""" Custom model class for LLM2Vec4CXR that properly handles latent attention pooling. """ from llm2vec.models.bidirectional_llama import LlamaBiModel from transformers import PreTrainedModel from transformers.models.llama.configuration_llama import LlamaConfig # from llm2vec.pooling import LatentAttentionPooling from .pooling_latent import LatentAttentionPooling from transformers import AutoTokenizer import torch import torch.nn as nn import torch.nn.functional as F class LLM2Vec4CXRModel(PreTrainedModel): """ Wrapper model that includes LlamaBiModel and latent attention pooling. Structure matches the saved checkpoint: self.model + self.latent_attn """ config_class = LlamaConfig def __init__(self, config, **kwargs): super().__init__(config, **kwargs) # Wrap the LlamaBiModel self.model = LlamaBiModel(config) # Initialize latent attention pooling self.latent_attn = LatentAttentionPooling( d_model=config.hidden_size, num_heads=8, # Standard for this model size num_latents=512 # Standard for LLM2Vec ) def forward(self, input_ids, attention_mask=None, embed_mask=None, **kwargs): """ Forward pass that properly handles latent attention pooling. """ # Get base model output outputs = self.model(input_ids, attention_mask=attention_mask, **kwargs) # Apply latent attention pooling if embed_mask is not None: # Use embed_mask for instruction-following tasks pooled_output = self.latent_attn(outputs.last_hidden_state, embed_mask) else: # Use attention_mask for simple encoding pooled_output = self.latent_attn(outputs.last_hidden_state, attention_mask) return pooled_output # --- Convenience tokenizer (lazy) ------------------------------------- def _get_tokenizer(self): if not hasattr(self, "_hf_tokenizer"): tok = AutoTokenizer.from_pretrained(getattr(self.config, "_name_or_path", "lukeingawesome/llm2vec4cxr")) if tok.pad_token is None: tok.pad_token = tok.eos_token tok.padding_side = "left" self._hf_tokenizer = tok return self._hf_tokenizer # --- Ensure latent_attn follows .to(device/dtype) ---------------------- def to(self, *args, **kwargs): m = super().to(*args, **kwargs) if hasattr(self, "latent_attn") and self.latent_attn is not None: # Align latent_attn with the base weights' device & dtype try: device = next(p.device for p in self.parameters() if p is not None) dtype = next((p.dtype for p in self.parameters() if p.is_floating_point()), None) self.latent_attn = self.latent_attn.to(device=device, dtype=dtype) except StopIteration: pass return m # --- Simple text encoding (no instruction) ---------------------------- @torch.no_grad() def encode_text(self, texts, max_length: int = 512): tok = self._get_tokenizer() enc = tok(texts, return_tensors="pt", padding=True, truncation=True, max_length=max_length) # For simple encoding we embed over all non‑pad tokens enc["embed_mask"] = enc["attention_mask"].clone() dev = next(self.parameters()).device enc = {k: v.to(dev) for k, v in enc.items()} return self(input_ids=enc["input_ids"], attention_mask=enc["attention_mask"], embed_mask=enc["embed_mask"]) # --- Instruction/text encoding with separator ------------------------- def _build_separator_inputs(self, texts, max_length: int, separator: str): tok = self._get_tokenizer() # Split into [instruction | text]; we embed only the trailing "text" part. # If no separator, embed the entire text. parts_after_sep = [] original = [] for t in texts: parts = t.split(separator) # If no separator found, use the entire text (not empty string) parts_after_sep.append(parts[1] if len(parts) > 1 else parts[0]) original.append("".join(parts)) tokenized = tok(original, return_tensors="pt", padding=True, truncation=True, max_length=max_length) # Build an embed_mask that lights up only the trailing "text" span embed_mask = None for i, t in enumerate(parts_after_sep): sub = tok([t], return_tensors="pt", padding=True, truncation=True, max_length=max_length, add_special_tokens=False) m = torch.zeros_like(tokenized["attention_mask"][i]) if len(sub["input_ids"][0]) > 0: m[-len(sub["input_ids"][0]):] = 1 else: # If tokenization resulted in 0 tokens, use attention_mask (embed everything) m = tokenized["attention_mask"][i].clone() embed_mask = m.unsqueeze(0) if embed_mask is None else torch.cat([embed_mask, m.unsqueeze(0)], dim=0) tokenized["embed_mask"] = embed_mask return tokenized @torch.no_grad() def encode_with_separator(self, texts, separator: str = "!@#$%^&*()", max_length: int = 512): enc = self._build_separator_inputs(texts, max_length=max_length, separator=separator) dev = next(self.parameters()).device enc = {k: v.to(dev) for k, v in enc.items()} return self(input_ids=enc["input_ids"], attention_mask=enc["attention_mask"], embed_mask=enc["embed_mask"]) # --- One‑liner cosine similarity over instruction+text ---------------- @torch.no_grad() def compute_similarities(self, query_text: str, candidate_texts, separator: str = "!@#$%^&*()", max_length: int = 512): all_texts = [query_text] + list(candidate_texts) embs = self.encode_with_separator(all_texts, separator=separator, max_length=max_length) # embs: [N, 2048]; compare query vs candidates return F.cosine_similarity(embs[0], embs[1:], dim=1)