\xb3B}\x04\rp\x9a\x13Gz\xc15p\x8b\xdd\xe8\xcf]\xd92\x95d\xfc8\x1a\xde\x95R\x8d\xearV*\xee\x02\xba\xac\xa9!4\xe8*\xc0k\x9d\xdd\x10\x90\x1e\xd5mt\xd0\xbdR\xd7g\xccyV\xa0\xcd\x0c\x08\n\xf7\x94\xcb\t\xbe\xcfc\xba\x81!1\xe8\xe4\xf7\xaa\xafe\x91\xcd{\xd3\xf4\xb9\x13\xc2\x06\x0b\x17\xfac\x83q\x95\xc4\xe8\xd1\x16f\xe6\n9B_\xa5\xc5\\B$\x05\x12H\x97\xb0\x12\xac\x11\xa4\x96\xc8\xba\xc8\x82jM\xd9\x8af*\x1a\xf4\xedPQ#\xad\xfbx\xeb\x18I\xa7j\xf4p\x07*d4\xc4(\x9b\x1c \x15#[u!*Nk6_\xec\x8a\xe1\xb3\xe3@Nk\xda(\x01#G \x0fm\x14\xed\x11U\x07hw\xff\x94g\xb0\xcc\xa7\xf4\xe7Q\x1e\xfd\x91\xfb\xa1\x1f\xd4\xb9\xe2\xc5\xbf\x7f\xc3|\xb2\x17\x99\x94\x02\xc1.E\xbc\xc9\xfb{\xdc\xb4\xfe\x0b\xbe\x89\x02\xc0|\xee&\x0b\xe0\x87\x9fm\x02z\x1e\x9a@\xef\xaf\xa9k\xaa\xe6\xdf\x0c\xe9\xfc\x07\x1b|R/\xb6J\x0cdb\xf6\xf5\xc4$\x9e\xd9\xe9\x10]\x98\x12To\xed3\x12\xb6f\xda\xf4~i)mF4\x01\x19\xf1A\xb3\xbe\xe8\xeb\x93\xaf\x8a\xb2\n$\x06\xbdY=V\x12\x7f\xe6!\x00y[P\x81o\xcf\x8b\xa6\x82A\xf7\xb2.\xc9j\xce\xae\xa0N\xb0\xa5\xcc\x0bW\xea\xc2\xab\xd4R\xfe\x05\xec\xbfW\xb0\xa8~\xf8\x93Q\xe1A\xd6\xb5\xe9\xcc^\xcf\x91\xfb\xf5\x02\xaa}\xde\x97<\xb3\xed\x90\xa3\xfa\xcbQ\xe1\x80_\x82\xfe\xdf!T\xd6\xbf\xf8\xf6\x83\xb6\xceO\xccTx\xae02:\xcb\xf8\xe1\xda\xaa\xdc8\x17\xec\x97\x92y(\xe0\x12f\x9dG\xdb\x0fx\x16S\xde\xd9\xde!\xfe\xe2s\xed\xe7\xec`)L\xd8\x94\x97V+c)\xa6\xf3\x97\x8c\\\xed\xbd\xb1Y\xe5g[\x0c\x0b\x04\xdat\x01\xb0\x83\xa1\x96\x9b#\x95\xbbEr\x19\xa1\xd4$\xa4"^\x88\xfb\xbf\x08ID*Q\xd3rc\x10\x93a\xa7\xd1\x1de\xb0U!\xa2\x81dL\x1f<\xd1\x9d \xff\xa14u\xf4N\x9e\xc6#\x8a\xe38\x803{#\xe3\x0c\xdf5\x88\x13\xcdn\x94\x1d\xd0\xe4=yq/j\xcar\xd4cN \xaf\xca\x98h\xfa\x8bA|\x00\x17\x03)Yf!\xcbB{\x1b\xbf^y"\x0b\xc4\xde\x9e\xbe\xb5:\xb5\x0f\x1e\xb2\xb1\xec\x10\xe5\x80\xe1\xe0\xf92\xe8\xe8\xe9\xc2i\xb4}\x1d3G"\x9f\xaf\x13\xa8a\x14\x9awg#\xd5\xe5\xa9\xfaN\xd8P\xdb\xd2\x05Z"\xde\x98"\'\x0e\\\t\xd3\xd6g\x07I}\xc7\xb5\x7f3|\xb3\x07\x01\xef\x81\xe2\x87zZ \xeb\xb0\xa0\x11P\x8b\xf7\x9e\xca\x9b\'\n5\x193\xae\xe9j\xed\xd7\x0b\xb4,NF\x8fg\x0f-\xfd\x93\x06\x01}\x8bq\x84\xb8\xf3N\x15v\x968\xed\xbe\xce)\x7f\x9e\xdf\x86\xa7\x1e\x873y\xe4\xfa\xb5-\xb5\xeb\x8a\x01\x07p\xab\xb8\xe8^\xb8\xe1i\x9e\xaf\xfc\\\xd0k\xc9\xa4\xd3\xbd\xcf\x06\xe9\x98\x19\xbf\x95\xa3@{\xfa\xf4E\xb9A\xce\x13Tv\xf1F\xf4l\xf6\x02r\x9b\x10\xba1\x8e\xf9\xa5r\x91\xc5r\x02L\x99B\xb5\xd6\xaa\xff\xf5\x07\xa6b\x8bv\xe4\xb2%\xa8\x85\x8a\xa5v\xad\x84+\xe7\x07*\xd9HN\xbe.\x94\xcb\xc3\x98:\x8f\x85=RE\xce\x95\x9b*\x9a\x9f\\\x1aF\xba\x99u\x1c\xbf-\xb1\xe8\xfa+\x01\x02X3F\x87\xc1\xecO\x9c}|\xc6^B\x9a\xba\x16\xa4\xe6\xbcG\xc0\xfd\x04\tP\x1d=#\xc0\xc9=\xcd\x03\x9e\xc8Z\xde\\;P:\xce\xcf\xd7\xe7\x8c\x10\x12^W\xd1)\xa9\xde\xc1.\xa7{\xdbu\x94c\n9\xc2\x08\x1f\x9c\xd5+\xacl\x0eO\xeb\xd3\x95\xa1\xa4\xdd\x80d\xfa\xbfDLyc;\xa7\x97\x88\x99\xb6;\xda\xd1\xaeR\x0e\x05\xdd[K\xd1\xc2Jn&\x03\xceX\xfe\x1d%\xe8\xe3fg\x9f\xd9JZv1\xef\x14\xeb7&Q\x01d\xe9\xfdr\x0elj)\x15\x83\xc1]\xbb\xc8\xe9:\xbd\xe9\x05\x14\x8d\xac\xa9\xcc\xcb\x1fW\x87\xf8H\xd9r\xbd\x1c\xafN\xe6r\x96\\A\xc0\x81\xba\x03\xcc\xd2\t\xac\xf6\x998W\xc2\x84\xc9\xb2\x10\xb0\xec\xad\x98\xd2qG+$\xe5\xf6\x16\x12&\xdf\xe4\x9bt\xdf\xb3\xa4\x94\x06C\\KG\xa3\xdf3\x95\x99\xfa\xbe"\xda\x90d\x90\x89.\xdf!\x1c\x052\xcc\xfb\xb8xU\x1cU\xdfD0,_\xbfN6A\xcdQ\x97:Y\x98d2\xbb\x90\xaf--\x02{\xdc\xd7\xbf$\x01z\x13O\xbf\xa2\xf5\xac\xc9\xa7t(Z\x8a\x1c\x87H-\x84f;\xb2J\x99Z[N\xceJ\xe0;I\xe1\x99\x19\xd9\'\x93B\x9be\xa4\xddN\x08\'\xea\xd4\xaa\x07F\xadg\xdd\x04\'\x00\xc2g\xb3m\xdb\xc8\x14\x18\xf4\xc2\x12\x05\x18K\n\r\x1b\x00G\x89(|B\x1e\xe9G\x9e_\x91g\x8a\x9dH1\x05\xfe\\\xfd\x8cb\x13!\x1e\xb6\xaf-\xbe?\xe6\xc7\xb8\xad\xd8<M&\\\xd0\xf0\x1a\xc5%\xda\x97P\x9c1\xc6\xa5o\x13\x88\xf6\xb5\x98\xc7\xbc\x0fy\xdc\x04\xdf\xa7ss\xd1vTs\xc47\xfb\xdeeW\xdd\xcdX&\x19\xc1\xe3E\x0e6\xcc\xb0\xfbqA\xd9d\x18\xafg\x9a9\x86\xe5\x95\xe2\x90\x1e~\xce\xcf\x83\xb5"\xb2\xf1\xe5\x13\xd0\x98<\xea\x1d\xd3\x91#\xdcr\x1bNtY\xa1\t\xca)\xb0\xce?\x80\t_ \xbe&=\x80\x90\x82\xe3\x1b\xa9\x07A\xd2\x97\x94\x08$\x0f>8xr\x7f\xa6\xad\xfe\xc1\xbf\xb1\x95*\xf9=\xc7\xb2\\\x0b#\xd5\x84\xf9H\x84Nq\x98\xf7)\x1e\xbdkv\x02\x04\x92\xeaQ\xc0y\xa50\xc2\xf4$x\xe1H\x85U\xcd\x8a\n\x1a\\\x01\'\x8b\xb9x\xabdY\xc3\x9e\x10\x9aF\x13P\x10M\x1b\r\x01&[\xd7\x151D\xcb}\x02+VA\xbc\x13\xb3\xd1N\x94<\x04\x8e[\xdc\x16\x7f~\xa3\xdco~\x1b\xd1\xa2\xd2\xd2g\xa4\xce[\xaa\xbd\xf8}-\xd0`\x8d \x14\xb6\x86b\xb4\x84e\xd9\x16>-[e\xc8X\xb3OTy\xc0kG\xff\x9e\xc1]k\xa7\r\x91\x17K,\x97\xc3\xd8\xd4\x88\x8dP9\xb7\xb0Q_\x82L\x07&U\xe1\xcb87^Q\xa8m\x97te\x0c\xb1+\x06B4\xfd0\xc2\xb8c\x8e\xb6\xb9\x93\xecm\xd7k\x16f\xf9,\xd6\xceH\xb1\xb8kkEX\xd2c\x1b\xd3\xf5\xeb\xb4\xa620)\x9aJ\xa2\xec\x8b\xba\xaa\x19\xd2\xf76\x8dR\xd4\xb7|\xa7\xd9\x8d\x18\xfd\xc3\xb7\xa4]\xa2\x9f\xf6#\x90\xf0\x10f\x02\xedbV(*\xf6\xac7\'y\x8a\xd5\xd3X\x0e\xa8\x1f\x87\xde\x87\xc3\xb9\n\x08\xe6=\xe4(\t\xa6\xb8ep@\xcb\xe3m\xd8o\xf0\xcaP+\xb5\xca3\x99P\x15\xd6\xf4\xa6\xa3b\xc0b\x93(\x82\x07\xd8l\x01\xe6\xe0\xaaU\x9c\xba\x9b\x13O_\xd7\x9d\x10<\xaf2\xe1\x02\xe6\xff8~}\x9a\x17\'\xa4\x88\xfe\xa2\xd9\x9c8\x88\xd2\xc0G\x0e\xf5\x86\x9ee\x93V\xa7\x17\xee\xba=\xbfP\xc3\xe4\xd5\x84\x93\x96\x9ctU\xc7!4\xd7\xf1\x8b\xfcq\xd4\x15\x04T\xe1x9e/\xd5\x813\xc6\xed\xa0\xf7\xb0SJ\xa1v@\xaa\xa6\x06\xecrK\xb6\x06-\xef\xd7t\xb4\x10x@H\xb2\x9d\xd7\x0f\x08\x8b(\xb3,\xba\x195i\xc4\xda\xb5\xd3\xcf\xa1\x08H6\xcc7Ea\xbf\xfb\x84\x84\xe0\xa0\xaf\xdf\x9c\xe3\xdc\xd7F\xce\x89\xc9\xab\xec/\xdb|\xdaW\x8a\x9dG\xa6\xffu\xc3\x89\xd9\xee\x86$\xa9\xa5<^xP$\xe5l\xab\xda\xa3\xaf\x80|\x8e\x8b\x14\x91\x97\x9b<\xb7\x84\xfa6C\x1c<\xbb\x08e\xe4\xd5\xbd\xd2A@\r\x95\x07Nbm\x07\xdb\x08\xeeE\xd7I\xdf\xa3u\x8f\x87\xac\xb7\x98\x0c\x82\xd9?\x11\x9d\x9bp\x91\xe0x^e\x01e5\xe1P\x0e}\xf0\xae\xa6\x8eqz\xe4q4\xa0y\xfaU\xa8~\x92\xe7\xcf\x83\xabf\xd77\x15\xcb\x0e\r\xf2\xd3\xbf\xf1o\xf2\xcf\xbe\xddm\xf8\x92\x12\x10\xfe\x93\xb4"\t\xe5\xd6b\x16M\xa2\xf9[\xd6\xachv\x03\x12\x18\xc8\x17\xb4\xd4@\xee\xbcc\xde\xbf\xc5\x8e~w\xc9\x99\x83\xba\xfei\x8c\xe2M\x8a\x1c\x9c\xed5\tz\x7f\xa5\x15\xce\x98y\xaa}\x85\x9b\xc16\xcf\xbb\xdad\xe9\xff\x7f\x1c\xea\xdc\xa9I\xa7\xd0&2\\\xfaHp\x98g\xec\xea\xa4\xe0\xe6\xfb#W\xe7\xaf/\x89\xa8$7*^\x97\xc2\x88b\xe2\x1b\xb5\xfe\x91S`MHvf\xb3`Q\x7fi\x0f\xe5O\xe8;*-\x984\xab6WD\xbd\x95\xe8&\x82l\x08\x8aj\x06\xf6\x9aK\xf7Rb\x88\x12MH3\xc9/\xe6\x16\x02g\x16p\x8a\x9c\xda\xbc<\xb3\xf4\x14!\xdb\xab\x03\xa6t\xb8D\x80Wr\xe0}\x03C_`Mv//Kg5\x94\xb2m\x81\x8c0[f5%\xcc\xd3\xa9Q)\xe7\x0f\xc4k\xb3\xf2)\x95\xa9Z\x80N\x9972T\xdbs\xee\xfb\xa0\xda\x95\xe9I\xa8\xcb\xe4\x1f\t\x92>\x9d\x0e\x12Z\x89\xebe@\xf0S\x86]\x10>\x82\x93;:BblQ\xe5\xcc\xd7-M\xc85G\x9b\x7f\x1c\xdd\x11\xb5\x96\xc8\xe3\xb4R\xd1\x18\xf7\x14\xfe1\n\xda\r\xc2\xd2\x1b\x89\xec;7\xc8\xde\xa6\xabe\x84\xeb\xb8\x94\xddm\x83 \xe2\x9e\x8bx\xef\x81\x94e\xde\x02\xdc\x8b`\x9b@\xb41\xfbZ\xff\x83(\x89u\x82\x86N\xad\x92\x9a\xa3\x0c\xb6\xec8\xc4\x16\xd9Y|\x00\x9d\xe9\xad\xdfO\x9cQ\xc6\xc0l\xcb\x06\xad9\x93\xa8@\x9e\x02\xcb\x0c\xefe\x00\xc0\xe5\xb7_%v\xe2\xb1 \xd4\x00\xfej\xf5\x9a\x14;U\xf3\x036?\xa4\xaa \x16AU\xeak\xcf\x19\xb9\xff\x83\xd9B^\xa5\xe1\xb0_\xab\xef\x91g|WzMT\x0c\xdc\xe7\xe5\xfb\xd1\x83X5\xf3\x92\x01\x0f\xbb\x92{[\xa7\xe9q\xea\xc9\x92{\xbc\xe4\x9c\xe2\xabXB\xbe\x1e\x0e\x99\x9a9\x90aF)\xca~-WX\x9al\xbe\x96\xee\x17\xad\x80\x95x0\xe1@\xc8\x97\xea\xd6\xe5j\x1bH\xf9^\xfb}\x808\xf4\xa3\x12q\xdc\xbb\xd0\x9dh\xf2\xb5\xedTx\xd8\xd7\x8cg]\x85\x00\xbc\xae\xa0_v\xaf3\x8a31\x10\xed\xd4\xd4=\xd1M\xde\xa0PY\xe2\xfe~f\x89\t\xc8g\xa5\xe2N\x8b\xb9U\x99\xbc\xc7\xd3\x0cV\xbc\xa8\x9b\xe4\x88y\xbe96R!\x8eQ\xce\xff\xd0=*\x9f\xea\x1d\xd6\xef9\xf4\x94m\xfc\x94\x87\xe5\xd8\xdc\xb3\x9b\x9f`\xb9\xd7>J\x0f\x00\x9f\x7f\xfb\xf73A\x9b\xd9\xd3uM9b\xc1\x8eT\xd0\xe6;\xf9\xb7\x98\xb7\xbf\xb0\\g#\xde\x80\xde\x02\xc94\xf41\x98&\xf89\x873K\xd1\xaf\xb2\xa6\xa9g\x8fRk\xc0\x1c\xd2V\x99\x12\xfd\xc4\xecn{iM\xe1\xc0\xb3A\x82\xd8,\x1b8\xccnw\xd7\xb8\xc2\x07/\x06\x8f\x1b\x0f0K\xe9\x1c\xf1h\xc6\x8e\x98\xb7/\x00@\xef\xb73\xc3\xac\xf2CC`Z\x1c\x07\x9b\xedH_\x84 u\xc8\x83<\x83\xcb\x03\xfe\xe3\xb4\xfe4\x06X0!\r\xf5z\xa5\xfe\xd5\xe8\xc9\xcb\x93J\x7f\x9eX\xb0\xd7\x98Y\x9e\xd3:\xbc\xd6@\xe7}\xa0{\xc1\x0fk\xce\xf2\xfc\x99\x19\xe1c\x185\xa2\xa2?\xc8Fo\xa6\x7f\xe4y]C(\xbc\xff\xd5`\x89%\x98\x90/\x03\xd1\'k\xf3q\x95\x05\x16n\xdb\x91vU\xbc[\xbd2-5\x96zt\xc1o\xe4\xaaY[\xd1\xded&az\xd6=\x9b\x92X\xea\x8eD\xe7\xe1\x00\x80\x08@V,6\x91\xdb\xca\xe6\xc2\x11.\xb4\xa4\x7f\xd5L\xd3C\xf2\xfb\r\xaa~\xc0\xa6\x04\xc4\x18|%\x03\xa1\xbc\x95\xec\x1c\xbe\x9c\xde\xaf^.r\xc8\x15\\\x80\x80\'\xd5\x0b\x17u\xd3\x00\xb4\xe4~\x82\xe2\xc3\x941\xd9>\xcb>\x01\xba7h\xe5\xd3\x1cdJG\x04!?\xdb5\x1a\xd3J\x1a\x1fl1\xc58BT\xf2\xa5\xa8l\x95Hx\x08\x9f:*^>kU\xefUH\x9f\x94\xb0\xf5N\x16z\xe3\x1dn\x1a\x8aBW\xfb\xe4*py\x00\xa8\x15X-\x883\x1f=\\-\xe9\xfa)\xde5*\xb2%\xbf\x00\xf0\xce\x88\x86\xe1\x18f\x9f\xcdR[=\xfa$\x11\xf2\xe0\xac\xd7i!\x0b\xa1\xc1\xb8\xa7\xe6\xa8\'\xe8v{7\x8c-\xff\x9czr\xfdH\xbf.Q\x17\xa2\xeb\x02\xfc\xb7?\xecv\xb6\xbb\x01t\xe91\xb7)\\\xad\xb4\xb6\xb2m\xa4\xe1\xa2\x89\x0f\x00\x9ax3n\xe0![>\x00\x10^%o\x1a\xcbm\xdd\xbb\xb9\xf4\x84a\x15m\xa5"i<w\xb7\x0e\xeeN\x81E\xdc0\xb5\x8ax\x9d\x8a\xe3\r\xf7\x11.BHF\xdfp/\xb1\xff\x1c\x922\x14\x83\xb5\xe5\xf1\xa6\x93\xe5\xee\x8bry\xfe"exW#3\xbd<\x19\xe4&~\xc4\xe0\x0fZ\xe3<A<\xe45\xd6@V\xfa\x85D\xe8\xe9\x10\x8f\xd6\x88$\xbcC\x0f\xb6\xe3\xdb\xec\xca=\xc7\xe0\xa1\x1by\x9d\xf0\xcaO\xbc=\x15\xde\xb2\xb9Uo\xa73\xb2\xb2\xed\x94\xd9\xe1x\x9f\xc1\x8c\xc0dl\x91Wf\xec\xde\x00\xbb\xf0:\xb4\xa8\xd3`J\xc35\xa3H\x1c\xd1\xfc1\xdb\x0f9\xb2\x8e\xdc\xd9$\xf2\x99\x9ch\xbe\x92\x81\xbc\x9e\xc1\xb5uNr^\xab\x99s\xfd;,\x1cv\x1d\xcb\xf1HW\x9b\xea\x07\xf0\xadX\x12F\x1c\x07\xd8\x8bCG\xcaM\x99\xd2\x03\xbf\x95\xfc\x83"\xaf\xf8\xa2`\x9b\xb8:\x98\x95\xa2\xa8:\xcd\xf3\xac\xe0\x90 K\x02\x87\xf2<\xc2\xf8\xc2nH\xb6\x98\xe6\xef\xbd\x9d\xd3Q\xdc/\x05\x8c\x13\xed\x91\xf94\x99g\x0c}(\x95YmzJ\xd8\xf1\x0f\x0e\'K<\xef\xdc\xee\x14\x95\xa6M\xc6\x832\xef\x1dB\x87\xb4%\x15\xe6\xa8\x87\xccX\xe7\xeb\x9a\xb4\x1c`\x95M\xe3\xe7\xfdu\x98\xfd\x975\xf3\xa2W\xbf\x9e\x0e\x14~0\x80\x18ftE\xdfW\xc9\xe5\xcf>\xf1\xdf\xb69>\xb4g\x94k\x9d\xd6\xb9]\xad\x99\x83\x83"[g)\x86K\xb1\xe6\x83+\xfe\x85X*\x05\xe9\x04\x06B\xee\x90\xfb\xc0\xf9Y\x0bI\xf6\x06\x92e\xaa7\x85\n\x17\xc1\x8ae\xd4\xcc4,^\x14v\x84{\x1f`u\xe8\x8e>3\xe3\xa1\\)\xb7\xea*\xea\x1d\x1btf9\xf42\x00\xfda{.\x9b\xd5\xf7#R\x99srC\x9eV\x9d\xd51\xe6\xdaV\x19\xa3OH\x8f\x97!M\xdf\xc1\x98]u\x94\x7f\xea_T\xa9x\xad\xa6\x88\x0c?Z@\xa2\x92\xed\xd2o\x0e\xef \xfct\xf1Q\x03aV\x13\x00\xfb9[u\xcb\x07*\xd1\n\xc4\xa0xIcW\x8e\x1c\xcbZ\x8f*;\xc6c\xecr\xf6\xa9\x95\x7f\xf8\x08\xe6=\xd3\xc1`\x15\xd1\x19\xd1\xcb\x0b\x97 \xbd\tY\x91\x0fGv\xb2^\xea\xbf\xc4\xb0\xcb\xc8\xcb\xcd\x7f\x1eE\x85\xd9\xc4/~\x059\xe0\r\xd1\x0b\xec\r\xf9|)\xe6\x0eR\xb7\x16N\xb2;\xe9\xd4o\xa4\xf8\x96\xfd\x9du\x1c\xcb\x16\x14\xf1\xab\xe639\xbf\x97\x063z2\x93\xf33\xd5\xc7\xa0Fq\xc1\xdd\x00>\xe6S\'\x86U}\xa0\xd1\x7f\x02\xe9\xe0\x15\x88+u\x80w\xf9&$\x14\xab9i\xf2]\x93\xfcV\xe11\xa2@HL\xff\x80\xcdk@\xf6\xe6p\x1c\x97||\xae^\x06\xf3~{\x11g\xe0/\x8c\xc6\x84{\x9c{Q\xd3\xa2\x1f\xeb\x9f\x8a\xadSr\xb5\x93\xd1Qbd\x8f6\xf7\xd3Y\xd8)8\xb5\xd6\xb8\x8d\x8d\xbf&\xc2D\xa8\x0c\x14\x08\xa1sj\xc1,\xc7\x7f\xf7\xc4xG\xd8\x85b\x95\xbf\xb8\x92[\x03\xd0\x9a\xe1\xeb7\xcc&H\x0f|r\\\x999\x17!\xae\xe6\x0b\xa9\xf7i\x86P`\xc4&\x13\xf8m\xcc\x9e\xa4\xfaV\xad\xa2t@\xe2f?\x82j\x9e5\'\x81\x95\x00\xa5\x80\x1a+"<\xferD+]h_\xee\x1a+\xcb\xc9\xbb?\xffp\x83\xf4J\xde\xce\xd2Y0o\xa4`\xd7\x13M:\x83\xb1\xc9\xdd\xe1j\xc1rrf\xca\xb9\x99r\xa8\xda\x06\x83\x928m\xc2\xc95\xf9\xfbb\xf8\xe1\xd3\x9c6\r\x16\xd0\x92|%Cr\xd9\tf\xaa.V\x08[\x96\x023\xd5^|r]\x9f\r\x82\xa4\n{>\x94q\xe9\xc0\xfc\xd5^w\x8bdwqS~\xe75D\xcc\xe2\xcc\xc9\x9f\xa69&Fm\xf7\xca\xf2O\xf8V\x81\xa5p\xa5\xe5L\x84\xdd\xff\xe2\xec\xf3\xcc\x92\xf9\x1f\x86\xedT\xfc\x8e\xe1\xaa0\x83\x8f\x99 \r\x08\x8d\xfd\x9b\xdeS\x8ft\xa7F \x89l\xe1\xb3\xb9\xd9H\xac;E\x83\xbb,\x97][\x04b\x90"a\x96\xf9\x84\r\xef\x94\xae\xb6\xc7\xa5<\xf6\xca\x89\xa3gc\x95\xde\x9e\xcf\x1dN\xd9\xa8I|\xfb\x80\xf1E\xc8\xa1\xb1\x86\xc8ps\x1c\xee\xc5?I>^{\x8b\xf1U\x81\x90\xf3\xf2\x16\xbf\x1f\xde\x88\x9d_37|.A\x1c\xf6\x00\x9e\xf3mI\xc6\x95\x98\xb1m\xa7j\xb5\xec\x1d\xa2\rU\x94L\xc6|\x9e\xbfkP!\x94\xdd\xc0\x0b\xb1\x9aCY\x8c\xcb\x8el37\x93!\x1c7k\t#\x1eg\xd5\xed@\xcc?F\xde_\xdf\xaax<g\x85\xc4v\xef\xb1\x04\x93\xb1\xd5/\x08\xcb\xe98P7\xe3\x84\xe5.\x87\x8b\x1a\xbb\xca\x8d\x13\xedh\xd09\x0b\x95@\xba\x95&\xfb\xdb!5Ypg\x08\xaa\xc6\x1c\xb9coj\x91\x84\x99\xb0\xday\xd0\xa1\xe2\xc5\xb5\n\n\x1f} \x8d\xe1u\xf3\xd8;\x14\x8f\x9a\xd3`\xb1\x8b\xb1h?\xa6y\xb10-\xe4\xa5UG%Dg\xcco\x9d^u\x01\xbb\xcb\x9f\x10>\xc7\xf3\xb7\x92r8\xe7\xdd\x83O\xd0!\xefX\x1a-\xff:I\xf6XF\xfaL\x90\xea^}i\xf8\x98F\x1e\xd3l\x90\x9b\x9a\xaa\xb4*@\xc8\xbe\x055\x11\xe3\x19\xfa\x82\xf7\xd6\xda\x02S9\xe4\t\xa6\xf7\x0f\xec\xee{[\xbf\xf3\xa5\xc4:\xbbU\xdf0T\xd0v\xbe\xe3\x03I\xb9\x8az\xf3\xb1\xd2\x1e\xa5\xc3\x03\x87\xa1\x17\x031\x90/a\xbaPV\xcd\xaf<\x10I\xfe\xfd\x19\xf4\xbd\x9a\x08\xd3A\xa4\xcbE\x0c\xe0\x8e\xbdp\'p\x0c\xf6\xdac\xaa\xaa\xb4\x02\xdb\xfe4\xe75\x14\xf8L@\x1c\x15\x1e\xb5P\xaf\xc7{r\xc8<\x9eB\xf1\x98fB\x91\xb1\xaf&q\xc6\xb4\xe9\xb9=,\xf0X\xb0\x8bC\xfc\x07o\xef\x87\xc7Q\x83\x0f\xfc\xd4\xb9\xaa(\xc4MWE\x98\xb2\xd9\x9cbdnoW\x80\xb9w\x10\x82\x8e6\xcbc\x9a\x1b2?\x80\xdc\xc8;\x954A\x97Gq\xee\x7fj%\xed\xe9\xa6\xa3\xf9\x86\x82J\x00\xee\x06\x1fr\x89\x1e\xbd\x07rJ\xbf\x00\x95\x8a@O.\xa8\xc0!\xfd\x9c\xec\xa1L\x03\x0f_\xa4\xcd~\xab\xdaUp\x1e\xa7\x8c\x97\xa8X\xfc\xda\x12\xc5Hj0\x9f\x1f\x96\x17\xf3\xd8\x8a\x9bI?\x8c\xfa\x07\xb5(\x02\x11!\xe2C\xb1\xbc\x1d\xac\x83\xf3\x10m\xf8N\x8b|\x92\x1e\xa2\xd3\xfdt\xad\x1a\x83m\xf5\xa5f|\xdfe\xb3\xb7\xdaK\xf0\xde<\xcf\xfc\x8b\xac\xc8\xd7\xb8\xff\x85\xcc\x1e1+\xad1\xc2\xe7\x9c\xc4\x91\xa3\x83\x038G\x8f\xd2%{M\xa2\x18e\x1d\xe0f\x93\x0f\x97\xa3\xde\x08\xa8u@{\x0b,\xc3\x96\xacv\xc4\x95\xdf\x11\xf9\xf8\x92\x19\xc3\xdb\xbc\x8a\x89a@\xfc\xca-\xdb\x8e\xe79\x03\xdd\xe8v\xc4\x0b9Y\x16M\xc3N\x0bto\x11L\xf4_]\x0e\x86\xba\xcc\xc9Z\xb5\xfa\xa6\x81\xc3^$\xe6.\x04\xf8\xf1\x90^\xe9\xa7I\x9ai\x8b\xc6\xbc\x08]}\xfd\x83\xbe,)\x81\x96hQ\xcf\xec-r\xe8\xe0\xf1\x9a\xfc\x19dV\x9a\x9b\x8c\xbf\xd0F\xe8?\xd7!\x80/\xee0\x96\x18i\x02\xb0\x98\xaa\xbdK\x0bP/\xac\xb5r8#1\xd6\xbd0\x99Q\x88\xe4\xf0M\xd9\x8a\xbb\x12\x04\xc1\xc2z\x9b\x0eC\x96"$\xa0\xe4\x9b\xc0\\\xbc\x81\xa7iI\x13\x10\xe0I\xc6$\xa4[^\xa6b\x19%\xf6\xab\x88\xcd\xc3\x03\x0e{&\xbf\xd8u?\xcdS\x9e.\x071=\x84\xb7\x8a\xa6\x068\x93\x89\xcf\xa7F3\xc5\x9d\x17\xee>\xaf\x9eo\xc8\xb9Ak\x83\\\xcfQ\xf0o\x8a\xcf)\x1b\xe8\xb2\xab\xeb3wg\xbaW\xf9\xa5/3\xe4\x92\xc7Rz\tHn0\x1a\x02\tN\xf7\x9c=\x8f\xb3\xe1\xdfxR\x82O^\x1fK\xbc6\xdbO\x1a\xb8e\x12\x97\xa0\xf0\x18#a`\t68Ka\xc7\xe2\x8c\xca\xdd_\xe64\x9f\x7f\xb3\xad\xe6=e\xfd\r\x16\xfev?\x1f\x01DA\xba\xedG; \xa6vZR\xd1\x02\xbeG\x89\xd9\xfa\xb5\xf7\xec\x99c\xc7`\x9a\xab\x10\x07}\x9f\x97R\x13\xa2\xe2\xa7\xdd\xc69o\xb1A\xa2\n2/3\xc1Q>?\xdcw\xe1Ue-\xa4\x1d\x0c\xd7A\xc0E\x89M\xa0\x12\x8bNY\x18R\xf3\xd0\x96i/\xbd\x0e\xa5\xa9n\xe5:\xd4\xff\x10;\xea\x91\x1ae\xd2k\xe8\x8c1?Y\xf0\xf32\x013Ae\x94Pp\xbc\xabM\xd4s\x86\x8e0\xef\x8e\x08Y\x81\x14-\x81HD9l\xfc\x8d\x10\x9e\xe0Wl!\x9f\xbe\xc0\x83\x16\xde\x04\x9e\r\x8c\xd7\x04\x14\xaeAr$\x91\xcb\x13u\xf3\x11\x8d\xacq\xe4=}\x1f\xad\xd9\xa7sr\x81?\x05\xc0P\xc8\'\x116\xb8\x93\x08\x9bI\xa1\x11\xba\x1b\xde\xd4,\x96T\xcd\x8b\x18\xf1G\xfbT47\x98\xc8mp\x9aeV\x08Y2\x01\x83\xaf\xbdf\xbcs\x89\xc6h\xfd\xef1\x8d\xa8\xc8\xfa\xaf\xe2j7w\x90\xe1\x81y\x04\x1e\xc4\xb6\xf6\xe8Fvvb\xdc\xb4\x02<\xb8\xba\xfe\xc1\x19?\x04<h\xd4\xc0\xe7\x93\xf2\xa4l\xae2XEG\x1e"\x13\x1f\x97q\x82\x0c\x80@\x9df\xf7\x1do\x8e~\xf9u&Vn\xfc\xf7v\x86hu\\\xea\xf9\xe2\x80\xecy\xaf\x8a\xd8\xf3\xd7+\x15\x7f\xc0r\x0cr\xb8\x18\xa2\xe7\xf1\x9epLzH\x1aO\x1a\x12u9\x8a!n\xd6\xcc\x15\xa7\xc2=\xfa\xfdy\x1c\xdc\xdb\xe4\x0b\xdb\xb5O\x7f\xd8n\xd4\xa8\xf1U$\xb40\xfe\xe9\x00\x92 \'\x02\x17\xa1\xba\xb8\x86\x97W\xfb\xd1\xa0\xd4\xc6\x81\xab\x9d\x05\xb1\x14t\xfe\xb7Q\x1aU}\x01\x83\x99\x18o\xef\x94\x8c\x93\xea\xbd\xf1\x99\xd3\x972\xf3\x15\x1e\x83\xdd\xe1\xabBS\xac$\xf0\xae\xf8z\xbad(f\x86\x94\x10;\xca\x81@N\xa2\xe1.(\xb4`\x87\xf0\x905\xa1\xc4\xdc\x0b\x89\xea,\x9cR\xbd\xf0\x10\xce\x00\x16\xc1,I\xefP\xcf\xfe\x01\x16dm\x9a\x13\x83\x84J\xa7\x7f,\x90\xda\x90\x81\xd3\x16^h1\xee\x0f\xb6\x80\xfa\x1e\xef7\x9c.M\xe1l*\\rb\xee\x97\xc5;rlq\xf5\xddv\xed\xed\x08{\xd9\xceh}\xe2\x1e\xd9\xe0\x12\x86\xa0%+\x19\n\x91\r{\x14Z\xc9\xfb\xe4\xb6#\xdf\x13\xc9*\xba5\x98\xcdJ\xfe!\x85\x90\xcbk\xe5Y\xe0\xf5\x83a\x05\x05!ru\x8b\xad\xc6gn\xa5Oa\xa5\x88\xfc#Q\xe6\x8bU\xcb\r\xb0\xbe\xd9\xb2\x91n=~\x1a\xd1\\\xf5\xc1\x8fH-x\x02\x1e\x00V1\xc2\xe0\xd6\x99\xcd\xd6\xc3{_vVk]\x19X\xc1E\xa0\x99T\x04&\x0b^\xe5\xee)R\x90\x1bF\x80\x0b\x9aypw\x85 \x8a\xde\x1f\x9b\x93)\xb1\xbcr7\x1e\xca\x81\x14\xe7\x08M\xa8\xac\x93\xd0!\xcb\x9f1T\xe2\x85]g\xc0xn\xe8\xa9\xc6>\xaa\xed\xf7\xaf\x10\xe2\xe3\xb0\xdew\x7f\xa0T}\x05G\xff9-\x95\xc6\x1aOh\xe6\xdf\r\xf8\xb8\xe4xe\x83O\x96g\x81\x93\x17\x0c\xf9\xda^0\xf9i\x0fb\xdb6\\[\xae\xf7R\rn\xff<\xe6\x92\xc2)gp,\xb2x\xec\x16\xe6\xdd&\xd1+\xad\x17\xa3x\x15t\xb2\xf9{y\x97{\xa7L\x8d\xc3%8\xde\xb5}\xf9\xb7\xd1\x19\t\xcc\x19\xa2qB\'\xd1\x9bL+\xa1\x9bG\xce\x84\x00\xd5\xbf\xda\xde\xcfv^\xbf\x8bYmbt\x92\x9c("\x9b\xc6h\xa4\xc4A&\xff(\xa2I<\x83\xee\xac=\xd8\x07\xa2\x07\xe2\x98\xc2\xc3\xf6\xda\xef$\xdfV\xd7\xd7\x81=\xc1\xeei\xf5\x10ev\xa7Sp\x82\xdb\x9dl\xa0\xdb$\x92\\s\xe1#\xdd\xc2B\x89\x81\xf8Vh\xd3\x13\x8a\xc4B\x06\x13\x8bk\x8e\xdc&\xba\xa7yI]\xbfQ3\xaf\xefR\t\xc1\xd3\xb6\xb1W6\x83TL\x16\xfb\n\x1a\xdf/\xe7\r\xb8\xf6H\x9a"<I\x9a-\xa63\xdb\xcd\x94\x9aW\xf8\xc2\x8e\x13\xe3\x85\x82\xc0 Hy\r%`AT\xf1\xeb\xd0\x84\x84\x8coR\xcbm\xf5\xedr\xc2\x05\xd4\xff\xd5\xbbU\xe4Q\xba\xd0\xf5\xf8\xfb\x84\x8a?\xa9\x02\xfd\x1b\xe9\xcd\x9e\xcde\xc1\xde\xddH\xf8\xc5\xeb-a\xbdFh\x93\xc9\x9cK\x91\xef\xdc\xc5\x8e\xdb\xd8\xa7\x9eW[\xc7s\xe0q"\x97\r\x88\x12\x7f2^\xb5\xb9\xf5?\xf9\x92f\x03i\xd2\x9f\xc6\xea\x80\xeb\xab\x8a\xce7\xc5\xfa\xa1\xad\x8a\xf7s!\x9c\xd6\xbey\xa5\xd3\x9eBEx\\\xf12\xba\xbaJ\xd9H\xbe\xacM\x84fH\xaf}\xe0\x97\x8e\x15a\xbf7/\x99(\x929\xf6\xab\xf3=\x15y\x03\x01\xdb\xa5Q\x1f\xd8\xff&\xd4e\x98\xf5\x86\xfdDu\xd5!\x10\xc9\xb4\xaez\xc2\xd8\x86\xaeU^\x82\x00:\xdc%\x0e!\xbc\xe4\x8d?\x14/\x9ek\xab{qky\xf1\x17\xf7\x16\x1b\xf0\xafMC\xa9^\x8cm\xbf\x18\x8e;\x16\xb0l\xe0J,E\xd68\x99\x92\xf2\xb8l\x8d\xbd\x7f\xea\xb47\xb51~\x1fZr\xb3|\xfa\xef\xa0z\xc3\x82\x1d}\xb1I\xb6O\x90\x9cm(\x8b`\x02\x97\xd4\xc9\x08K\xb0\x07\x8c}\r?\xed\x96\xa9y\x93\xc2\x82V\x14>V$\r3\xc9W[&\xebQ\xb2\xffn\x0f\xf1\xf0\xbbrS\xd1v{\xd5t\xb0\'l8\xac\xe4)s[\x06\x90\xc8\x9f\x94\xc1\xbf3\x08\x97\xb5\xbe\xcb=X\xa0,\xc9\xc7@f\x03\x13\x95\x8e:g\xb5G\xbe\x89}\xbb\x84\x856\xad\x03/L\x8a\xe8\x10\x83\xdc\x15O\xc8\xf0M\xc2pM\x00\xe4\xa2\xf0\xaa\x0b5V\r\xef:a"\xfa$a\x1f;\xc5\x8f\xca\xc72$\xbaJ\xf8e\xaa\xf7"\xf5\xb4f\x8d\x06n\xd3\xe8\x98\x8fa\x17\x1e\xe7\x10I\xd0\xca\x1a\xfb\x91\xd4\xb4\x98\xb2\x8eFw\x9a$\x90\x0f\x1c\x15\x9f\xde\x97\xff\xc3\x00\xc2{\xeb\xb5\xce8\xb4\xf5\x0b\xf3\xf7\xbd\xbf\xc3u\xc1\xfe\x8fc3\tu\x99t2\x0e\x8a\rBN\xd8TvMTR\x03\x8a\x000[\xc9\x04\x1eUC\x93&\xbb\xf9\x1d\xe94G\xdb\xb0S\xf9\xa0c\x85)\x97c\xe8\\1\x14\x96eJ\xfe\xa9\xc4\xdax\r/.\xa1\xae\xa2\n\x9b8C\x17\xd21\xa6Sa\x8f\x11a\x08\x0b\x86\xb0E8C\x02\xa2\x0bn\xcb\xdfgO\xb6\xc5\xd0\xe0\xb3\x82T0\xe2Y\xecS\x00\xb3\x17\xce\x16\xc3\x8e\x9cD\x10\xe2\x88r\x94\xa7c\xd9\xd7J\x1d\x92\x19<\xcb\xf9D!\xb8c\xa6\xbf0\xe7\x8b\x94\x9e\xb9nH\xa7\xca\x11\xbbe\xe9 \xe0\xfb\x0e\xb6y\xf2.\x1e,\xe7j\x8b\xc8\x00\xc1|oS\xafn\xc6\xb1b\xde\x1aP4\x03TB\xf4\xd2\xf4\x9b\xea\xfc?\xe0\xda\xea\xf5A5\x10\xbf,D\xa2\xea`\x97\xe2\x13[\xfdJ\xaf\xce$\xad\xab.R\xbe\xe8}o\x9e`$\xba\xdb\xbd\x1dV\x83\xf9T%\xe5\x89\xec\xfc\xfe\x81\xf6\xef\x08\nN\xccb\xcdd\xd6\x80h\x81\x8e\xc4\xc9\xff~\xe1Sj\x89I\xbf\xcd\xf2_\x1a\xf0\t\xafT\xd1\xf7\xf4\xe5\x1c\x1a\x92\x7f\x8d\x06}\xc3\xfc\xfeN!cQW:P#\xd8A\xfa\xae\xb2\x8b\x8cUg\xd2\x1b8\xe4\x9b<\x1c\xd6\xe0\xe2\xd0\x95\xa3^\xd4Yw\xfa\x0e\xbb\xbe\xba\x03\xc8\xf1\r\x1c\x8e\xcb\x9c\xd7\x98}x\x074\x16\xeeY\xa0\xb54>G2;\x84\xe0\x08\xe5j\x7f\x02\x92\xfe\xda\xbaWco\xe1\xe6\x8d\xc9\xab\x06myyY\xb1i\x01_Q\x01\x89U\xf6\xc5;\x0e\x82w \x84\xc5\x86L\xaao{\x96SD\xfa\x00\xa19m:\xd8\xee\xee\xffjkQ\r\xb2\x88\x90\x8b\xc2^\xa4\xa5\xaa\xa7\xc9\xb6D\xe6\xc6@\xa8!\xa2\x88o\xc2y\xba\xc1\\#\x15\x99\xfa\xd2):\xe7b\xbe\xb4\xb2~*3\xb8 \nu.\xeaV\x16\x82\xabo\x97\xd9\x915\xbes4\x8b\xa8\xdc\xb1B\x91`\x93\x91~Uf\x86\x10Q`}\n\x81\xe8K\x82A\x80\\\xb7:\xd2\xb9\x00Rq[0\xd9{lG\x94\xc5o\xef\x8c\xdd\xb1\x17\x05\xee\xfa\xe6oY\x85\xf8\x88\xf8\xb5\x04x3Hc\x92}Q\xb8\n\xf2\x07\xad\xc7\xd2u\xcf\xf2M\xcb\xb2\xc2\x8f6 Jeudl\xea]Tp!Q\xb6;\xdb\xb7\xa8\x0b\xeb\xe1\x99%\xf8\xe2\xfc\x7fr\xb8]SY\xad5A\xd9D\xcd\x85j\x97 QI2\r5\x14d\x07H\xc5\xfcW!\x94l\x1fF\x98\x07\x80\xa9\x1dk\xeeV\xea\x87\xf6\x9f\x82gv\x08\t\x88\xa1(z\x0es*\xffV\xb2F-\x0c\xb4\x83\x9a\xdbf\x11\x1ek\x18\xbaguB\xef\x98\x01\x9c\x0e\xaf\xa9!i1\xcap\xa5\xaa\xca\x93\x9fX~\xf5\x97\xb7\xba\xa1\x0f\xe2ho\xf3\x83\xf2\xe0\xe3\x94Y\x10Z=\x13\xdef\xad\x97\xa9+\xca\x12e\x95\x0e\xe1\xc3~f\xf7i\x82;_\xed\xfa\xf6\xbb\x96\xf5\xe1\xf2_aR3\x19]\xacPj\xcc\xc4\x81V\xdf\xa1\xbf&!\xe8`\x88}\xbd\xd1\xfa\xe4kx\xac\xe3\xbf\xfe\x05l\x99r\x88$\xae\x9a\x16\x06\xad\xb4\x00\x87\xf3\xe7\xe4\xdc7\xfc\x1bLs\x16\x87r\xc0\x80\xa6\x96\x16Z\xb2Me4\xce\x16\x9c\xc9\xa4c\xbd\x97\xd9\x01\xc1\xf1F\x88Y\xb6\xab2L\x0f\xf8\x7f\x06\x8bT\xb6.\xd7\xe7\xf6l3\xe1\x18+\x94\xba\xfb\x0f=q$3\x89\x83eY\x93\x11\x10\x8dF\x96\x04\x96\xa7L\x04\x87M]\xe22\x08\xbd\x8d\x87\xed\xe7\xd8\x95\x15\x90\xe6\xe8y\'C\xb9\xe1\xaa\xd2\xa0\xa4DLA\x00\x8a\xee\xef5\x06z\x8f\x809\xc6#\xdf(\xf8#\xc3\xca@\xe0\n\x9bd\x06\x89\xd2\xd1D\xad\x0b\xd9\x9b\xadRYJ\x9e\x8e\xb0H5>c\xf4\xf5S\x94\x1d\xef+OQL[\xba9\xc2\x83\xe3\x0bN#\xe0aF\xf2Iz\xcc\x16\x93\\\x9d\xac\xfc\xe6e\xa0n3f\xce=\xca\xc9\x81\x80\xbf\x1a\x8cX6gc\xbf\xd1\xe1\x7f\xdbn\xd1\xe0\x9f\x84\x14\xbd*5^\xa7wEM\xdc\xf7A7\xbfz\n')
|
server.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
smoe.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Pyarmor 9.1.8 (trial), 000000, non-profits, 2025-09-12T14:31:07.823054
|
| 2 |
+
from pyarmor_runtime_000000 import __pyarmor__
|
| 3 |
+
__pyarmor__(__name__, __file__, b'PY000000\x00\x03\n\x00o\r\r\n\x80\x00\x01\x00\x08\x00\x00\x00\x04\x00\x00\x00@\x00\x00\x00wA\x00\x00\x12\t\x04\x00;a\xea\xb6\xeen\r\xe6\xfa\xe3_\xb9\x9a9U\xde\x00\x00\x00\x00\x00\x00\x00\x003\xf5\x87\xbds\x7fJ\x11\x8c\xa3\xff\xf1-\x17\xc1\xa0\xcb\x80\x83w"DT\xce\x90\x99B\xa9\x82\r\xc1IT$\x0b\xff\x14\xaa\xcb\x82\x1e\x99\\\x1f\xab_\xf2\xb8\xa2\xea\xd4\x8e\xb2\xdb\xa4\xa0L\x81\xdbs\x88\x92\xd8\xd0p\xfb\xd8\xaf\xf5\x8e,^F4\xb4\x86D$\x19\xec3\xf4/\xf3\xb4<#!}\xde\xb2\x8d\xe2\xed\xa8}\x1c\x96P\xaa\x1d\xd6\xe3p\x96V\x98\x05\x1f\xed\x19pGa\x94\x81\xac;K\xf9\xc2\r\x91\x04\x95=\x8d\xb6\xed\x98V\xea\xca\xda_d\x9fH\x9f-\x9e\xa9\xa6\xe7\xac\x01\xe0\xb7\xb7}\nD\x05\xaf\x85EhU\xe6HK\x84\xae\xb7N\'\xd1\xf9\xc4\x9f\xca\xd1x]\xc0.~\xf4\x91\xa2\xf1X\xfe\x99\xbe\xdc\xfbX\x82\xebk\t\x9b>}\x14\x91\x81\xdb\x19J\x01\xba9\xea\xcb\x81:\xc85\xacw\x89\x9c\xbd\xf8\x1dU\x17\xe1\x81\x15\x1e\xfaX\xed\x18\xe3\xebR\x1e6\x1d\'\xaf\xc6\x9e\xf6p\x86\xce\xda\xb8\x05\xbfd\x08`\xb2\xfb\\\x11\xeax\x9a\xa4(\xa4\x83\xb2Y\xff\xb1\xad\xc2\xf1\x14\xb8\xf0\xd5\x14\xeb\xee\xf5\xb9\x91\n\x04v\xae\x10\xd2\xbc\xe4\x83~\xf7I\x08\x1f\xeaJ\xc2\xc2\x06\xc0\xde\t-\xf2\xae\xcbTvA\x94"\xa7U\xfcL(f \x04@i\xe1\x80\xd78\x11gW)\x0c\xd6 \xa0\x1e]\xab\xde\xd8\xc6\x10:\x80\xa48\x1c\n\x8eW\x03\xa2\x8c|M\xe5E?\x1e\xbd\xf0\xfal\xf5\xbeH\x90:\x03\xd6\x1d\xde,\xe6\x94\x90$\nM\r\xae\x1f\xd6\x05\x85(\x01\x87y4\x153]Ak\xf9+s%\xa0\xb6\xdc\x82\xf3\x1a\x86\x1c\x01\xd8\xff\xb1\xd9\x00\xfe6\x87\xa8\x81v\xddv\xc7k^m\x8b\x8f#\xe6\xd3\xd1z\xa7 \x02\xe0\xe0\x02@\x9b\x8aX\xe1C\x82\x1e\xfe\xc1C\xb8\xd6\x08*E\xfe\x12/\xcd\x8c\xc7&\xa0\xe1V#\x88\xe7\xd6\xeb\x0e\x0657\xbc\xd8\xc8\xa4=P\xd6o\x940>\xd39\xd6\xf9\x1cD4\xd4\x15\xb6\x13\x19\x02D*?\xc0\x8f\xfc\x0eF-\x97\'\xed\n4\x83)\xb6y\xbf\xa6\x9e+\xa4[S;3c\x10d\xfc\x10\xc28\xb1\x14V\xb1\xf3\xd7\xe8\xcf`\xbe\x0c1\xf2\x15\xd6\xd22\xdbU\xd3\xbeb\xc7~\xcb\x1dE\x0f\xaf\x91\xe58\x0f\x1a\xeeD\xcdv\x8a\xb2\xab!\xb5\xa7x\x91Y@\xfb~\xf2\x816\xc3\xe1\xf4,\xbf\x12*\xde\xd3&\xe2\xcc:\x91\xe3\xc1\xdeE\x18\x91K\xce\x04\xfas\xa4j\x80_\xfbc\x13\xb6\x88\xc9\x83\x9c\x0e\xda\x82`.:\x13I\x00\xc7\xfe\xa9\x0c\x1e\xd9x["\xf6c\xb86\x12\xba\x9f\xe0Y\xd6\xfb\x89\x83I\x9b-"\x82V\x01.\xf1\xad-;8ce \x86\x18#!\xadS\xae\xbe\xf8\xf6Ip\xf3\x98|\xe3<\xf0\xe2h\x06\x8e\x03@\xa6+\x1e\x1b\xc10$\x02\xd7\xb2H\xc8\x0fE\x91x\xbeV\xf6x\xac~\x1b\xcb\x9d;\xbaM\xcd\x08\x9bo\rWc6\xdb\x98\xbf!,\xeb}\xe4\xca\xe8\xb3\xb1\x1f\x91\x95G:\xb3\x06O\x9d\xe15\xb3:D\xde\xf9\xca\xf8R\xcb\xe4*bS\xd3$\xfc\x95nJ\xe3t\x0c\xc1=\xd8\xd6H\xfa\xe0\xf5\x15\xe0ri\x1a\xaa6\x94,m\xe20\xb7a\x024\xdb\xe1\x08C\xe8\x11_\xb0\xb6\xc7\xd1\xfd:@\x1c\t\xc9\xf6\xdc\x7f\x05\xf7\x16\x96\x08\x1f\x9f?\x1f\x88-\x81\xd8\x85\xc3\xf9\x9c;\xb1\x0e\xe6\xc4v\x88\xe6wF\xcc\xd7\'7\xb2\xaek\'\x97\xd3\x85\xa8~`\xbe\xb4$\xab6>\xf8\xa6y\xfc\xd6eM\x16\xcb\x0e\x05\x10\x91"E\xc6`\xba\xe7\x98w\x86\xbc\xb1\x87\xa3 T\xcc\x91\xc8j\xcc\x7f\xfc\xf7\xf3\x00!\x04\xb4\x16Sy\xed\xa6X\xb1y\x1b\xa3\xf5\x16D{\x06\x01j\xa0\xfb?43\xd8\xc4<%j\xa0H3\xe2\x16^;\xc1\xbaF\x84\xba\x8d\x87\xc34\x08b\x8eA\xc5\xc1=\xe9\xe9\xecOG\xb5\x16\x05\x1a\xca\xbd\xae\xfe(\xdb\xb5:&&\xb4r\xc0=\x11^\xce\r\x8as\xe8\xf3\xb5\xae\xc8\xe6\xc4\x9cH5\x0c\x88\r4\x10ZWK`\n\xd8\xe7\xcc4\xb0\xfe\xb5\x12f \xc7u\xcc-!\xbd#\xe0\xe1\x1a\xa5\x9e\xebm\xc1j4J\xcfm\x98@\x9f\xb2\x80\x97t\x12Uq\'\x9d\xa0\x92k\x8c\xb2x^\xc6\rP\x82\xaa\x15w\x8f\x07\x81\xf4T\x94\xab\xff\x02\xe9\xcd\xec;\xfb\xe7N=\xf6\xd1\xa1\xd6A\xe6\x97\xfdm%\xfe\xe9\x9d\xef\x8bD\xf7\xa7\xe1 \xc0y\xf4A+\xde\r,\x82\xbd\xd0U\x1c\xae\x1a\xfd\xf7\x1e-\x05\x8bXD\xe1\xeb\xf9B\x07U\x82\xe9b.c\x07dq\xe6{z*#\t\xe9a\xcbU\x98$%\xcd\xd9\x15b\xc9x\x97}\xfc.p\x14\xe5]\x18(m\xb4\xe8\x7f\xce\xde\xae\xb5)\x8a\xfel\xd2\x1a\xcd\xec\x00\xbacu\xd0\x14\xb30Aq8\x8a\xaf\x9a]\xaa\x1e\xff"\xbf\xf2\x07}|\xa3\xa7\xd6oq[\xb9i\x1fm\xf8\xe0\x85\x1cv\xec\x00\x02\xe2\x9f\xc6\xea\x1e\xac\xca\xe0\xc1\x8f\xd1wD\x83\xec\x95\x8d\xf1$\xa4\xa1N\xd0\xcc\xe4\x0baa\xc0\xa9\xed\xc5\x03\xcc9\xde\xd4N\xd1\xec\x82a\xc7\x90e\x1cz\x89{\x05\xef\xde>\x84\x0b\x10\xcc^V\xad\x00\xc5rl\x88\x0f&\x17\x80\xd55\xd3\x83\x9b\x07\x99n\x1a\xe3\xbe4\x9a\x17\xf0S\xe099\xc6G\xe4B\x00sTa)\x19\xdd\x82>C\xcf\x96\x08\x07\xf1B\xb3\xc0I\x9c\x16{\xef` &-5\xc1\x81\x17\xae\x92\xb5o\x10"\xfa\xe8i\x1e\xa3]I\xa1\x17\xf1\x85y\xe3!\xdc\xf5g\xa97\xd9i\xa7\x87\xb4\xe2\x15\xc2\x0e0\x9e\\|\xaf\xcc\x8fv\xe9<\xcb\xee\x0bY\xc7_\xf4\xbf\xcf\x1e\xdcJG\x8f\x15\xc07\xb4\xe7\xce\xe6BJ\xea;\xa3\x8c\xa3\x9b\x1b\x8d\'\xc6\xef\xc2\xc4\xc2\xd2\x10U \x8f8y\xe4K\xaa\xe2H\xfe\x99&a\xd9\xde8\xf3\'\x19\x0f\xf83\x0f\xd7\xb4-\xe0\x1a\xbf\x83]\xcc*4\xa1\xf9|\x97!T\xde\xb2.\x9b\x8a\xb2\xf0\x95\x03\xea\t\x80\xa6\xda_~\xd8)F\xb3\x90|\xa5\xb3c\xbe\x9eB\xb0\x8bI\xe03\x8d\x86\xd7\xf5\xbf\xc7\xd4\x83\x92\xdcj\x0bgOy\xcc\xba\xc4\x10\xac\xf43\xfa\xdd\xaf\xbc\x95\x85\xben\xdc\xbe\xf4\xb9c\xdc\x12Ff\xe7S0\xc2\x8b?d\x085~\x17\xb5Z\x16\xc3\xea\x938\x88\xc4\x84\xf0K\xf5O|\xbf\xcfn\x8c\xf9;\x8bD\r-\xea\x1f9\xe8\x0e\x9c\xba\xa8\xc7\xdeP\xd6\xa5p\xf7\x94\xe5c\x88\xdb\xa3\xb3\xcfC\x8f<a\x8bfTrb\x1c\xa5\x1b\xb0\x80`\xa9-\x81p\xf0\xcd#\x1eG\x87\xfd\x8b\xccT \xd3Y\xff\xf6\xd24;^\x9a\xab\xff\x95\xdc:8OZf\\\xd0;\xc6\xaf\xbd\xe3\xcd\x93\xfdxg4K\t\xb1\xd8By\xf0\xee\xb4\xcc:\x02,\xa8\xce\xd1\xedpbW\x1c[\xa3\xee\xd9\xd3\x8f\x84u\xac+&0\xa7\t$\xe5QBq$\xc3LR\xd5\xdf\xe0\xec4\x05\xaen\x7f\x17\xbe\xd7I\x07\xd0\x9b\x0e\xb7\x8f\xbb\xf8i\xd2\x9b\x0e\x8d\xb9\xb2\x96_\xa8A\xdc\xaf\x80\xb8aL\x88j \xe7\xaapJp\xb8w\xc4\x94"|\xadx\xa9[\xc8\xc7\x81\xc8\x07\x859\x8e\xe9\xdel\xb63\x81\x96\x11\x1d+.\xd9\x06<\x94\x1a\xeex~\nL\xf15\xafdO\xf4s\x11b\xc2>\xa4\xcc\xd8\x11\xd4\xde\xfd\x82\x00\x84\x88p\x85\xd81\xd6\x0b6w$\x12\xc0\x10\xcdkl$\xd8[\xa0!s\xc4\xc1\x1e7\x88e\x8c\xc9WCi\x00\xff\xa1*\xdb&\\#\xe9\xbb\xc6\xe577\xaa\xa9K\xcb\x81Z.\xa5\xaf\x16>\x83{\xc2\x86\xa3\xf1&\x0bq\x02Vj\x18\r^():\xb5\xa4d&\xc8\x1b\xaa(\x12\xb4q\xc8\xf9\x91\x1d\x8c\xb3-YK\x85\xabp\xd1]\xaa\x17|?\x8a}d+ \xd4\xb7\x8a6\x1f\xb4\xb8\x92\x9a\xf8?g\xa2F\x95\x82\xd0[\xcc\x9d\xfa\xf8!\x8d\x85\t\xf9Q\xd0\x9ch\xb0!_cU\x95R\xbd\x8e~\x0cew\xa01\xff\x97\xeb\x02\x8a\x8e_\xfb__qaeu,\xb0\x90\xa0\x85vK(HL\x08\xa42\x14\x07\x97^\t\x98\xbf4* \xc1p\xf4b\xd9~\xd3$\xfc\xc7A\x8a\\\r\xc6m\xf2j\xe6\\\x80QD\xfc\x01\x87\x95\xe9\xc4\xa7\xe3b+5\tB\x94T|s\xe5\x15\xd8]t\x852\xb6`o\xc0]\r\xfd\xde\xb7\x158\xf0\xc2L\x80Is\x8f\xed=\xc0\xcb\xc5\xb5\xd1\xa5\x8aQ\xef\xaf\xfc\xa0\xd7z\x7f\xb2]\x86\x8a\x85\x01\xd2\xdf~\x80}lw\xd2B\x01\xdd\x9f\x81\x97\xb3\x94\xf7yD8|\x9a\xa6\xd8\x97\x1dT\x91\xd0?)?\xb9]/\xcaY\xd4\x93\xe9\x83rD\x80\xf9\xb0}\xb0[\xcc?\xb7\xeb\\0\xd9H\xac_\xe5z\x9dW\xdf\xb2\xd0\xdf\x97\xd3\xc9\x8b\xaa1d\xb6\xd8\xb8\xcbO^$\x18\x0b\x1f\x10\x9e\x08\xe9!\xd6\xb4\x1cp\x9df\x8b\x8f\xf73\xf9\xcd\x01\xd4v\xb2\xe3D\xf1\xa7dv\\\x9e\xdas\xd34V\xc7\xf7\x15%\xef\xbe\xdb\x1c\x83:\xd4\x92K\xb0\xe5R\x84\xf26FP\xbd\x13L\xdf\x13n\t\xa0\xe7wo\xd7\xd4<C\xaai>f\x9eF\x10\x05r\xf5\xf1\x01\xf0\x83\xcb\'P\'\x90\x99"\xbdb+\x1f\xd6\xde\x12ZM\x806\xf6(\x817\xafB>\xb0Yq\t\xdd\xb3\xfd6\x9bD\xf0`\x96\xaf\xf2\xbc\xcd^\xda\x9b\xaaa\xc2VT\xcc\x12k\x97TI\xfb@O\xac\xd9\xebIBc\x99\xe8\xe2tLm\x83(\rF\xe2#\xc1)\x9acg\x12(C!\xb6\xe3\x0cb\xde\xf0\xa1\x05m\x83\'Z\xc2\xc9R\xfa\x8e\xf6\xc7I\xb8\xc6\x83Y\x00Qf\xa6x\x11\x8c2\xe8\xf0\xe3\xfb\x01\xc1\xb4$\x9a\xedu\x94\xd2\xb5a\x95\xed\xf9\xf1\xd3z1#W\xc1\x97\xd7u\xaa\xde\x0c\xc8k\x03lW\xf8\xe7\xd8\xbf\xb9\xca\t\xb9h\xe4\xf1$\x0fEY\x0fq\\>\xd6\xe70\xea\xba\xf23\xde\xa5xt\xea\x14\xd5\x87\x1e\x02\xd3\xe2\x81j\x1f\xfe\xe0/\xd2\x01\xb2\xcc\xa1\xb5\x11\xc5\xffJ\x8c\x02`I\xc25\t\x8c~\xccK\xf5F\xbeC\xb4\xdf\xfe\xcal448f\xb9-;\xda\x06?Y\xe2\x06\xbb\x1f\xaa\x9f\xe8e\xa7\xc1e\xf6v\xc5\xe3\xa6\x14Y\xb4xQ`+D\xa1+R\xf5\x95T\x13\xc2\x99^\xde\x02\xa76)\xb8U\x7f\'\x16\xf1 "%\x8d\x1f\xf7\x89\xd6\xfd\xc2i\xc4\xadf\x15\xbe<aK(\xfe\x7f\x81\x96S/\xdcf~\xc47\xb0\xf1\xfb\x12\x9b\xb8\xcf\xec\x18\x89\xb3!\x14\x1f\xa3\xa3\xe4\x9dD\x96\xae2\x84\x8e\x87@\x16\xf4E\x84\xf6\xe2i\x91\xdb\x80Y\x9f\x14o\x9e\xbe7\xa4;\xe4\x13:\x17o\xee.\xee\xa3\x1b.~\xf5\x84j\x1a6#\x91\xf2;_\x9dd"\xfe\xab\x99,9\xd3",\xed\x188[_b\x89z\xf3\x18\x8bg\xdcH\xfcE\x08>\xb9?t\x1e;\xbd\xa8\xfd\xe1{\xe9\xb9\x99\xac\xf2\x05\x92\xabp\xde \xbf\xa1~\x9fsH}\\d\xab\x8d2\x0ed\x8d\xf6\xf6G.I\xe9\xd3\xa7\xa6\'<0&k\x89\xe4\x90\xd5\xbe\xfc\x12\x83\xb0Xy;Q\xf0\x1a\xab\x9a\x13\x06\xb7\xa9X\x01\x85W2\x91$\xb1x\xe9\xa3\xac\x8e<\xe9\x9b\x02\xa3\x95,\xd3\xff\xcf\xcf\xd0l(?\x8d\x07]\x15\x01b\xbdJ\xb2T\xd8k \xe6\x0fT\x99\xd5\xa8\x15\x88\xaa\xb4\xa9z!\x10m7t\xd6\x12\x97\x02VJ\xd1\x91\x18\x91\xeaATaw\xc2\xedW\xe5\xab\x88\x86\xc8\xcf\xf8\x03\x8d\x1a8%\xd9+\x18\xed\xd2\x06,\x90\xc8\x0fd*xF\xf2\x08\xf5zX\xa0\x7f\x8c\xcaZ\xf5\xa6`\x03\x80#U\xefwj\xff?\xa6/\x13\x07(\xb1#\x90\x97[\xdb\xa1q\x02c\xc9\x12\x08\xe3\xaa\x98\x87\xb7\xcf\xe9\xbb\xd9c\xf6V\x83jY\xbe\xcf\x07\xdc\xa9\xa9\x04\'-\x08G\x1bn\x8f\x0b\x1f\x10P\xe5\xa2\xfe\xcd\xbd\x8f\x8a0A\xa3\x1c\xb3%\xf8n\xa2\xa2\xccA\x06\x8e\xa0e\x89\xe6\xb9\x0b\xb2\xd7\xd1A\x96\x8f\xd2\xa4-\x9f@P-\xd1\x9as\xff{=\x91\x9d\xddWK\x18a\x93\xdd\xe9\x04\xb0\x0b\x90!\xf8\xfa\x10\x009\xf4\xd9i/C/\xc0c^L\xf5\tV\xb2\x8a\xaag\x11l1\xc5U\xb8\x95\x12?\xb1\xa7\x84S\x03\x00.^\xaa\xf8\x16\x15KF\xf9(\x85Ep\xa5\xb78\x03\xb6\xac\xb0\x949\x0e\xf5C\'\xdeE\x9c0\x1c\x9f\xb1{\xac\xbd\x8c\xbe6\x1c\xef\xa1!\x1d\xad\x1cdk\xa5\x141\xf5\xc5\x80\xb5\xcf\xa2\x8b\xfes\x83AFt\xe0\xa4\x00\xcb\xf0?\x8c\xcf\x88\x81M\xb2\x19f\x96D[\xb3\x1eaKJIO\xe9\t\x94nl\xe8#f\xff\x91\xac\xe0v\x06$\x91\xb0\x8f\x7f;^l\xa0\x05_<D8\xdeG\xf1\x96\xf8M\xe9\x7fh\x94\xccG\xf0Om\x882u\xacH\xd5\xfe<t\xc7\xdb\x9a\x7f-\x93\x14\xc4\x1a\x8b_\x87\xec,\x04B\xf4\xee\xd3\x1dU\'\x92i\xdf\xceHH&I\x99]\xb4\xc6f\xb6\xd6"jv\'\xabOA\xcf`\xd16f\xcbd su^\xa6B\x84\x11\x82\x8a\xccI}\xd3\xc6\xea\xd2\x9fZ?\xb9\xf3\xeb\x8c\xed\x92\x8d2C\x87<\xd6\xcd\x7f\xc6$\x14\xcfan\x89xq\x9b\xdfx\xa1\xee\xa0~\xddy\xcd,\xd2\xbf\xc8\xdcs\xa8|\xf8\xb2P @,\xef\x0f}&\x89\xd4p\x88\xf5\xea\xdeRxl\xbcy\xbe\x84\n\x16}\xc2\xb2\xf4Q\x05\xae}\xdb\'ur\x00\xb9fds\xae\x83\xbe\x03&\x07\xc24\xcd\xae\xe6-\xd3v\xd1U\xf0\x96\xb3\r\x1c\xf2!\x9bt\x15\x95\xc3\x94\x9c\xf3\xfbr^B\x1e\xbe$\xa7,G\xfe*\xa9m\x18\x1f^Z\x08\x9e\x0bI[\'@\xb4\x1b\x90\xbe\x992~\x05l\xa7\x94\xd9v\x18\xf5\xe60\xf5\xe7\xe2\x8d\x90\x1b\xb8\x96\xd4x\xc2I$\xd9\xc7\x8ck,$\xee\x87\x7f\xbfZc^\xbc\xb9\x05\xfeVS\xd2\xb4\xee(\xf4}e\xe9\xbar9?\xf0+\x90\xca,\xad5<\x87U\xd8\x81\xf6\x00ZU\x08=\x85\xbbD;\x86v\xe5\xfe(D\xae\xf9\x83K\xb1\xddP\xba\xf6\xab\x01\x1623|\xdd\xa5\x12-\xf8^\xbf\xed{k\x80\xef\xf1L;\xfe\x81\x0bTy\x83V0\x99\xeb\xe2\x96\xeb\xf6\xc97e\xd9\x8f\xbe\xa3\x04\xc9U*/\x87-\x8c[\x83\x9e\x89\xab\xfe{Y\xack\xf7\xf68\xd9\x98\xd1!%\r\xfd\x91\xd8j\xc4:\x1b\xe9GRI:`/\xcb{\xae\xcf\xbf\xba\xe7-\xbd\xfc\xec\xf8\xf7\'\x9c\x10\x0e>`\xf5O1r\xf8\x8b\x1fs][mel\tN\xe5\x07V\xd5\xfb\xa1\x10\xfc\xa8\x8a\xd9y\x1d\xa1\x98\xb5\xe8(vk\xd4\xbc\xba\x02\xd7\xe4Ua\xb0}\\BM\xbe\x03\x94\xf6\xe9\x9f\xad\x8e\xd4\xaaH\xc9:\xaf\xf0\x88\x82\xa1\x99\xed\xda\xaa\x03\x00\x89\xc5\xbe\x1c\xd0\xdf\x08\x9d\xb1\xfa\x14\x9a\x1e^\x90R\xc6\x1a\'U\x12\x91\xd80\xde\xf16PII\x02o\xb7\xc6h\x12\\A\x95OY\x95c\xd3\x8f\x8c\xc4\x1f\xa7rn\xccz%jan\xa8\x17\x8a\x96\xc4 \xdeTr\xb8#\xea\n\x1fF\x88\xa4qG\x9a_hT\xda\xdd\xc1<\\\x14\x96gI\xb6\xfa\x92\xb7w\x9a\x06,oS\xb08\x86n\x1e\xbf)z\x881\xed\x90\x1e\x01v\xd3\xda+\xe7`&8\x00A\xff2+\xb3\x0c\xc2\x92\x0bx2\xf0\x16\xf1\x87\xafzkX\x87\xe0\xb1x\xdfQ{\xdcy\xc0x\x9b\xa0\xfa\xa0Z\x96\x0f\xa4K\xdbJ\x1f\x1e#\xf41=\xb2\xdf\x86tt\xeb\xd5K@\xd5\xee\xe5\x89>\n\x89\\o\xe4\x0c\x9e\xae8:\xffF\xc3)|\xce\xc5\x95q&2,*+\xd6\xe3dq\xc98<\x8b\xa3\x9fF\x858ha\x0cC7\x16\n=\xbb-L\xbb\xe8\xab\xa4[\xd8@<7yoBWn\xf5\xc1\xa8;\xd7\xdd,IW+H\xcc)O\xa7\xd1:$b\xe6`\x10\xffL\xcc\x8fR\xbev\xd6\x9d\x10\xd7\x1ec4\xc5\x1eOS\xe8\xef\x04x\xd8 \xe9\x83\rY\x9f{S\xad\n\x04\xc9\xa1\x99=g*\x0c\xe3|\x993U \\y\xb6\xb8O\xd0\x9f\x08\x14\x85\x0cK\xa8\xf4"\x89n\x19\xfe\x92\xf8 -\x97]\tZ\xfd\x9e\x04_\xc4\x8e\x81\xe9\xeb\x86D\xf8\xba\xb2\xbd~\xad\x8c\x81\xcc\xd8L\x8b\x918\xff\xfa\xbb\x8b\x1a\xefE\xd0\x1fd\xef\x96J\x86\x1b\xa0\xa1\xdc\\\xc6\xda5 &\x97G4\xfe\x80\xa3\r!&\xe1\\.b\x05\xbd\xde\xdb}\\\xcd{\x04\n\xfa\xce\x10w\xbf\x12\x06\xda\xa1\x10\xea\xb0\xf1\x01\xbd8\xd05\x8fP5\x86\x1f\x006\x14\x99\xd3;\xb3TN\x82\x9c\xa7\xfe\xee\xb3\x92\x13\xcd\x9d\xea72\xb6\x9d\xfe0\x18\xa5\x9a\xaf\xdf\x1a"\x9f\xaf\x0eD\xee{\x87\xdd\x94\xb7\x87\x9f\x90Y\x02C\xaf\xfeS{1e&\xee\x97\x9e\x87\xeb\xb8\xe7\xca\xbd\xbd\x05\xf0\x94\xaa\xc56\x8f\x91\xeeY\xfay\x88}\xfeL%}\t\x17\xe3\x0f\xb2\x1ez;\xf4\x1a[lk\x06\x17\xcd\xb4w\xd3m\x11\x9c\x0e^\xa2\xb5\xc63j\xf9\x1b\xcay\xb5\xc9\x87\x1f\xd70\xe9\x11\xff\x8e\x88kD\xcfhP\xc4\xd8t\xca\xf9\x19\x97\x8a\x16Q\xc5\xc9~\xb5\xb3e\x93"\xefm#kD1A\xa5\x0f\xb6\xfc\xfb^z\xf3@\xae\x12\x9dF\xfe.\xb3I\xcf\x18\xbc\xae\x7f\x08\xe5\xc5OX\x99\xcd\xa1\x92\x8e\x81\x90\xd6\x96zA\x12!\xb5wI\xaaQ\xfcNUu\x88t\xb5#\x87Dq\td\xb7!C\xde$\x0c#+42W\xd3\xad\xf9\x9f\xe7\x8e8\xde\x1d\xac\xca}\xda\xa5\t]E\xc7z\xb6\xd7\xcb\xc9\x02W3\xa0D\xec\x96b\xfd\xd9q\x00\x11\xa2@zX_D\xee\x96v\x90\xe7\xdcW\nR|\xb9U\x9a$\xba\x9f\xaf\xeaK\xe02\x85\xd0\x9d\xdcQ\x0b1\x11\xa1mso\x03H\xeb\x06\x8d\xd3\xf6(\xe1\xf1/\xd9\xfeS\x02/(_DK\xfb|\t\xcc\x1c4g\x12\xe4\x06wR$A\x86U\xb4Z\xf6J\xda$E\x10@\xa9NT*\x8bG\xcf\x01\xea\xe8==%\xa9aw\'~\x82q7\x19\xab"}[vTN\xffN\x06\xe1\xb6\xb5T\xb8\x91\xcb>\x08h(\xcdf\xcdG\x9b\xec\x14\xcf\xea\xd5\x03-\x10Wp/\xc8\xa6\xe7\xc0\x01\x11\x00\x12^\x96\x86wL\xee\xc3\xc7\xc7\x03\xd6o\x1bEd\xff\xf1f\xa3d\x84#\xd6`\xc0\xdb\xa45\x8dG\x83\xbf\x03zV\xad1\x00\xe2\x1d*\xc6ykX\x12\xe5@E>\'8\xe2H\xb6\x1as\xfd K\x8d\xad\x0bMls\'\xb8\x03{D\xb6X\xa4\xa4s\x1f\x8f\xc9y\x99\xb1\xb6]Y\xddN\x9f*/\xf1\x8a\xdb\x97vx\xac\xc4d\xa1zi\xb4\xc1\xc2\xb0B\xc7L\x0fD\xcc8^}|N6|#\x8e\x11\xc0|\xf7-\x9e\xc1>\xd3\xb9\x0b\xb9\x1e\xe9\xd8\xee1s\x87h`\xb5\xd2R\xb9\xa7\x17s\xf7l>\nz\xf6qT_9\xd4g\xc2^2\xa9\xcf:\xf3E\xe9\xc1\xa0\x9e\xf2\xa2{\xe2e\xfdG\x08o\xed%\xfck\xd4\x10\xba\xabV0b\x10\x0e\xa4c\x08\x17<\xc1p\xe8\x1fz-\xfd\xc2\xaaax\x1f6\xb3F\xa2A\xed\xf0\x10\x8d\xb1\xae\x1cV\x82Q\x89%\x16\xde\xe7\x0f&\x07#\x88\xe8\xc2\x1b*l\xea\x95\xe6_\xb8\x1c\x92N\x04E\xaf\xdd\xb9\x1f`\xfb,"\xe2\x8d\xab:\xa5b\t0N\x92\xb5\x95Y\x98\xc3\xd9\xc8\x00~\xdaQ\xfb:\x10\xd5\xbf\n\xbc\xa8\x82\xb6\x88\xbe\xbfQ\xdf,\xfc\x15\xa0n\x1f\xe4\x94\xadk(\x92\xa0\xecs\x8aep.mX\xad\x02\xe6\x8e\x8d\xdb\xf1\xed\xbc\t\xc7\x1a\x90\x93G\x026\x17v>\x0c9\xc9r\xbe\t\x8d\x911\xaeXn\xb2z\x8b\xc8\xb8\x08N\x8d\xde\x90\xf6\xdfs\x0f\xd2k-\x18\x03\x18),\x93|F \xeb\xf1:\x03\xec\x82EE\xa7\x82\x9c\xc8\x99\x8f\xe4\xae)yo\xb7\x90&\xe7\xfa"\xe0\x1c\xb6\x994\x16x\x9d\x93\x19\x1e\x00\xfa\\\x01\xd7\xc3E_hK3\x1bu\xb0\x98g\xfb\x10\x17\x1fZ\x86\x0c3{o\xa8\x14\xd1r\x1a\x8a\xc2\x08\x0e!f@\x05\x9f\xd1\x95\\\xb7fZ\xc5\r\xea\x15\xe3\x05&\xe9\xeb\x05\x02`\xe9\xe0\xc8y\x8f\x9e]\x02,\x84\xb6Y:d\xbf\xe8_\xbcuv\xe4\xf0Il\x12\xfd\xd2\xc7\xa7\xb5\xe9\xc5\xef\xce\xf7\x8c6\x85J4\xca\x11sw\x17\xf6\xbc\x84\xd2i\x81\x87\x07\x11\x86\xffj\xe8\x93\x14\x87d\xf5\xf6\xf3a\xf8\xadY\xa0\x973kqZ\n\xddt\xa5\x9a\xd5\xb7_\x06\x0e\r\xa6#\x05\xf0\xa0\xf2BF\xa3!jy!K\xc7\x06\xb7\x1e\xba\xce\xbc\xd9\x8405\x8f7\xd4\x9b9\x1em\xabE\xe3\x9c,\x1a|\x1cZ\xcc\x18\x12Gv\xbbm\x8aP\xbf\x89\xfa\xe0\xe5)Kp\x0bP\xff!\x9b\\J\xfd\xd0s(\xca\xb0v6\xc4\xf2\xf6W\xe4\xcb\x88\xfe\xc2\x80\xb5TrO%\xed\xceY\x0eI\xca\xfc\x88\xaco\xdb1\xf8\xac\x83z\xa60\x94\xfdA\xcc\xd4\xa5\xa7ab\xd94M\x83\x066\xca\xff\xfe\x11\xef\x08\xf5/t\xcc\xcc.j\xa1\x94B$\x00\x07\x15\x07\x15\x93&{v\xaf3X,\xeb\xb0\xe3\xf2\xd5p\xc3\x07\t\xd8\xc8.\x97\x9c\xcb\x17S\xac\x0fM_G\x9f\xdd\xa2g)Fqa\xb6\xb8O6\xe3\\*\x13\x1f\x1ad\xc5i-\xcd|N\xd5{V1p\xec\xc4C\x01\\\xd8\'AH$\xfe\x86a\xb6{\xb7=^X%\xd6\xe5\xfe~\xd3\xc7\t\xa8\xb5\x8fG\x86.j\x8e\xe1\x91\xb4\xca\xae\x10\xdf2\xef\x11\x86\x83S-\r4 \xc6\xe5\xa0\x0c\x97\x14\xbc\xe4\n\x80b\x06\x8f\x18.\x92\xa5\xc9\xa64+_\xd7\x9e\xa0.\xccjr\x85\xf5\x97\xb5H\xc1\xa1\xcfDd\xc3\x06\x137\xe3\x1a(hH\x12\xd0\x08#\x1e9\xf9\xdec\x9c_\t^\xf8\xbf\xcb\xd9\xb6\xc18\xf0\xb9UI\x89\x87\'\xc2P_\xdf\xbf\x17\x8a\x1eu\x86\x8b\xb6\xc5R\xea^D^]\xb1LX\x17\xef)\xd0Q\xc4_W*6&\xde\xc5\x85\x85\x92\xa52\xdaj\xad\xd0\x1d\xf1\xb7\xa0\xe2\x83\xdb\x8a\x8eS\xee0\xd6\xb4\x04\xe4i\xb3\x14\xd8@n\xbc-\x87%\xbb\xb5p\xbf\xab\xbf\xb3{\xb1;\xfcsQ\xca\xab\xe9\x15\x07\xe9b/\xb4}\xc1\xd2lKV\x00my\xf9\\\xe3\xe9\x90#\x935)\x9c\x99\xaa|\xfePbr\xfd\xf4\xc5\x97\xa9$8\n\x1dRt\xd6\x1c\xda55[R?\x7fI\x92\xd7\xce\xcd\x84\xa92\xb9v\xeaZ\xfb\xe4paK\xe1\xe1\xd3\xe8\xf5\xc8yr^\xa2/\x118c\x0fT\xff<\x07[\xd5\xc1i\x91\xa6FT\xffxK8{s\xfcW\xd3p\xbe\x17\xf3\x1cS\xfe\xa4\x95C\x12\xa2\xce%\x00\xe4\x00\xe6Xh\xa4K0=\x10w\xcf\x1ew\xa2re\x84U\xf3]\x1b\xbd\x9eq/\xa1\x86\x0e>\x97\x1f\xe3\xc6\xba\xc9\xc6\r\xb8\xc3\x9c\xa6\xb3|\xdc\x15\x9c\r\xd6t\xf4iC\xe3\x93\'|\x85\x08\x91{^\xac\xc3\xcb5\xce\xa5\xa9L\x93\x04N}\x97Wi\xcc\x97U;\x00\x8d\'C?\xddVw}\xf0\xc1\xaa\xb0\xc3\xd0\xb1\xfc\x9db\x9e\xb0\xf5\xd5\x8d\xad\xed\xf8fuC\xa5\xa8\xd3\xbf\x18z\x8bdJAA\x88\xbcP">\xd9ll\xf2\x9di\xc6b\xe9\xda\xc4\x1c+\x91\x85\x7f\x97g7\x8d\xfc\x9d4\xf3\x84K\xa8L\x94\xba\x8a\xf3;.\xb0,\x8c\xe9\xd5\xfa\xc9k\xc9\xd5\x98B7+\xe2\xc9\x14\xb2A\x0475\x1ejya\x91z\x106\x06.\x14\x12(E%!\xf7\x9d\xba|\x92\x9b[\xa9\xe9\xecgzlcO\xee\xd0\xe7\xb4\xdf\x96\xd1pm\x11\xee\x93\xb1uz\xb1X\xd4~\x18%\xf2N\x93)\xb7\xe5\xa1\xa2\xd7\x0c\xcd\xde*\xef\x89\xf0\xfbzoz\x9a\x000\x94f\x17\xdb\\\xfb\x90\x19\x8c\x98\xbfL^\x1d%\xdf\x16L\xe3+\xacl\x98\x907\xdd\x94,u\x80\xe3&\x1dND@q\xc1G\xd5\xcf\xbc&\xe8/\xc1tB\x07\xe6Z\xcc\x8d\xfeu5!\xa6\x14\x91JmuW\x96\x16\x05\x7f\xd3I\xe0\x88\xb6c"o\xe7M}-\xae>\x9a\xce\xa5\x19\xcd=~\xffdr1\x7f\x86\xa3M;4\xa2\x89\x15\x0fa\x96\xecS\xe4).\xe0P\x0b\xe6\xb5\x8c.\x907\xb5\x91\x0e\xfd\xf0\x0c\x90\xec\x87\x9b\xe7\xa8\x0f\x95\xbbYe|Z\x1d\xf6\xa6\xf9\x9d\xeb\xffEm\xe7\xcf\xbb3eC\xdeXm\xacO\x93X\x05,,\xc7\xd6\x02\xdf<\x04\xe5F{A.\x00\x15\xd6\xa8\x92\x89\xba\xc6\t\x1b\xde\xeb4vI,aC\xf8n6\xf0"&|F^\r\xaf\x0b\x03\xef\xd1\xae{w\xc1L\x81\xb7\x14\x15E\xaf\xa8g0\xe9,C\xa0\x97\xf1uT=Q\xc4\xc3\xb2\xc1\xe8\xccEx\xa6\xe3c\xcb\xd4!]\xde\x8cE\xd5\x8d\x0e\x93,\x18\x14\xca)\xbe\xd2\xc9\xcd\xbd\xa4\xbb\xb3\xab?\xf9\x14>&J\xe8O\x9f\xa8\xf5\x89\x95:\x8b^)\nd\xb8c\xdf9\xaf\xe8\xf628\x06@f\xcb\xde\xe1\xb3B\xd6\x1e$,`\x1f\x84.\x974\xd0\xea!\xd3\xbe\x91\x117#\xc2;m\x8c\xe6\xb4\xff\xe7\xb8\xd9\x82\x97\xda \xaf*R\x94OG\xcb\xc2(1\x94{}\xf4\xf0b=\xcbm\x85\x83\xe5\xd2\xdf\xaex\xef\xeb\x05\xeehX\x87a\x04\\\xba\xf3/\xe3w\xa6\xabz\x9d\x87\xe0\xc5z/\x915\xb5}q8,p\xe7\xb1\xd1\xd0\x11\xe1\xc2\xc25E\xed\xa0\xec\x9b\xcd\xf3/\x85\xfaK^\xc8gQ\xc3YC\x9f{.\xb1\'c\xb0\xcc\xa9\xbd\xbc\xc2\xe7y\x1f\x86N=\xc4<\x0cK\xef\xe0\xcbz\xe7@\xbaw\x0f\xa4\x01\xe6\x94\xed\xb0\x96\xdbc)\xce$8<\xe7\xe9-V\x15?\xe9s\xea^91r\xc6k\x15e\x03\x843\xe0z\x1e\x8f\xd9\xc7\x06v\xa02\xc9@\xe4\xb0\xb89\xa0\x7f\xb0\x8a\xc4:\xfc\x1a\xce\xdd\x18_|\x89\xb4E\xe7\xc8\n\xd9^\r\xdc\xda\xb5\xc9^\x99E\xb2\x1f\x83\xa0J\x9f\xb27\x10\x99\x16\xb5(\x88k\xf2\xf0q\x86\xd45\x91\xc6\x96\xa9+\xea\xea\x03]\xf7A_j8_\x14\xcc\xb3\x8bf\x89iF]\xffD\x8e\x91\xa4\xa0\xb9\x9a\xca\x98\x94\x1c\xfd%q\xa4\x1fG\x07\x0bv\xbf|#H\x16\xcfV#\x9dP\xa5)m\xde:J\x07J+\xf8\xb94\x0c#-\x99\xba\xa7\xafa\xef\x14,G\xe9?\xb3sh\x116Q\xc9\x14\xde\xcf\x88w\x0fd\xf3\x1c3\x86\xe5/f\x9f\x90\xd4\x08&\x8aL\x1b\x1e\x14\x03e\xdbA\xa7\x9d\xb3m_3AzH\xe1\xde\xa8\x82\xa2\r\xee\xde\xae\x82\xa8\xa7\xd9H%V\x14\xb9\x08\x083\x0f\xf6\x83\x1b{\x82\xd5u4\r63h\xe3(i"\x93D+0\xccf\xcdY \x99\xa0\xbb\xfbF\xc0yAz\xb2\xa0\xc0\x93\xb4\x89\x8e\xe2\x06<@l\x94\x14\xe5\xea\xde\xd2\xa9\x95\xf2O-U\xdepH\xdf\xa4\xa1\xad\'#^\x8d\x97\xc1K\xddT\'\xae\x95*5\xa5L\x1b.c\xb3\xc1`b\x1c\xfe\x92i\x9d"\x8a\t:3c\x88\xa7A\xddE\r\x85N}a\x84\xc6\x80\x958\xcf\xacLbY\xee\xa9?\xc4\xee\x0bB\xedx6\xae\xb3\x13\x1fjH\xc4R\xb4\xc8\xe4\xb8\xa8k5\xdbV\x80 \xb0\xfd1\x92\x9e\xdb\x06%g\xdb>I\xfe+K`\x11\x1a\x12f\x83\x1e\xd1\x00E\xe9\xa6\x08s\xce\x10\x11\x01\xbe\x93]\rOH\xff\x88A\xc5O\x86*\x8b\xaf?i\x88jaP\xf2?\x00~[X\xa2\x82\xd0p\x97\xbc\xa4l\xc6R\x9a\xb2\xaas\xdf\xa3\xd2.n\xcb\x8e\x97\x15\x98\xed\xb8\xa1\xc3\xa0H\x17C\x87}v[WV\xb4\xf5*\x80\xcb!@\xec\x01\x14\xa1\xd2\x99!eA\xcao@\xdb\x8f\x13\xd3\xd6\x92e\x90)|\x90\xb2f\x9e\x82\x84\xc1\x8d\xd7L\xbclT\xe0Q83\xf6X\x01\xb3\xe3\xa5#\xfe\x93K2<\xa0\t\xda"x\xa6\xbb\xbf,(M\x91Q\x93\xc6!\xe0\x9f\x19\xa2G<\xef\x90tS\x1b\x9a;\xef0L \xcf\x05\xcadEr+\xb9|8\x93"\xdb\xbfl\xf4\xb2Gw\xe0\xac\x9bl:n\x81\tn\xd7\xc6i\xb2\xf9\x88P\xdf\xd8\x17\x08\xe0\x9a\xedR%/\xb7\xd8\xc4\x01BH\x83\x0e\xd0\x1d93\x98\xf1\x8e\x92a\tJw\xf0N|\xf5\x82\x05\xe4\xc3p\xe4\x1b\x01jHP_N\xa5.\xb2\xbc\x1bR|\xd4\xe3yn~\xe3A \xe1X\'\xe0L\xfa\xf0H\x99\x833\xcb@\xa4\xbf\xf5E6\x1e\xc1\x80\x16v\x1a\xfa\xfd\xc8E\xa7,N\xc1\xf7<4\x82>E\xbc\x05\xc3b\x98\xef%\xe92\x84\x87\x90\xfa\xabM\xf8\xf5.\xb7*Hw\xc86\xffr8\x08z\xda[\xfa\x8fF\xda>\x1a=\xd3\xdc\x8b\x13\x8a\x1ed\xcfB\xd9\xa2\xec\xed\xf5_\x9c\xfa&\x97i\xce\xdc\xa6\xd6\xb6\xb5\xcdjJ\x983\x93\x06_N\xbd\x92\xb1\x9fs\n\xeb?\x9c\x17\x9ah(g\x05\xc0\x17-\xf0O\x8b)\xec\x04\t\xd0\xf5\x92\n\x89\xd3\xe6JN\x9c\xae&\xcc\xb4\xfa\xf1\xd5\xa2\x10G\xd9>\x89\x17\xd0^\xb6\x1d\x06\x88\x7f\x08]\x0e\x81\xf9q/T\x1c\xb9\xb4\xee\x19\xe9\xc1\xb9w\xb3N B9\x1f\xa2\x05\x9bOB\xc1\xbe\x0fu\x15\xc2\x04n)yl\x89\xaag\xc0\xc1 \xd7\x03cz\xafP$l\x0f\x9a\x0ce"&\xcd\x94hb\xf4\xb7\xde\x98\xbe\xd0\x9c\r2\xf9|\x7f\xa9\xd7n\xe7\x81\xcd\xd2;5\x8d\xf2\x981\x87\xda\xf8\xc1\xf8\x97\x90Y\xa4\xe8le\xb2\x83\xc0`\xdf\xa1,\xb6\xf7\x1d\x98.\xa8\xfb\xac\x86\x8e\x0f_X\xad-\x18p\xd6=g\x0c\xdafs\x13\x99o\xcd\xf8\x9c\xa7L\xb0\xd6T,\x0e\x9c\x8d\x00\x04\x06\xd7RV^~\x86h@\xb9\xb5M\xff\xc8)\xf9\xbcn\x9b\xce\xb0L\xf5(\xaar6v\xe0\xd9\xf6VD\xb5\xe6Pf\xd1\x03\xad\x80\xdd\x1c\x92\xca\x0e~\xdb\x95\xa5v\xe4:\xc81\x842\xd0\x9f%\xd4.<n\x9a\x8c\xb4\xe3\xb7\x85\xbc)\xb0\n\xcb:\xca\xcb\xa1fo\xd6A\xba\xd3\'yb\xea\xc29^P\x9ei#\xac\xfd\xad\x84\xbe\xa1ir+\xe5y\xc9\xafq\xd7zh\xad\x99e\x1dj!\xaa\xd1\x81\x84}q\x80\xb8*\\A\xbc\x93\xc8\x14\xcb\xf1G\xa7\xaa}\x87T.\'w\x97c}\x05\x19\xb3\xd4\x7f\xef@\xcb6A\x02rn\x89\x07W\xde\x0f\xf8\x8e\xb8\xae\xd3\xa3\xe0\xb6\xbc\x8do\x8f\x1ce\xbd\xc2e\x91\x1d\x10j\xb6\x7f\xe8M\xa3\x85\x07H\xa3\xf2\xf3\xe42\xd1\xef\x83\x0e\xea\x00\xafv\xc9\x13\xb0N<\xba\xef\xe2\xd1\xadzv\xefi\x98#\xcd\xa1\xeb\x068\xe4\xb8\x04\xf1\x86\x93\x00\x96\xc4\xbca7\xd6\xda\x0fZ\xa5\x16\xa7N\xb5\xbd\x92HTZL\xde\xfe\xd5\x07zjA/\x84e&\x91A\x94\xb0E}\xbe\xcb\xa6.\x8a\x81\xdeH\xb6\xc6\xef\xc1)\x07x\x9b\x04\xf2!\xb7\xf96\xb1\xbd\x9d\x9f:\x9e\xb1\xcb\xaf\xdcp<\xf3\xcdC%}\xfe\xac\xcd\xa1\xd38Q\xfaSH\x15s\xa6-ow\x17\xff\xdd\xc2S\x8f\x9e\x9eL\x8cQnAtTn*X\x82a\x0f\x0e9\x9aq\x95\xbc\x90\x11\xfa\xe1\x15j\xb4\xc9\x85\xb9\xef\xf39JZ\x89\x9f\x00\xd4\xd1\x87/\xe9\x8e}$\x7f<\x0e\xe3\xbe\x92\xf0\xeaM\xae\x080\x0bq\x8fX\x05\x9a^0\x07\x8c9R\xd6\x9b\\|\x19\xd8!\x045\x9e\xa0\t]\xfb\x1a\xd97\xd8D =r\x8bv\x04\x0c\x89v\x18E\xba\xff\xe9T\x16\xedE\x97\x99\xb0\xfd\xb9\xa6\x06\x8as\xf3\x9e\xc7\xefD\xe5\xf7\x19\x06&J)Z\xee\xf5\x0e7\xb7z\x0e\x97\x0f)\x86\x1b\xa0\x8f\xf1 \x04\xb3\x87?\xc8\x0f\x05\xe49Hj\xf0iG\x17\x99K^\x9e\xe1\xb1\x90\xef\x81u\x06*e\xe6\xb7\xe8\xccd\xfa9\xe29\x82\x88Xvk\x80\x1d*\xbbl\xbd[\xcf\xe5\xeb\x9aGV\xe1X\x02\xc3\\B\xd6\x9a\x18\xe4)\xba\xd1\xf3\x82\x9c\xf1\xae\xc7\xc1\x91I\n\x85E\xd7\xd7\xfaX\xa6\xf5\x128\xf4\x17V\xbc\xdf$\x17\x83\xfa-\x15\xee\x16\xf5\xb1\xc5\xfe\r\xe3\xd0\x97+Q(f\x15\xdf\xcc.6m\xb2H\xc3\x03\x9e\x08S\x9a\x12\xdd\x91b\xfc\xfa>\x9f\x1b\x1a\xeb\xbc\xabI:;[\x1e Y\xa0\x85$\xe0\x04"\x96\x15\xde\x15m\x94\xf7\x91ZU2\xe2f)\x88\x87_\x18*P\xe4\xa7\xc8ac1\xf5y\t\xb1\xb1\xda\x91\xd1\xac:\x1a[\n\xf7\xbf\xedQ\x1b\x9c\x9e\xdc\xf7N\xdf(\x17{\x00\xa1\xa5\x1d\xdf\xc9\xf3\x92\xbd\xd6\xae6\xa8\xd0\xf9W\xe7\xcb\xb8\x9a\x94C<\xf4w\x12T&\xfd$\x14\xfa\x93o\xb7\xe5\x92d\xd0\x07\x1e4I6\xdfU.p\xac\xaa\xb6G\x1c^\x9c\xfa\xd8\xaeL\xbf\xe4\x8f\x16\xe6\xe65\x99)\x94\xa3\x11Bfs\x80\xffa\xac\xe2cYR\x84\x83\xb7Z\xf6G\x86|\xda\xaf\'z\xdf.\xbf\xdd\xa1\xcfo\xf2\x1b:\x0b0\xea\xd9/\xb2\xbf\xa9\x95X\x01\xcbl\x19H\x8d\xd2M\x10\xf9n\xb5U\x91\xf4\x0c\xd3v\xf6\x17\x04\x13 \x7fL\x90\xfd\xc2\x83\xc8\xa2\xa8"\xf8\xa6GXL>>Kj\xbc"q\x9c\x17\x84\x99\x8b\x10\x00\x96j\xb5\xd7L1\xcd\xdfb\xd4\xb1(x\xdb\xcc\x9a@3m\xaeb\x92G\xef\x19p\xf2nr2N\'E\x94s\xc8]\xc1\x85\xa17\x98\x9c\x06\xe6\x8c\xd9R\xc1\x19d\x9a\x9f\x8c\x88#\x1a\xe8n\x94\xdd\x89\x8d\xceL\xcd\x86\x18\x1bl\xc5\xb6\xc4\x13>S@\x1f\xea\xff\xe44\x97\x8ax\x92\xce\xda"d\xd0 d\xe1\xff\x83\xf9=\xc1\x914\xf2\xde\x1dVQ\x1cv\xca\x10\xce\x07qB\x13Z\xcb\x1d\x9bT\xe7}^\xedE\x1a(\xf1\x91dO O\xfd\x91\t\xb8\xf5\xb2\x9bG\xd5\\\xce\x1d\xeb7\x89\xe5\xb7\xdf\x1dNt+\x1c\x947\xc4W;\x95~B\xd4o\t\xa9\x9b.]n\xcd\xf9\xa6\x8d\xea\x17\xcd6w\x9c\x1dX(\xe3\xe70\xcd\xe7\x8b\xc2\xf9\xa4\x19\xaf\xf3\xc4\xac\x88\r\xbc\xd6\xe0\xbb+sE\xa2L$O\xe4gr<,\xff\xdb\xb1\x02\x02\x19\xca\xf7\x1b\xfd+dY\x13\xede0\xc6\x15\x9d\x1a\xda\xd3\x8a\xf2\xa5\xfa\x85\xaa0\xb3$E\xbb(\x07\xacS\xa3V\xba\xdb\x0bv+H!I\xe2\xde\x9a\xa0\xfb\x86\xf9\xe32\x16\xb0vF\x87`P\xb9q+\x16\x07\xa3di\xd5\xee\xe4x`\xe6\xe7\xa9\x91fw\xa5\x9cdi\x8e\xe1\x8cC\x8f!p\x1a1Rb\x13gC\xd9\xd3\x17\xd9:O\xa0oZfoD\xdb\x88\xc6%\xd5ZNl\xdc\xb1V?\x80$\x8e\xc1H\x1b\xdf;x\x0e\xe3:\xa0\x13s\x82\xb8\xf3\x8d]f^w.\x19,\x9eEz\xbd\x87\x9c\xe0kB\xe4\xb2N\x13\x81?\xed*RAf\xff7\x9e/\n+\xe6\xfa\xd2|\x14\x8f#\xe3\xcc/\xd7w\xb8BP"\xdb\xder\x98pd\xc6\xb8r\xc4\xff\xc7|Ht\xd4\xee\xb7\xe5;\x8a\x95\xce"\x92\xe2\xc6\xca5\xf1-|\xc0\xde\x9c\x88\x10\x14\x93\xc8\xb2\xa5\x14\xee+j\x9b\x05\x01\xf0\x80~Q\x92\xc5\x0e\x1dgO\xf1p\xdb\xd7\x81\xf0\x00\x03\xaf<\\\xe9\xdd\xfb\xe6c{\xca\x0c\x8ej\x17xi\x1f\x01S\x9f\x17\xdc\x89\xc9\xcfGM+fa*\x99v\xa9p\xfdE\x85\xe7\xf6\xb7.\xc9\x14\x0f\x07\nS\xf1|\xf6\xb9i.\xe9\xe9kR\\\xb4\x9c\xdezcM\xd0d\xaf@\xd3\xf3-v[\x01j?\x88\x12\x83\xb2d\xc2}\xb8\x15R\xeb}\xec\x9b\xcf\x07\xf6>R\r\xd62\xd6\xc3P\xf8\x9cR\xac\xd6\xeb\x8b\xed\x12\x94\x96\x11\xfe\x845b\xa9|\xe0\x85+\xcag\x85>\x91\x07x\xca\xe5\xffb1b\r\xd7\x0b\x89>\x05\xb9\xd2*c\xd3,\xc5\x89\x98\r\xa0\xfbf\x955\x9ao\xc3\xb4\x06\xa5\xa0C\x8a0\xd2M\xd0\xe15\xa9\xcd\xb5\x15\xe1\xb8\x89Dr6&\x91\x9b\xc4O3\x97}\xc8~=\x85\xd1\xda\xb3L\x87\xdc\x1ea\xddf\xabk\x0f\xaa5\xb0\x8c\xd0z\xaeQ\xc1\xbc-T\xe4\x04\xea\xed\x1c\xa7\xa0[\xd4\x92Z\xc89)\x05\x01\xc4\xbd\xf3V\xf0\x9ad\xa6v\xff\xdf\xa5\xf1\xb7\xc95u\xc9\xfey\xca\x16\x0eH\x18\xa7\xb83\xcb\xd9\x131\xca\x03\xe9\xfd\xd2Y\xddLa\x03Z\xc3X\xf9\xac\xde\xe5\x9a\xef\xd0F\x02\xd7v\x84\xf3\x82\xff\xa7\x9b96\x93\x14\xefrOit[I6\xd5C\xc8\xb9N\xf1El\x89\xfe;O\xfd\xccpi\x8d\x9c\x99\x05[D,\x80+\x1dVZr\xda7\xdd\x9d\xec\xc5L\xb4&\xc1\xbe\xe13%9.\x17\xbfu\x06\n\xecKn\xbc\xd6>K\x06dW=\x88E\x9dE\x98\xf08\xc8>\xa8\x93\x05e"*\xe7\r85@t\x83\xc2}\x94P\xdcF\x18\x05f\x89\x16\xc4\x1fV\xb3\xc7\xdf\x1d\xde"F\x16c\xd65\xaf\x95\xcc\xcc\xac]o1\xe6\xe6\x9d\xd9\xae\x86/T\x95\xc5Z3\xa4\x1a\xafr\x18\xe0\xad_\xc7\xa2\x07\xa7})\x8b\xb7\xdd\x1d\xa6ct@\x93\xb3E\xad\xfa\x1d=\xac\xd4d\xc2\x00\xa7r\x11\xba\xfa\xad\xb1Y\x90C\xd4{J\xe7F{\xc4\x10\xec\xcf\xaa\xec\xa3X\x8a^j\xfb\xb1\x1f\x1d\xe19\x9d\xcdQ\x1e\x91\xcd\xf2\x02\xb9n\x00\x9bcy\xb0]x\xdd@f\xe8\t+\xdd\xbaOY\xfb\xd2\xa6>\xba8#<A\xd2\x06\xf3\xe2\xb0\xb1\xebE\xb9U\x93\xa5\x80\xe5\x8d\x8dOs\x90\xfck\xcfH\x14\xfb%[\x0e\xc8\xe6\xcci\x0c[\x01\xa7\xeaO)]\xc7`K@\xf8/4\xae\xea\x83\xc5ZC\xfc=)7o \x06\xfexhP\x91\x0f.j\x9f\x029\x14Mg\xe8\xcf\x1e0\xa1}Q\x98F\x1c`\x0c\x95B\x9a\xa6Jt\x9d\xf1\xdcFn\x0c\xdb~2\x9fV<D\x91\x93\xcb\x90\x94\x7f7\x017\x7f\x9e=\xfe\xdf\xae\x1aY\xc0\xfa\xd3\xf4\xa8\xf0\x10|\x95\x9c}\x13n\xbb]\xcc\xce\xfc4\x1e\xc0A\x84*\x05\xb1e\xe8\xdb\x86[\xda\xe0\x84\xd2-\xac\xe8\xd3\x14\x9f\x9c\x0e\xf5\xf4g\xbb\x7f~~,\t\t\xd4^\x90F\xd4\xdc\x0e\xf0M\xa6\xa0\x87\xd6\xf9T\xc5\x8c\xf7\xeb\x82\xf7l\xeb2\xa0\x83\xc3!0,\x1cOu\x08)A\xcf\xf7r\xf5\xd1\x18\xb6.\x06\x04!\x96\xe6_\xd7 O\xa1l\xbc\x91+\xe0\xdcL\x0b]\xb2*\xc5\xc3\xaeS\xfe<\xbcOW\x9aTH\x05\xeaz\xb6\x893\xd9(\xcc\xd3\xdaa\xca\x02\x85^@G\xac\x10\x99\xa7\xbc\xa4\xe7Q\xba\xfa2\xc6q\xcde.\x9aN\xaa\x1b\xc1\x1dg\x8c#1\n\xc0L\x18\x9c!\x9b\xb2Cq\x11ZH\x06G\x9c.c]\xd2\t\xa6k\xbfE4?\x91",\xd3\x9a\xcb\x15e\xd5\x90l\xa6%n\x95\xf3\xe1\xb9o\xf3\xb0\x8d\x15\xea\xba\xe9\x05d\xae\xc7d\xdd\xa0\xa0\x137~\x91\x11\n\x0fz^\xa0]\xc5\xbc#\x88\xaf\x9e|\xb4\x84y\xce\xc0\x1b\x1d\xedU;\x15\xeeh\xe4\x80f\x8br\xe5 A\xaf\xed\xdc\xee\x8fs\xf0\x11N\x8f\x0cN\x05\xed\nv\xa15\x8b\xef\xabGVk\xaf\x14\xa2\xcc\x8bx=h<\x0e|\xde\x91h\x18\xa1\xa6\x04\x1b\xda7\xb4\xb5]\x9e\x0b\x11\xb2\x95\xbf\xee5\xd7bg\xd7\xb1$"\xdbt\xf2cO\xcf\xb18\xb2\r\x04\x131t\xf0#\xcf\xe2\x96+C\xb8\xd8m\x93k\xd0m\xca9\xb1\xe9:\xf3$N\xc3\xe1&O-\xf5i\xa6\xe3\xcc\x14\xd2\xd4\x8a\xc9x\xc7v^+B\xce\x93\x94\xd2\x846\x1a\x15\'\xb1[M\xdd\x9a@\x17\xb8\xdfd\xb3Dp\x16\xf5*\x10\xd8\x9c\xa8|\xae\xa6\xf3H\xb8.\xe0@\xceT(E\x90\xd6\x85\x83z\xf8\xa1u{\\z\xd03\x9d\xde\xa8T\xac\xdb3\r\xc1\xfb\xca\xaa\xa1-\xb4\xe0\x1f}\xff/\x93\xcbMe\xb3\x89!m\x84t\xa7\xd5\xf9k\xc8O\xa0N[\x12\x1e\x88\xdcy\xe2\x91\xba*\xfa, \x86\xf7F-\x84r^W\x9d\xe4\xdfvS\x91\xf1a,m\xa1\xa8\xf1e\xb0\xa6q\xc9!\x91\xfbb\x00p\xb9\xf1`u`\xd4]\xc3M\x1aa\xd6p\xb6aA-\x93S\x11\xc2\xdc\xe7\x0b=\xf5\xbe\x1d\x8c\xf9\xde\xa8\xce=\xaeq\x17\xe5\xf4\x8f\xbd\xa9\t\xc3 \xc7<\xdf\xaf\xb8\xaa\x1c\x84?\xfb\x02\x05fU\xd7:\x1c\x91\xa3lV.6f\xe4~\x8d\x15\xa7\xae\xbc\xf7d\xc5"\x0e<\x1b\xa6A~\x0c\xc5L\xf5(\x8c\xd3\x1e\xbeZ\x1a*+\x82\x14\x07s\x17\x82t\x99"\xcd\xc5P#@Ss\x00\xb9\xb5\xc5\x91\xbd\x1e\xc7\xc1\x87\xc6\x00r\xa7W\xfc\x1bfv,\x98]E\x06\x96\xdf\x8eJU\x84\x94\xa6\xcf\x867<\xd8\x11\x84\xcc\x99W3\xb3\xac\xbfi\xd1\xc8S\x07\xb2\xef\t\x91;C\xad\xf3%\x03R3j \xd1=>\x8c`\x80I\xbc(\xa4\x1b\xa0T\xeb0[\xdd\xee\xbf\xd0\x19\xe2\xe6\xe2\t\xa4\x0eV!6\xcc$n\xfb\xa9\xc8\xbc\xe6\x98\xffQ\xde\x1e\xb8\xbd\xc5\xe8\xd4\x02\xdd\x07\xbc7W\xc2(MuaP0\x88\xe7!O\x99\x8axhn\xb6\x7f\xd0\xdb\xefAe)|w{\xabZ,\x93d\x8e\xebK\xd1\xe33\x19[3\xe4Z`&\x15\xe7\x9b[\xfb\x14.\xab&\x0eN\x8a\xdbr\x80\xd2\xa9Y\xdaGW8N\xac\xd0\xa8\xe4\x1e,K\xbc\xab!\x04:\xba\x92\xa1\xb2\x17\xfb!\xb0\xeaZ\xd2\xff$\xa6d0hP\xa7\xd3\x80\\\x16\x98\x17\xaa\x08\x10Tv0\xc7\xfeZek\xb4s\xee\x99>\xdd;3\xe5Q\xf2;5_\xbaZ\x1c:W\x02H6\xac\x12_Zw\x8dk\xeeU\xd1f\xd6\xce\xd7)\x19\xee\xadU\x05\xee{x\xa8\\\xd1\r\x81l\xc7x\x1b\x15\x9a\xb9z\xa3~\xd4\xf2)\xa52\x82:\xf8\xb6\t\xee\x07\x9e\xf4\xe6\xeb\xacJ\xb7;\xba2\x16\xee5Q\x86\x86\x1c\x0c\xa8\x04\x16j\xf8\xf5~A\x04-\x04\x8d>/6\xcb?\xa5`\xbcp\x9a\x07PSA\xdd\\\x84\xbb\xf5zTu\x7f\xb0\xcd\xc4Ex1S\xa7\x14\xd4\xa73\xa5\x8f\xac\x1f<\xa2\xe8\xee\xce\xd6K\xad\r\xff\xe6\xfev\xc9\xe8\x1c\x10o\x14\x0f\x13\xf9e\xe3\xc6.\x8f5\xfb\x04\xad[\xcc\x9du5P\xd2\x93\xb99\xd8\xb1h|x\x0b\xc3\xb9x?g\xe0\x8e\x93w P\x83_\xb1\xa5/\xc7\xa0SF\xbb?\xa2\x9d\xdd\xd1\x9a\xa1\x17\x0b\xfd9\xac\xe4\xe59\x989A\x1c\x00u\xb8vAoT6R!r^\xda9/\x17\xf2*"\xfc\x0f\xd8^;\x17;r#\\\xd8ZTz$\x0c\xad\xf5\'j\x9bZ\xd5&\x06\xd7\x88\xf4\xa1B\\\xfb\xc4\x1e\xae\xc0\xc3cx3\xa7_\x19\xcav\xdb\x19\xb8\x14)\'\xb6zB[r\x96\x9ae\xce\x12-\x85B\x02\xeb&OZ\xf1/\x8f&\xd5\xfbH\xc16\xc7\xe4\xc1\xbd\xe1\xb4\x1b\xef\xdc\xda\x10\x82\x13\x1d\xddE\xd8\x17>q\n\xcc\xeb\x90\x06u\xea\xe96d\xd0Xr/\x94n\xc7\xe6\x1f\xdd\xeaf/\xd7\xb7\x82s\xb9\xd0\x98 \xda\xee\xf9R\xe1gM\xa2\xd9\x92\xcd)\xd5q\xde\x93v3\x9cD\x16\x05\xc2\x805\x1d!l\x15\x83y#\xb2\'6\x85\x97\xbe\xa2\x13#\xa6\xe1\x93d\x8a\xad\xc1\xe2\x96_4%\x88\xa1\xc7pYz\x97\\[\x15\xe5\x18\xd5\xad\'_\xf3\xe5\xafh{e\x89\x8463\x94:\x9a\xd9\x08\xe1~U\rz1-\x05\xa1\xdd\xa2\xb2M}\x0e{\xcd\xab\xca|\xd2x\xeb!\xd7f\nCc\xd7\xc1\x94\'-b\xb4\xfc\x87\xa8T\xb7\xde\xda\x10\x19k\x85\x86g\xb6VV\x0eGS\xa7\x1e\x04\xbf\xca\xf2(\xb66,W\x84\x89\x94\xc4\x13fx9\xc5\x98J=:A\x95\xfc\x04\x149R\x95S\x8dY\xd2\xb265p_\xd9\xa5\x005\x82\x0e\xc0\xf4\xe6R\x10;\x13\x98F\x85\xe3o\xfb!\x0e9\xe5\x19\ncz <\xc63]/R&\x8a\xbfb\xe5\xa8\x92\xf9\x93\xd6\xf0\xe3\x07\xcf\xd3\x1a\xbd\x1e\xe1k\xae\xa5\x8a\x0c:ul\x94YjU@\x8c8\xdf\xe5\xff\xbe\xbcG*\x18\xe3G8\xd3?\xd2\x81u\x00;i\xcf*\xf3K\xd5G;f\x8e\xbdd\xf4\xe0Z\x0eC\xf0\xe6\xe1\x1ec\xba{\x85\xef<\x06\x86\xadv\x95?K\xdfu\x96\xa7?\xe5\x8f~\xa1\x8e\x9fv\xc0A\x01\xce@\xc5\xfd\xd8e\xc2\x04#\xd5\xb2\xde\xe9Zg\x82\x8c\xb8!\xd7\x04\xadz\x89\xab\xddi\xe4t\xd2]\x10\x1et\x07\xeft\x03\xc9nA?\xa1^\x93-\n/\x91\xee\xe5\xf0\'w\xd9iM\xb7s\x13\\h\xe2\xa9\x84\xa6\xa5\x85\xce7\x9e\x1b\xc3\xb5\x7f\x1f\xee\x1a\x9c\x17}\xafp\xdf/\xc0H\xa8{=\xc5\xd3\xb5/q\xaa\xe7H3\xfa\xf0\x94\x99\x85\x97\x85F\x99X\x11o\x17\xc4\xad\xf9\xcc\xcf\xc4\xf3j\xae\x8b8k\xfezL\xedJ<f\xf3\xe9l\xf8[\x01\xac1\x91j\xe3k\\\x8a{\x80_\xe8\xfe\xc51\xb0\x0c\xf7\xb3\x05n\x83\xf3\xc5`\x07v\x9e\xd1\xdfF\xe2\xb6\xd4oxvA#\xa9\x18;j\x87\x9fxouI\xf6\xe3\x19\xfb\xe4\x18\xa1\xae\x94&\xde\x87t\x1a\\\x8d-\x91#2`\xab\xebl[-\xbb\x8ey\xb6i\xe0\xb4\xc4\x99\xf9\x9d0c\xf9\xd3\xef\x93\x80\x0c\x13\xc7o\xf5`=\xb66#5\tl\xaf\x90Tr\x95\x00\xba\xc0m\xef\xe1\x1b\x06,\x96O~\xea\xed=\x13\xdd\xbd\xdb\xedIi\x7f\xf5\xe0\x07\x14\x10\xbbz\xbcVkdDL5\x92\xcez91]\x1ed0a=2,f\x0b\xd0\xea+\xa7\x17\x86#\x17u-\xfa\x9d\x80Oc\xfd\xbd\xd5 |\xa4/\xd5\xf8\x1fb&\x0c3\xf5\xa7T\x14\x02V\xde\x92}\xd5\xfd$\xc5\xd0D\x9f3\xcc@\xf8m\x16\x80t4\xadCKy^\xdb\xbay\x08\xba\x1aOD\x0b\xee\x885\x80\x83\xc8B\xaa\nJ\x03\xc8W\xeaL\xe9J\xa91WY?\xafz\xb4\xa4\x00\x91\xcb\xd6\x0b\xa4V\xe0\x18\xb7\xb8\x18\xa0<\xa6\x1b\x14\xfd\xd9H*tO\r\xd7\xbc["\x02+;\xe1~\xd0^\xe13!\xa3\xb2\x7fF\xd4y\x011\'d0*Y\x02\xff!T\x84Xh\x1e\xec\xa0\xa7|n\xb8\xedX\xf4\xa3n\x87|\xed\x8cY\xf9\x94j\xfe\xb79\xf1E\x80\x9f\x17\x84\xf72%F\xa4\x07\xa3\xb8p,\xd3e9\x14\x9ck\x8aE\xce\xd3Ui\x0eB6C\xa7\xa4\xc1\xedm\x11Xf7(\xd2\xd2]k\x85\x9f\xe80\xc8%\xd8\xb0\xd1\x837z\xaf\x90\x16\xd8]\xda\xbf$\x83U\x96\xb5\x07\x01H\xbc7\xcd\n=\xab\x1f\'4^4\x92b\xbeA?\xef\x00\x92K\x89\x83t\xd6e\x84\xe0\x9e\xe9\xd7H\xfa\xbem\xd4g\x7f>\xce\xd1\x86\xe2i\xb1Y\xf7\x1d\xb2\x0b\x08\x03K\x11h\xe1j\x9d\xbb\xe1\xfb\xd8\xdf1\x90T\xa1<\x8f^\x88\x9c\xa1\xbfk-\xaf\x8a\xc1\x1e\x0f$a\xc9\x0e\xc0\xff3\xbf\xbb0\xe4\xec\xf6\xda\x841\xba\xfb$\xba\x17\x15Gs\xa9\xdc\xac\x8199:\xd0\xe0\xa18\xee\xdb\xcb\xd0\x1c\xbcodKV\x05\xf7\xf6\xb8\xbc\xc2[A\xa5\xda\x87 8\x1c0\x8d\x03\x00\x90*\xd7\x8c\x87:\x85S\xda\xd9\xcfRd\xef\xe6^\x03\xab5^\x8bCY\xe2\x06h\xae\x0bP\x0f\xbe\xb0L\xb2\x01\xf6\x84\xc8\xf7\xf8\xdc\xac\x94D\x99\xcb\xc0\x8a\xd6\xde\xab\x80\xc0q\xd5\xc5\xf6w\xc3\xf8\xbc/\xc1\xd2\xf0\x01\xcd)\xff;\xab\x8e\xaa\x8f1Q\xec\x18\x9a\xceq\xbb<\xfa\xc2\xe1\xb8\xcb\xd6>\xcb\xf74\xf1\xfa\xc7\xd1\x16\xdf\xeaU"\xed\x97\xfc\xad\xba\xae1\xcf]\xf1&\x95\xb9f\xa9Z\x81\x14\xf4\x83\xdfm\x9a\x89_\xa8\x01\xda\xb6y\xb3\x8a\x9b{\xe8\xcb\xe21\xcb\xe3\\\x8b\x83\xb7n\xc9=\xc8>kx8\xd1+\xdb\x14h\xb4\xac\xff\xff\x8ai^m\x81e\xd08\x8bsG\x94\xfa\x8f\x84A.\x93\xd5*<\xb6\xc7\xedC\xa2\x11\xd5e\xac:\xc4b\xec>\x17\xaaS\xac9-s.\xafE\xd0\x91\x04\x9f\xf9+\x1c\xac,\nm\xc13,\xad\xf1\x1aF\x85\x91\x82\xa3\x10\xc7\x9d,Y\x14\xdf\xc4\xa2\x1c\x9c\xb3\x90@\x0e\xc1o\x95\x14\xeeb\r\xdf\xa5\x89.\xcf.\x881\xf8\x81-]\x9f\tz\x9f\xd8\x03\xb9\xe4\'(VTO\x03F\x85\xc9s\x13Y\x1f\xb8`\x9c\'\x8b\xca~\xe7\xc7+\x01\x9e\x00\xd4\xa2\xef+\xfd\x99\xd1\xee\xe3B\xa7\x10\x91\xf8:\xb3"Gdw\xd5\xc7c0/\xf8\xe1\x1e2\tk2\xe0\xe7\x08\x0f\xf9\x7f\x8eeE\x90`\x90\x87\xf4\xae\xfe\x9c\xda\xdd\x84\x84n\x1e\xc8=\x16\xca\x90Jr\xe3T\xfa.*\xdb\xf8\xb3\xe1\xa1<\xc1\xffC\x15\xe6\x00\x02\x9f)?\x96\x9d \xe4\xbc\xbe~\xb7\x8f\x02\x99\xd2!\xc7*\x03\xdf\'\t\xdfZO\x1az\xe6\x80\xf5\x8b\xbd\xea\x13;\x9b\x87P\xe7Q\xa7\x00\x8f\xef\xdfRt\x8b\xe9\xa4\x0c\xc2\xbd\xdf\x0cb\x1d\xbeMN\xf0\xdcP\xfbf\x045\xff\xe7\x01\xbe*\x9a\x08\x7fmD\xa7\xf9{\x8e\x1f\xb7\xc9\xe8$\x8d\x9e\xc4\xae\x06R\x80\xa0\x10\xfa\xc2\xf4{P\x04"\x86\xd8E\x1c\xdd\xf5\x9c!\xf6\xe1B/G)c,$\x0c.\xc6\xfd\xba\x9e\x0b\xe4,\xda\x86 \x05\x1a$\x9c[\xf6\x86*8\xb5"\xb7\x14\x88V\xab\xd6\x85 |\xab\x8f\x01.\xc7CO%-\'e\xc6U\xf3S\xb9~\x0ci\x80F\xb7j\xdd\t3}rCWQ/\xec \xe0\'6EL\t\xa1.\xdc\xf8\xe0\xbe%\xdd\xaf\xe8\xc4\x8e\x82\xeb\xf0DbQ\xd4X\xe6\n\x18\x84\x0e\xc3k\x15\x12G\xf45\xec\xeda0\x91\xdd\x7fd*\xba\xb6A\n\x19\x01\xac\x99\x18H\xf3y}\x84No\xdd\x8d\x0e\xb8\xf673\x1b\xe8\xcdK\xbe\x88qH\xcaX}\xa8\xd1\x1b\xdd\x93A\xdb\xcfsO\x05\x87\x8f_\xc7\xae\xa2\xbf\xa0.\x8a\x110\x10\x8b\xd1p\x8a\xdd\x16\x8bza\x83\xfbz\x8d|7"~\x80r2\x19\x0b\xc1\xa9v\xab\x88\x15\xfe_o!\x1d4\x89\xa3\x1c\xb0.T\xea\tai^\xe3\x9f\xcc;\xac\x81\xad\xdb\xeb6H]\xabZ\xc7\x94\xd93f\xcdQ\xc8$?Whx\xa6`\xf3C9!\x02\xefI\x96LeB\x98\xcc\xa7\xf0\xe2\xf2\x1e\xe3\xcd\xf1FW\\\x12`g\x12\x033\xf2\x02\x12)-\x181\xb1\x963J\'Zgi\xdf33\xd5\x87\x9e\x05\xd3<k\xee\xc9A\xe5\x00\x93Q\x8e\xf8z{\xc8\x07\xa4[(vT \x86\xd0\x9c\x9b:\x0e\x91\t\xcd\x83\xa2C\xde\rM\xd0\x91\x0b\x82\t\x9aq\xb4\xb2X\x90\'O\xc4\xccK\x95\x172\x02\xd6\xea<V\xa8\x84\xb7\xbff;\xe8\xb8Y\xca`\xa0\xc9c\xb8CKV\x13~\xb0\xeaM\x0f\x19|bb\xba\x9d?\xc9\x1b;\xeeP\xbb6J\xec\x8d\n\x0cj\xe1\x0fg\xd3\xb0\xcd!\xef\x0f\r\xe4\x97\xab\xaf\x90\xbc.l\x84\x0eN\xb2!E\xecm\x081j\xfd\xf9#G\xd0\x07</\xbe\x91\xb4\xc3d\xcd\xc4\xe5\x92b\xec\x02\xf7W\x93\xabK\x8b\xcc\x88\xed\x0f\x16\xe1\xd9y\x95\xe0\x00|\xd0\xf7\x07\x97\x0e\x11\xa5=\x14\xb9\xfd\xdd\x81S\x8b\x1c\x9eo\xd4>\xe4`\x0bF\xfcu"\'\x8cg\xdcB\xbc\x1a\xa7\x16\x05\xc8\xf7\xb6\xc4\xac<\xd4\x978v\x8d\x06\x1b\r\xda\xcb\xc8\x7f\x81\x8a\xa3\\D \xa0\x84;\xb2\xe4\xa4r\x92\xc1jj\n\xe3>\xe5\xf9\xeb\xfaS\xa216G\x0735I\xb4b\x9b\x089\xee\xa11\x16\x0f\x8d\x9dx\xcc.\xee\xdf\x0cL\xb8R\xab"\x96^\xf1\xed?`gA\xd8[)w\xf5%\xf7\x16\xbb,\x94\x98\x89\xfbp\xe34\xb0\x1f\xb4\x02\xfe\xa8-\x1eK*\x19\xa7\xdfN\xef\xb0\x86;\xcf\xf9\xed\x7f\x18\x9b\xc75\x89\xd1\xee3\xca\xb0\xab\xb3\x05r\x9c\x0f\xddu\x18\xf4i,\x94d,\xb2s*\x91\xd5\\\x00\x99\x1e\x8c\xd6\xe1Z\x06\xf3\xb5\xb5\x7f\xde\xe4\xbc=\x16\xec\xaf\xc7y\xa0\x95\xa2S\xca\x02K\xfa-\xb9\x98\x1e"\x0e\nh\x93H|\x81?\xc2\x89f\xde\xc9\x85\xfc\xb5\xbc\xba\xd4\x12\xacS\xdf\x91\x1b\x89\'\xcf\x19\xeb\xce\x97I\x1b#\x90r\x17\x7f\xe9\x8c\xd3\x1f\xe98HA\x84\xe8\xb9\xe9\xe0\x893s\xd3\xaf\x84]\x00\xeb\xe5\xa3\xddH\xa3w\x82\xb4\x80h\x84\xfa\xbee;\xee\xe7 /l\xd9)\x94~d:M?\x9c^\xb0&4Lk \xce7\xd2\x96\xd1\xe0\xac:i\xc1`\xa3\x01\xa7\xb0\x06\xeb!a\xc5\xe7X?\x99J\r\x99\xb6k\xd38\x07y4\xcbM\x90\xdc\xe0\xb3\xccQX\r\x0bw@\xc0V\xdf\x8a\xebf\xd5\x80U3\x8a3_\x94\xe2\xde\xfb\x95\x82[\x91\xa6\xd7B\xaa\x91dA\xb0\xdb\xe9L\xbe\xe3\x89\xb9\x06\xc6L\xadwu\x06\xe3\x9b|\x00#\x19\xc7\xe7\xfeM\xe6\xa0\xaf\x11\xd1\xdd\x10\x17\xb1\x1b\x9a\xf0\xe5\x1d5\x86\xf0|\xdd\x91\xbf\\,b@I\n\x95\xd7y\xb5+\x02(&\xa0qE\x8et\x01VV%\x1c;\x89\xe7.\x90&\x8a\xbd\xd7\x90\x06>\x87\xad\x98\xed\xf6\x1c\x08G7\x87\x1d\x1b\xfay\x0c\xc3]f\x86\x1b\x1c\xa1U\x147?m]\x0e\x0c\xce\x9f\x07D\xbd\xae{XG}\x19\xb5\xc0\xa8\xd4*\x13\x05Y$2\xe4RW\x13\xfc\xdf\x08[\xb6\x03\xd1\r\xfa1+wx\'T\xf9]hb\x02\x11D\x00\xeb\x02U\x97\xc0q\xa4|\x83\xcf\xcb\xc3bRP\x1b\xc5\xb9@#xY\xa2\x18|\x85\x87\x84\xe1\xb1\xf9\x8b\x97\xb1\xdb\x1f\'\xf2\x0c\x92#k{X\xf0\xc5\x9c\rvUz~JO\xb6<>\xfee\x85\x95\xed\xa9T\xd4\xb9\xccEDC\xfa\xb8gi\x06\x12\xf1\x9c\xaa3\xe4\xc1\x92\x98\xcbt\xe1*d\xc3\x89\xae\xa2\xac\xfa\x16\xd1\x84\xd4G\xf7@$zr:\xa6\x0bM\x8fmz\xdd]\x1a\xbe\x8b-?7\xfc\xa2\x94TXb\'f\xb04\x86\x08\xa5\x1c\x96x\xbe\xfb\xfc( 3j\xcds\x91OL\xa8j\x06/&\xdf+\x90xJ\x80\x1d5|\xe1H\x8bU\xea\xc7\xa7\xc6\xce(\x92+\xe7\x8cH\x0f\x8f\xbd2\x9d\x12\xa0h1>\xd3\xbf\x1fq\x1c%\xd5\x98\xce\x163a@b\xe7\x04V\x8be\xffO\xc5W\xef\xa2\x84-\xd5\xee\xcf-\xc73\xe0\x8b\x03f\xc2TA\xcd\xf9_\xf6z\x88\xad\xa8\xf2\x8c\x18\xb47\xe0\xf2\x90\x13\xb1\x9ayT&\x1b9[@\x89\xb4\x1f)\xb8$#\xeb\x8b\x91r\xe02\xe2c\x1dKN\x02\x17\xfa\xf2\xfa\x14\x90]\x92\xda-\xfb\x86v/X\x8b\xbb\xddF\xf2\xb0\xd2\xc6\xa7L\x94\xdb\xf0\xff\x90\xf8\xf7\xa15\x88\x8a\x8czT\x95\xe4?\xf7\x8dm#\x00\xc9\xa3\xac\xc0;S&\xb6\x8bf\x99\xe75p:\xdd\x14\xc8\xeb\x93\xe0cn\xab\x08\x99D\xf4I\xc7\xcd%\x1f\xe3\xa9\xccw\xfc\xba\x99t]C\r7\x0c\n,\x88\xc5!\x1dr\x0e\x8f\x90\x8f\xc6\x80\x93\x16\xa9\x80\x18^\xc6\xf4!\xc1\xaf\xf8r\xfd\x18\x18\xc3\xaeO#\x0b\xad\xce\x8b\x14\xb1\xb9\x99ON\xee}\xce\xe9*z\xa8\xd6\x8b\x89\xf4\x19%\xc1W\x15Qc+\rj\xd9+(z\xdf4\x86p!\x13\xb8)\xc6\xb6H\xf1U\x97\xfao\xfb\x11x\x17\x03\xab\xee\xef(\xc5\x98q\x025\xf7&\x81}\xd08U:\xa9\xce\xe2\x94w\xb2\xd4\xe4g\xc8h.\x0f\x0e\xc0\xe4\x1c5\xf4}\xd7\x18\xdd\r\xd3%\xb8u\x19\x7f\xf9!\xb2\xe8~\xca\xc5.6\xda\x04\x11\x9d\xb2\xc8\x85\x1a\x84L\xb9bV{\xb0\xc8\xcf\x8bD\xfb\x03\xb1bw)\r\xcdk\x89\xee\x89S\xd4\xb2\xb2\x1c\x0ez\xfa\x9a-/\xd8:\xf12in\x19\xe3i\x82\x02]\xb2\xe5\xf0T5\x8cZ\xa5\x8c\xf06S\x1e\x94\xdf\x0cD2\xa2\xaa\x8fa&\x068\xaa<6PE!\xcb`\xabn\xdd\xee\xc4\x95\xc5\x12\xf8\xc6|\xbf\xcb$\xab\x84f\xfcC:\x96g_g\x86u\x86\xf9\x8aU\xc1\x9a\xe0g\x9e\xa1x{\x0c\xaa`J\xe0\xb8\xac\x1b\xbb3\xf8\x14\xe0i\x05\x88\x19\x13K5\x8e\xec\xab\x99\xc6\x00\xfa\xba\xb2{\x9f\xf9=\x07~\xaa\x10\xff2\'tF \xacjC\x91\x86G25\xe8Q\xc4X\xadA\xa0\xcd\x85\xb5\x9f\xed\x8ce\xc8\xa7\xc5\x7f\x14G\x00\'\xb7\xf2\xd2Mv\xc8\xd7dT\xf37F\x8e\xbf\xd9"f\xe0\xd6?=sM\xec2\xd0\xd4R\x88\xcd\\,\x91~T\x92\r\xf8\x04\x17/\t\xf5\xae\x97\x8a\xff\x15\xc2\xfa\xf1\xde\x9a\x18w)\x90\t\xfb\x9ejg\xa5\xbf\xef \x1c2G\xe9\xd0@\xd9I\x01\x02;\x0b=X\xe7>\xa0\xfd%\xe2(\x10q\xe3s\xc4\xfdP\xc6\xf7j-\xa0\xe0h\xc2=H8=\xb4e|\xb4o\xf3)\x85\x17\x01\x02I\x8d\xfaU\x97\xbe\xb4\xac)$\xb9c\x90\xcfI\x0b\xce\xcax\x9f8\xd0\xb5\'\x9a[@\xfa\x01X\xbc\x97\xb4\xeau0\xb0.sps\x1f\xd8\xd5~.)\x8fw\r%(\x95g\xa2\xbf\xed$3\x90\xff\xfe\xe2\xb6E\r\xfa\xefZq\x05\x85b\x03\x1a\x7f/\xff-\xe1f\xc2\x1fQ\x04k\x99\xaem\xfe\xdc\x08\\\xa1"0T\xa5\x93\x13\x8b[\xf6\xd4\x91\x1f\xa5Y8\x97.c\x03\xb9qS!\x0b\x88\x81\xa6\x9f\xf9EQ\x05=\xba\x0f`\x82\xbe\x80d\xab\x80\x1a\xf1g\x12\xc0c\xfc\xbbi<1\xa2\x920\xf3\xa2\xc9\xd85\xf2\xf7\x98\xb3\x85\xd9\xb4\tZ\xc4#\xb7\xd8\xafj3\xbc\x81W\xf0\x820\xc5\x15XF?\x90\xab\xe6\xb1gj\xddm\x83\x91\x0cN\x9aI\x19\xc1\x97\xa1\xdc\x8eX\xa3\xc1\xa6\x87\xb2\xf4X\x0f\xff\xe6\xe6\n\xff\x86\xa7\xc0\x7fc\x81\xf5\x92\xf5\xa7\xcf\xc7m\x1e\xd7\xb0i\xe5\r\xd5*\x97\x83r\x1a5\xafZ\x8f\xebh\xa8)\x96\xf1\x83\xd3%\xb4s.}\xbeSh\xc4\x82%\xbd\xd4\xd1w7U\'\xb0\xdb-6#\xa5i\xf1NN\xc7\x02\x96d\xcc\xc8\xdaH\x95^Jf\xeb#7\xdb!\xa4c\xc1\x92"\xad\xe4\x1e\xfe\xd6\x9a\\Eh\x94\xdd\x99X8=\xe2\x8bOSg}n,!\x8e\xbdF\xa5+\xc5\xde\x0b\xa9\xd8\x00V1J\n6I\xf5\xff<\xd4\x1b\x18~!H\x15\xf9\xda>W\xa4Q\xa7\x8f@\xbf\xb1\xd7\xf3\xc5\x9b0\x07>\xcd\x05\xda\xe7\xdeQ\x9d\x19t\xcc?9u\xeaI\xa3\xfb\xfb#\x8c}\xc8\xe4\xa3xr\xf2W\xc8\xf5\xad\x9c\x04\x85D]\x89k\x9f\xe5\xfc(\xfc\x92\x88H\x05\xf4\xbb\xfa\xdb\xbe+\xe5\xdeN\xaf\x1d@u\xb3lDZ\xf8y\xb5x)\xe2f\x1a\r\xc9\xbc\xca\xe0\xbd\xf5\x9a\x02\xb9H\x19[\xa3\x01\xc9\xf1\xb4?:M\xce\x0bL\xb5q\xbe\xdc\xcb\x1d\xbfs&p\x88\xce\x80R\xabQ]\xd6m\xa0\x13~\xa1\x86znU;\x91\xe9\t\xcdL\xf07\x18\x13\xf2\x96J\x92\x01\x08<oH\xbd\x1d)\xb0\t\xfd\xa8\xee[u\t\xce\x8d\x9b\x00\xb8\x86\r\x06s\x8ccO(\xd4\xe7\xb5X\x06"">\x81\xf3*\xf5#I\xd2\x8b\xa7\xcfU\xb4\xda0(\xbf\x80\x028\xb5W\xa2e{*\r\xc2\xc7\xe4\xe2*\xf7\xc4\xaf\xabR\xccw\xf4V\xc2\xff.d?X\xbf!{u\'yN)\x0e\xb5\x9d\xd4Z/\xcc\xda\xc4\x9a\xff.qYxB\x14\xf2O\xf5\x0b\xa6\x85X\xdec\xd8\xb3\x84]\xfdD\x14\x03\xc8h\x92H\x0c\xd1\xfaJ\xa1.?b\xdc)\xee\x94\xf5\x7fO\xb2\xd5\xc5e\xe5\xf7\xa7z\x7f\x86\x83\xf3V\xd6\x9e\x0c\x08\xe3\xe3\xb6\xf3N\xdb\xac\xcaQ\xffN"\xd5\xd3\n==\xac\x1d\xf2\xeaU\x83f\xddo\xf6\xdbkJ\x1d\x0e;\xcf\xc8)w\x16p\xe3\xa30\x9a\xfe\xe6\xdc\x89D\x1c\xabq\xe0Lc3PC\xf7\xac{v\xd4\xde\x8e! \xcf\xa7\x90\xea^ey\x98\xb3U\xb3Z\xfe@\xa5c\xc5\xc2\xb5\x07\xe2\x86\xb0\xa8,\xbe\xd8>\xb1z\xf7\xbbY\xa4I[\xb0\xf02\xdcMo4\n\xe5\x921\xeeg$\x04!\xe2\xf8\xdcTL\x1c\x98\xc0\x17lQpD\xa8:#\x88\xf6Bv\xe1P\xa5.-4\xd9\xce\xdfvU\xa6\xa3\x1f\xf3\x88x\x9c\x0cv\xb1\xb7(\rY\x9c\x1cG\xffv\xc9\xf3\x03b\xa4\x8f\xa0\xb2D\xd4\xbe\x95\xdb\xfb\x02c\xadk\x18\xb9\xa9\xca\xa6\xdd\x96\xf8\x8d\x90\xd6\r&\x17\xfd\t$\xb4\xf2m\x13\xc0\x0b\xad\x9b\xb7\xdc\xbe\xfd\xee\xf9!\x08\xb8y7ov\x06\xd1\xce\xaf\xba\xe2&\xa7\x9b\x80\xd61\xa9\xb5O\t\xcd\x96[]\x13\xcajb\'/e\x12\'=]\xd0\xc0\x1f\x1c\xe9\x12\xff\x88\xe0\xb9\xf3\xac]\xba3\xd5J\xbc\xea@\x1b\xbcY\xa4}\xebv\x07\x8c`\xdbk8\x03\xf0\xea\xb6\x04\x18V7F\xe7\xf1\x7f\x0b\x95S\x17\x877\x9b\x011\n\xb9;\x0bM\xf8\xf5\xbd\x81\xb1_x\xf8@D=\x08+\x159,\x9b\xd1?F\xcaE\x07\x8d\xcd\xbc\x11\xb74;\x17O2\x86\xe9*7\xa4\x109\r\xc9(\xb2\xff\xadUc\xe9\xa4\xea\xa4KbK\xbdR\xb0P\xd7\xfe\xa8\xfa\x02\xa4\xcd\xb2\xb3_\xeaf\xe5\xdblYKS{|R\x8a\t\xb2(Lu\xd6\xfa\xb8S\xe8\x19\xf6\xef\x08\xe7\x9c\x95C7\xbf\xdd\x14\xaaH9\x88\x9a]\xddz\xfa\xa3c\xfc1\xa8!\xe3\xea\x96X\xfc\xd5R\x8c\xc4\xf4\xfd\x8b\xd5V\nD\x9e\xe9U3b\xf7\xfc\xff\xea?\xfe>\xa4\xd0\xbf\xe0~\x9d\xa5\xe4\x07\xb0}t\x0bL\xea\xfa\xf8\xef\xee\x11\x17\xe0&e/\xb4u\x88\x06\x1a^\xb8\x1d\xf8\n\x98RI\xf6\x92v\x87WH\xd7\x10\\\x93~\x918\xd6J\x04\xfbI\x91\xf8\xcf\xe3(|D\xb6G\xca\xc9D\x19\x94\xae\x84\xc4\x92)\xd8mCyX\x82\x99L\x9d\x92\x00\x12\xe6I\x01q\xee\xf4\xcf\xbf\xe6g\xb2r\x1c}N\x15\xd7R\xab\xa1\x82\x89\xd3\xf3/\xdc#@\x81\x12\xc2Z\xe7B\x9fk\x94\xc3\xbe\xc4x\x18^\x1f\xb8\xcf\x15r}\xc5q\xb0\xa9\xb0U\xcdSe.\xf4\x05\xc7\xc1{u\xf0c\xbf\xc6+V\xb3\xeb:\xf1\xd3\xb9\xc6\xd1?Slq\xdfTlH3\xdd\xb5\xd8\xefo\xe3\xdc\x89\t\x1f\x914?\xcd\xa9\x87\x7f\x04\x1c\x86B\xa0\x18\xefBosP- p\x97\xdb\xe2\x8e\x02\'\x86\xba\x02?\x85\x08"y\xfb\x9f\xaf\xe1\xcf4\xc3[oe|\x06W\x88\x942W\x85,e\xe2\xcb\x13Jy\xb8\x83\xb5\x00;q\xfd\x0e\xa5\xc7$VK\xcf\xcfO\xefL\x15\x146NA\xed\xc8\xb8X\xe9H2\xa4n_\xcc\xabKk\xc8X|Z\xfa\xc7\xff\xcb\x92B\xce2\xc3\xc83\xff\xc9\xce\x10\xa8\xa3\xbd\xd8|\x8f\xc0\xd9\x93\xda^\x85\x95\x05\x01Lh\xfb\xdf\xd8F\x9e\xf0Sbj\xe8\xa2\x90\x85\xd8\xca)\x9e\x9e\x0b\\\xd1\xe5\xd6\xad\x0bV\x06\xbf\'j\x95\xfcT\xfa9\x8d\x91\xb3i\xca\xea4\x89\x00\xf6rZw*\x19\xd4\xff\xb4w\x01\xc6\x05\xc0\xe3hl\n/i\xeb6\x17\xa9x5\xc8axp\x1a\xa9\xbb\x8f\x9e\xd3\xdb\x06x_\x06o\xf7\xd1c\x01\xec\x8c\xdd\x86\xc9>\x80\xe3&0\t\t\x02\xf5\x95\xed\x8e\xc1\xde\xb9\xad]\xec\xcc\xde\x01\x94\xde>|!\xa0k9\xd5\x95n\xd5\xffe\xb42\xe5\xca[L\x82vl\x8e\xd7\x19\x94d\xfe\x8d\xd1k~iM{nH\x91\xa2\xdc\x1f\x1a\x13Jwv\x13\xa1"n\xaa\xdd\xacEX\x08\xe6a\x95U\xadU\x91\xdc\x87\xee\xaf\xff:\xec\xdc\xa7\x17]l\x1a\xbf\x98\x9f\x91;\xc3O.\xe2`w\xbd-\x91\x8aDD\xa8p9\xa6\x93\x93F=<`\xfd4\xdd:\x9e\nMO\xf73\xde\xc5\x1d_W\xa0\xcb^J8`Y\x1c\x02*\x0e0g\x83\xe3_\x9bG\x897\x97\xcf\x15\xaczc\xd87\xea\x91\xec\x81\xe9\xcc\xe8\xe7\x0b\xd9\x83\x06?y{\xda\x9e\xd5\xc4\xb2\xe3_y\xf5\xaa\x07\x9c\'\xc0-\x99nAv3\xa9X\xa1\xae\x08\xdc\x16~\xad\xb5l\xbb \xf1\x9f\xa1\x7f\x190\xcc;Y\x96\x06\x98O\xc7\x8b\x8a\xae\xfbK\x08c\x94s\x13\xd2\x998\x14\xd4\xedQv\x0bF&\x01\xab\xb0\x90{\xcbg\xb7\x8e\x03Z\xfe\x0b\x9e\xa4\xbc\xd4\x18\xd3\x94<;\x082\xc7A\xfc\x1a\xd8s\xcdTo\xae\x01\x01g\x86\xe84\xfb\x97\xc2@\xe9\x8d\x9eU\x88\x8c\x9fOm\xe18s\xda\xa001\xe3\xbf\x91\xbe>\xde\xac\xa2|f\xc3\xde\x84h\x13\xe3*\xdd\x18l\xe4k\xe1 PI\xd8}\xce\xb1D\x98\xef\xa1w\xe5\xc1~\xf8\x8a\x16\xc7\xb6;\x19\xd92\xdc\x87=M\xaf\x94Pa^i\x05\x99\t\x1a\xd4X\xd8}\xae.\xe6Y7\xdbx\xf8e\x0b^\xd0\xe5#\xf84\xb8\x9aW:\\I>\x96\x7f!\x88\xe3\x1a\xfe\x1cYG\xfd\x9eb^}\x8a\x7f"\x16\xc2g\xddr\x1b\x19Fk\x0e\xf0\xb9"\xe9\x90Z\x85\xae_\x03\x82\x00\xfcf\xe7\x87\xcc\xfb\xb3\x00\xdf\xac\x8a\x91\x1cj\xc1\xad\xe4a\xbc\x91\xa8;\xee\xb2\x9d\xb9\xa0\xee\x88M\xb8\xcb\x14\xdc\xe8T{\xcb\r\x07]\x81\xb7\xcdi\xf5S3\xa0\xf0\xeb\x8b\x08\xee\xde\xcf\x8duO\t\x00\xcd\x91\x85\x9e\x8b\xf3\x8b\xac6\xd5\xde(c\xbf\x9aX\xfc\x89\xe9;YC\x8b\xa2n\x96\xddn\x0e]{\x9d<\xa0&{\x8b;\x1a\xba\xda\xdf\xb9\x96m{\x07k\xc3\x11\xb1\'\x07\x08\xb7\xaf\xdf%\x9d\x1a\xdaY\xf8\x89\x0c\xf3\x97\xf7\x10@b1>\xa9\xa8\x83\x84\x9e\xc4\xb1\xa0\x14\xed:\xac\xf6\x8e\x95nM\xbb0\x07\x9a,\x9c5\xf8\x9e\xa1`1u\xe9\xbd\x12N\x7fm\r\xcf2\xbb4\x1c\xc4\x9bH\xd8\xd5l\xb6\xbf\x90\xb6o\xc7\xe3L\xc0\xf7Q.\xfbk\x01\xfc\x1c\xa0x*\x17\xdd\xa3\xb0(\xe9\xf1\x1b2\xd2M\x84\xf5\x11I_A\nIK\x9ed\xb5\x1aF\xab7\xfe\x87P\xbd\xe2\xbc\xe9\xdf\xf8+\xa4\xbeW\xcdF|\xc8/i\xce\xab\xbe&\x88K/C\xa8d1\x87\xad\xcf/\x9b\xad#g\xc2C\xd3|\x1d\xa9\\\x19C\x1d\xf0\xf3w\xa1({0\x1b\xcdg.\t(Y;\x08Aa\xf4\x969\xc6\x99FM\x7f\x83\xee\xcc\xbeYa\x1fhTJcK\x08q:\\T\x0e\xdb\xa2\xda\x8e\x93Vc\xf3\x99\x83\xe3\xdb!\xb8\xbe\xb1\x92\x8a\x8f\xac#\xc3\xb9\xcc\xae\xba\x98\x0cY\xf8.\xa4\x884\xfe\xa5\x10_pJ\xd4{\xc0\xec\xd6\xe3\x7fy&\xbb\xf4GgqErX\xcf\xb1\xab\xaeBM\xc4\xfe\xd7\xe2\xb6\xf5\xde\xfa\xc9<\x07\xf8\xf7\x88\x16}\xa8\xb1Q\xbd\x8c+Q\x00\xd7\xb5\x97\x82`\xc3\xc8s/\xe6:4M\xf8\xce<\xe6\n\x1a\x96k\x13\xe7/\x89w\x84M\x9c\xb4s6\xba\xfc\x1aw\xa4S\xc76\x19 \x0f]\xdc\xae\x90\x93\xa8a\xfd zc\xeeu\x87p\x05\xfdZ\xc7h\xa8+{]\xd4 m\x02\x0e\x98\x91m\xf3\xa1`\xce\xa3\xd8\x84\x07>\xe6\x99\xc3\xaa|\x8aI\xa6\xbfJ\xc3\xc7\xba]\xf2\x9bo \xcf\x95h\xa8V\x8e\x96\xf9\x95\xdc\xad\xb2!\xe7\xd2\x0eK\xe1Ix\x12A\x0e\xab\xf9\rS\xb1\xf8\t\x19\x94\xc4\xe7\x98\xbf\xe2\xe2G\xe6\xef6q\xe2\xb0\x8e?\x96Yr]\x00\x08J\xbd\xf0`\xa9\xea|\xd6\xe9&\xf7o{\x88%\xb8sa\x8f\xb3qi\xc7V\x9eh\xe6\x1c7\xa7Z\xfaL\x9aA\xaa\xf1#\x94\xe0\x03e\xffk\xdboB\x84\xdd\xd80\xd1\x7f\x07!\xf3E\xd4\xac\x90\xc7\xf4\xc1\xf7\xccu{L\x83>\xd3\xbdP\xc0\xd2\x1c9\x03\xd1X\x99|,\x87\t\x0b\xd1\xfc\xaasM\x96\xef~~\xf8c\xbe3\xaf\x14\x92r\xd2fs\x15\x80\xc2!\x8b\xc2\x99\x84\xf5iL\xd2\xf8\x16\x9d\xa5\xe7Lg\n}\xd3{\x16)}\xa2\x19\x97E\x948\x94*\xec2\xa0\x15\x16}/}H\x11\xfb\x11\xac\xd5\x15\xce)\x9e\xcb\xa5\xdc\xb5\x15\xf4c\xbc<1\xd8\xf8\xb0\t\x8c\x1f\x10\x14\x95\x14\x7fy\xfdZ\x04\xe4Gm\x18E\xeeX\xd0\x93y\xad\xce\x1d\x8c\xed\x1e{\xc2\x98#\x7f\xad\xd4\x95\xdc{\xb2\xf9\x89a\x1a\x1e\xa4\x9d\xe7\xfd".\xca\x1e\xcbg\xe3~Wu\xb3\xeb\xf8\x89\x928\xc8\xee\x0c\xdb\x00q\x94]9)|\x81\x1dq\x82\xdf\xa9\x0b\xa4;\xa4~P\xaaz/9\xd7E\xa3\xa6"\x91\xc4Jd\x10\xc2\x88\r\xf0\x8e+\x1f\x17\xf9AA\xce\x02\xcd\x96\xc3\x82\xdb|\xd2\xe5mT8\xe3\xf0x\xa1\xdf\xa5\xfb\xd6Z(9\xf2g9\xc3\x0c\xde\x11\x110\t\xf8\xd8`\xc7sN!\xd2\x9d\x83\xe7\xfa\x96X\xd6\xc5\xfe\xaf')
|
spk_001.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79de3a5775f8880c0bf3e950b103f03b257db630224fab265a309d82753b1aa5
|
| 3 |
+
size 480044
|
test.ipynb
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"name": "stderr",
|
| 10 |
+
"output_type": "stream",
|
| 11 |
+
"text": [
|
| 12 |
+
"/home/salman/salman/minomni_sn21/omega-v2v/console/backend/venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 13 |
+
" from .autonotebook import tqdm as notebook_tqdm\n",
|
| 14 |
+
"/home/salman/salman/minomni_sn21/omega-v2v/console/backend/venv/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
|
| 15 |
+
" WeightNorm.apply(module, name, dim)\n"
|
| 16 |
+
]
|
| 17 |
+
}
|
| 18 |
+
],
|
| 19 |
+
"source": [
|
| 20 |
+
"from server import lm"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": 2,
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"from server import tok"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": 3,
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"import torch"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 4,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [
|
| 46 |
+
{
|
| 47 |
+
"name": "stderr",
|
| 48 |
+
"output_type": "stream",
|
| 49 |
+
"text": [
|
| 50 |
+
"\u001b[32m2025-07-17 20:59:03.022\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36moutetts.models.hf_model\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m20\u001b[0m - \u001b[1m🔄 Using patched RepetitionPenaltyLogitsProcessor -> RepetitionPenaltyLogitsProcessorPatch | penalty_last_n: 64\u001b[0m\n"
|
| 51 |
+
]
|
| 52 |
+
}
|
| 53 |
+
],
|
| 54 |
+
"source": [
|
| 55 |
+
"\n",
|
| 56 |
+
"rr = \"\"\"I'm trying to come up with a funny name for my new goldfish. He's orange with a white spot on his head and he's pretty energetic. Got any silly suggestions?\"\"\"\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"inputs = tok(rr, return_tensors=\"pt\").to(lm.device)\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"with torch.inference_mode():\n",
|
| 61 |
+
" out_ids = lm.generate(\n",
|
| 62 |
+
" **inputs,\n",
|
| 63 |
+
" max_new_tokens=500,\n",
|
| 64 |
+
" do_sample=True,\n",
|
| 65 |
+
" temperature=0.2,\n",
|
| 66 |
+
" repetition_penalty=1.11,\n",
|
| 67 |
+
" top_k=100,\n",
|
| 68 |
+
" top_p=0.95,\n",
|
| 69 |
+
" )\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"resp = tok.decode(\n",
|
| 72 |
+
" out_ids[0][inputs.input_ids.shape[-1] :], skip_special_tokens=True\n",
|
| 73 |
+
" )"
|
| 74 |
+
]
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"cell_type": "code",
|
| 78 |
+
"execution_count": 5,
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [
|
| 81 |
+
{
|
| 82 |
+
"data": {
|
| 83 |
+
"text/plain": [
|
| 84 |
+
"\" I've got a few, but they aren't very catchy. The one I like the best is just gonna be called fish. It's kinda long and it's kinda boring. Oh, I thought you were gonna give me some name for the goldfish. I'm just kidding. Yeah. So, you know, it's really easy to take care of a goldfish. We have a big tank, and, we're both in the same house. So it's not like, oh, where are my three goldfish? You know, it's just, oh, how many goldfish do you have? It's, like, four or five. But, we only have room for one person to be a goldfish keeper. So that is hard, especially when it's, like, 20 degrees outside and you're trying to keep a fish at home. Right? Yeah. That's difficult. And with the tank being this size, you don't really feel bad about taking him out. You know, you just kinda get a little more nervous because you know you're gonna be doing a big fish transfer if you have that big of a tank and all that stuff. But Mhmm. It's much easier to take care of the goldfish at home. So I wouldFor the rest of us simple folks, we worry about somebody stealing our password. To you, you laugh about it because you know how to do that with your eyes closed, right, with the technology you've created. So nowadays, you talk to certain investors, so where do hide your passwords? I don't want to really say, but I hide my passwords in my notes section on my phone. Oh shoot. Okay. Where do you hide your passwords? I write it on a piece of paper. Where do you hide your password? I have it on file on my computer. Where do you hide your password? I have it on an Excel spreadsheet, right? And all these places you go through. And so now there's a business model for apps that you put your passwords in and they protect your password. If it's so easy to break into softwares to get my password, How can I trust an app to restore all my password? Is there anywhere you trust to restore your passwords? So let's imagine that I want your password. I'm gonna make a website for Iranian American fans of Atlas Shrugged, and I'm gonna send you an email with a,\""
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
"execution_count": 5,
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"output_type": "execute_result"
|
| 90 |
+
}
|
| 91 |
+
],
|
| 92 |
+
"source": [
|
| 93 |
+
"resp"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 8,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [
|
| 101 |
+
{
|
| 102 |
+
"data": {
|
| 103 |
+
"text/plain": [
|
| 104 |
+
"'All right. Good afternoon, everybody. Welcome to Friday afternoon. Appreciate you all coming. Really pleased today to be able to host the students to to COVID. Great. Correct me if I get it wrong. From the University of Wisconsin,'"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
"execution_count": 8,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"output_type": "execute_result"
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"source": [
|
| 113 |
+
"resp"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": []
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": null,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [
|
| 128 |
+
{
|
| 129 |
+
"ename": "ValueError",
|
| 130 |
+
"evalue": "Cannot use chat template functions because tokenizer.chat_template is not set and no template argument was passed! For information about writing templates and setting the tokenizer.chat_template attribute, please see the documentation at https://huggingface.co/docs/transformers/main/en/chat_templating",
|
| 131 |
+
"output_type": "error",
|
| 132 |
+
"traceback": [
|
| 133 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 134 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 135 |
+
"Cell \u001b[0;32mIn[6], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m messages \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 2\u001b[0m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrole\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msystem\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou are a concise assistant that answers in short paragraphs.\u001b[39m\u001b[38;5;124m\"\u001b[39m},\n\u001b[1;32m 3\u001b[0m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrole\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muser\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExplain rotary positional embeddings briefly.\u001b[39m\u001b[38;5;124m\"\u001b[39m},\n\u001b[1;32m 4\u001b[0m ]\n\u001b[0;32m----> 5\u001b[0m prompt_ids \u001b[38;5;241m=\u001b[39m \u001b[43mtok\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply_chat_template\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_generation_prompt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# appends the assistant header the model should complete\u001b[39;49;00m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_tensors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpt\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 9\u001b[0m \u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto(lm\u001b[38;5;241m.\u001b[39mdevice)\n",
|
| 136 |
+
"File \u001b[0;32m~/salman/minomni_sn21/omega-v2v/console/backend/venv/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1621\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.apply_chat_template\u001b[0;34m(self, conversation, tools, documents, chat_template, add_generation_prompt, continue_final_message, tokenize, padding, truncation, max_length, return_tensors, return_dict, return_assistant_tokens_mask, tokenizer_kwargs, **kwargs)\u001b[0m\n\u001b[1;32m 1618\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tokenizer_kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1619\u001b[0m tokenizer_kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m-> 1621\u001b[0m chat_template \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_chat_template\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchat_template\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1623\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m return_assistant_tokens_mask \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m re\u001b[38;5;241m.\u001b[39msearch(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m-?\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms*generation\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms*-?\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124m}\u001b[39m\u001b[38;5;124m\"\u001b[39m, chat_template):\n\u001b[1;32m 1624\u001b[0m logger\u001b[38;5;241m.\u001b[39mwarning_once(\n\u001b[1;32m 1625\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreturn_assistant_tokens_mask==True but chat template does not contain `\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;132;01m% g\u001b[39;00m\u001b[38;5;124meneration \u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m}` keyword.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1626\u001b[0m )\n",
|
| 137 |
+
"File \u001b[0;32m~/salman/minomni_sn21/omega-v2v/console/backend/venv/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1789\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.get_chat_template\u001b[0;34m(self, chat_template, tools)\u001b[0m\n\u001b[1;32m 1787\u001b[0m chat_template \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchat_template\n\u001b[1;32m 1788\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1789\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1790\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use chat template functions because tokenizer.chat_template is not set and no template \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1791\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124margument was passed! For information about writing templates and setting the \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1792\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtokenizer.chat_template attribute, please see the documentation at \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1793\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps://huggingface.co/docs/transformers/main/en/chat_templating\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1794\u001b[0m )\n\u001b[1;32m 1796\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m chat_template\n",
|
| 138 |
+
"\u001b[0;31mValueError\u001b[0m: Cannot use chat template functions because tokenizer.chat_template is not set and no template argument was passed! For information about writing templates and setting the tokenizer.chat_template attribute, please see the documentation at https://huggingface.co/docs/transformers/main/en/chat_templating"
|
| 139 |
+
]
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"source": [
|
| 143 |
+
"messages = [\n",
|
| 144 |
+
" {\"role\": \"system\", \"content\": \"You are a concise assistant that answers in short paragraphs.\"},\n",
|
| 145 |
+
" {\"role\": \"user\", \"content\": \"Explain rotary positional embeddings briefly.\"},\n",
|
| 146 |
+
"]\n",
|
| 147 |
+
"prompt_ids = tok.apply_chat_template(\n",
|
| 148 |
+
" messages,\n",
|
| 149 |
+
" add_generation_prompt=True, # appends the assistant header the model should complete\n",
|
| 150 |
+
" return_tensors=\"pt\"\n",
|
| 151 |
+
").to(lm.device)\n"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": null,
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"outputs": [],
|
| 159 |
+
"source": []
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": null,
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"outputs": [],
|
| 166 |
+
"source": []
|
| 167 |
+
}
|
| 168 |
+
],
|
| 169 |
+
"metadata": {
|
| 170 |
+
"kernelspec": {
|
| 171 |
+
"display_name": "venv",
|
| 172 |
+
"language": "python",
|
| 173 |
+
"name": "python3"
|
| 174 |
+
},
|
| 175 |
+
"language_info": {
|
| 176 |
+
"codemirror_mode": {
|
| 177 |
+
"name": "ipython",
|
| 178 |
+
"version": 3
|
| 179 |
+
},
|
| 180 |
+
"file_extension": ".py",
|
| 181 |
+
"mimetype": "text/x-python",
|
| 182 |
+
"name": "python",
|
| 183 |
+
"nbconvert_exporter": "python",
|
| 184 |
+
"pygments_lexer": "ipython3",
|
| 185 |
+
"version": "3.10.17"
|
| 186 |
+
}
|
| 187 |
+
},
|
| 188 |
+
"nbformat": 4,
|
| 189 |
+
"nbformat_minor": 2
|
| 190 |
+
}
|
test_asr.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from server import gt
|
| 2 |
+
import librosa
|
| 3 |
+
ref_audio, _ = librosa.load('/home/salman/salman/minomni_sn21/omega-v2v/miner_models/MiniCPM-o/assets/input_examples/assistant_female_voice.wav', sr=16000, mono=True) # load the reference audio
|
| 4 |
+
|
| 5 |
+
text = gt(ref_audio, 16_000)
|
| 6 |
+
print(text)
|
| 7 |
+
|
| 8 |
+
# write a code to recursively iterate a directory and subdirectories to transcript all audio .wav files in it
|
| 9 |
+
import os
|
| 10 |
+
def transcribe_directory():
|
| 11 |
+
for root, dirs, files in os.walk('/home/salman/salman/minomni_sn21/omega-v2v/miner_models/recordings'):
|
| 12 |
+
for file in files:
|
| 13 |
+
if file.endswith('.wav'):
|
| 14 |
+
print(f"Processing file: {file}")
|
| 15 |
+
file_path = os.path.join(root, file)
|
| 16 |
+
audio, sr = librosa.load(file_path, sr=16000, mono=True)
|
| 17 |
+
transcription = gt(audio, sr)
|
| 18 |
+
print(f"Transcription for {file_path}: {transcription}")
|
| 19 |
+
with open(file_path.replace('.wav', '.txt'), 'w') as f:
|
| 20 |
+
f.write(transcription)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
transcribe_directory()
|
utils.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
api_key = "claude-rwjrljsdjfhsjvinesfsdgqrqw"
|
| 2 |
+
temp_ = "omega-omega-omega"
|
| 3 |
+
netuid = 21
|
| 4 |
+
competition = 'v3'
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
hotkey = "5HQQxrp3EDBi1M7pCG2pyJuLiqCyHsog8HssnhekfkbKKfZ6"
|