Upload folder using huggingface_hub
Browse files- __init__.py +0 -0
- config.json +49 -0
- configuration_gptbert.py +113 -0
- modeling_gptbert.py +1216 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +10 -0
__init__.py
ADDED
|
File without changes
|
config.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"GptBertFoCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_gptbert.GptBertConfig",
|
| 7 |
+
"AutoModel": "modeling_gptbert.GptBertModel",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_gptbert.GptBertForCausalLM",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling_gptbert.GptBertForMaskedLM",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_gptbert.GptBertForSequenceClassification",
|
| 11 |
+
"AutoModelForTokenClassification": "modeling_gptbert.GptBertForTokenClassification",
|
| 12 |
+
"AutoModelForQuestionAnswering": "modeling_gptbert.GptBertForQuestionAnswering",
|
| 13 |
+
"AutoModelForMultipleChoice": "modeling_gptbert.GptBertForMultipleChoice"
|
| 14 |
+
},
|
| 15 |
+
"attention_dropout": 0.0,
|
| 16 |
+
"attention_output_dropout_p": 0.0,
|
| 17 |
+
"attention_inter_norm_affine": false,
|
| 18 |
+
"attention_inter_norm_eps": 1e-07,
|
| 19 |
+
"attention_pre_norm_affine": false,
|
| 20 |
+
"attention_pre_norm_eps": 1e-07,
|
| 21 |
+
"attention_probabilities_dropout_p": 0.0,
|
| 22 |
+
"classifier_post_norm_affine": false,
|
| 23 |
+
"classifier_post_norm_eps": 1e-07,
|
| 24 |
+
"classifier_pre_norm_affine": false,
|
| 25 |
+
"classifier_pre_norm_eps": 1e-07,
|
| 26 |
+
"d_qk": 64,
|
| 27 |
+
"d_v": 64,
|
| 28 |
+
"embedding_dropout_p": 0.1,
|
| 29 |
+
"feed_forward_dropout_p": 0.0,
|
| 30 |
+
"feed_forward_inter_norm_affine": false,
|
| 31 |
+
"feed_forward_inter_norm_eps": 1e-07,
|
| 32 |
+
"feed_forward_pre_norm_affine": false,
|
| 33 |
+
"feed_forward_pre_norm_eps": 1e-07,
|
| 34 |
+
"hidden_size": 960,
|
| 35 |
+
"intermediate_size": 2560,
|
| 36 |
+
"max_sequence_length": 16384,
|
| 37 |
+
"num_attention_heads": 15,
|
| 38 |
+
"num_kv_heads": 15,
|
| 39 |
+
"num_layers": 28,
|
| 40 |
+
"rope_theta": 160000,
|
| 41 |
+
"vocab_size": 51200,
|
| 42 |
+
"word_norm_affine": true,
|
| 43 |
+
"word_norm_eps": 1e-07,
|
| 44 |
+
"short_long_ratio": 4,
|
| 45 |
+
"window_length": 8192,
|
| 46 |
+
"is_decoder": false,
|
| 47 |
+
"not_flex": true,
|
| 48 |
+
"hidden_dropout_prob": 0.2
|
| 49 |
+
}
|
configuration_gptbert.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import copy
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class GptBertConfig(PretrainedConfig):
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
config_file: Path | str | None = None,
|
| 14 |
+
**kwargs
|
| 15 |
+
):
|
| 16 |
+
super().__init__(**kwargs)
|
| 17 |
+
|
| 18 |
+
self.model: str
|
| 19 |
+
|
| 20 |
+
# General information
|
| 21 |
+
self.model = "base"
|
| 22 |
+
|
| 23 |
+
# Vocabulary
|
| 24 |
+
self.vocab_size = 16384
|
| 25 |
+
self.max_sequence_length = 512
|
| 26 |
+
|
| 27 |
+
# Model dimensions
|
| 28 |
+
self.hidden_size = 768
|
| 29 |
+
self.intermediate_size = 2048
|
| 30 |
+
self.num_attention_heads = 12
|
| 31 |
+
self.num_layers = 12
|
| 32 |
+
self.d_qk = 64
|
| 33 |
+
|
| 34 |
+
# Dropout probabilities
|
| 35 |
+
self.embedding_dropout_p = 0.1
|
| 36 |
+
self.attention_probabilities_dropout_p = 0.1
|
| 37 |
+
self.attention_output_dropout_p = 0.1
|
| 38 |
+
self.feed_forward_dropout_p = 0.1
|
| 39 |
+
self.attention_dropout = 0.1
|
| 40 |
+
self.hidden_dropout_prob = 0.2
|
| 41 |
+
|
| 42 |
+
# Position Emebedding
|
| 43 |
+
self.rope_theta = 160_000
|
| 44 |
+
|
| 45 |
+
# Norms
|
| 46 |
+
self.word_norm_eps = 1e-7
|
| 47 |
+
self.word_norm_affine = False
|
| 48 |
+
|
| 49 |
+
self.attention_pre_norm_eps = 1e-7
|
| 50 |
+
self.attention_pre_norm_affine = False
|
| 51 |
+
|
| 52 |
+
self.attention_inter_norm_eps = 1e-7
|
| 53 |
+
self.attention_inter_norm_affine = True
|
| 54 |
+
|
| 55 |
+
self.feed_forward_pre_norm_eps = 1e-7
|
| 56 |
+
self.feed_forward_pre_norm_affine = False
|
| 57 |
+
|
| 58 |
+
self.feed_forward_inter_norm_eps = 1e-7
|
| 59 |
+
self.feed_forward_inter_norm_affine = False
|
| 60 |
+
|
| 61 |
+
self.classifier_pre_norm_eps = 1e-7
|
| 62 |
+
self.classifier_pre_norm_affine = False
|
| 63 |
+
|
| 64 |
+
self.classifier_post_norm_eps = 1e-7
|
| 65 |
+
self.classifier_post_norm_affine = False
|
| 66 |
+
|
| 67 |
+
if config_file is not None:
|
| 68 |
+
if type(config_file) is str:
|
| 69 |
+
config_file = Path(config_file)
|
| 70 |
+
assert type(config_file) is not Path, "The config_file should either be a Path or str"
|
| 71 |
+
with config_file.open("r") as file:
|
| 72 |
+
config = json.load(file)
|
| 73 |
+
|
| 74 |
+
for attr, value in config.items():
|
| 75 |
+
if isinstance(value, str):
|
| 76 |
+
value = value.lower()
|
| 77 |
+
setattr(self, attr, value)
|
| 78 |
+
|
| 79 |
+
for attr, value in kwargs.items():
|
| 80 |
+
if isinstance(value, str):
|
| 81 |
+
value = value.lower()
|
| 82 |
+
setattr(self, attr, value)
|
| 83 |
+
|
| 84 |
+
def __repr__(self) -> str:
|
| 85 |
+
return str(self.to_json_string())
|
| 86 |
+
|
| 87 |
+
def to_dict(self) -> dict:
|
| 88 |
+
"""Serializes this instance to a Python dictionary."""
|
| 89 |
+
output: dict
|
| 90 |
+
|
| 91 |
+
output = copy.deepcopy(self.__dict__)
|
| 92 |
+
return output
|
| 93 |
+
|
| 94 |
+
def to_json_string(self) -> str:
|
| 95 |
+
"""Serializes this instance to a JSON string."""
|
| 96 |
+
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
| 97 |
+
|
| 98 |
+
def to_json_file(self, json_file_path: Path | str) -> None:
|
| 99 |
+
"""Save this instance to a json file."""
|
| 100 |
+
if isinstance(json_file_path, str):
|
| 101 |
+
json_file_path: Path = Path(json_file_path)
|
| 102 |
+
with json_file_path.open("w", encoding='utf-8') as writer:
|
| 103 |
+
writer.write(self.to_json_string())
|
| 104 |
+
|
| 105 |
+
@classmethod
|
| 106 |
+
def create_base_config(cls, json_file_path: Path | str | None = None) -> GptBertConfig:
|
| 107 |
+
config: GptBertConfig
|
| 108 |
+
|
| 109 |
+
config = GptBertConfig()
|
| 110 |
+
if json_file_path is not None:
|
| 111 |
+
config.to_json_file(json_file_path)
|
| 112 |
+
|
| 113 |
+
return config
|
modeling_gptbert.py
ADDED
|
@@ -0,0 +1,1216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from torch import _softmax_backward_data as _softmax_backward_data
|
| 7 |
+
|
| 8 |
+
from functools import partial
|
| 9 |
+
|
| 10 |
+
from .configuration_gptbert import GptBertConfig
|
| 11 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 12 |
+
from transformers.activations import gelu_new
|
| 13 |
+
from transformers.modeling_outputs import (
|
| 14 |
+
MaskedLMOutput,
|
| 15 |
+
MultipleChoiceModelOutput,
|
| 16 |
+
QuestionAnsweringModelOutput,
|
| 17 |
+
SequenceClassifierOutput,
|
| 18 |
+
TokenClassifierOutput,
|
| 19 |
+
BaseModelOutput,
|
| 20 |
+
CausalLMOutput
|
| 21 |
+
)
|
| 22 |
+
import math
|
| 23 |
+
from typing import TYPE_CHECKING, Optional, Union, Tuple, List
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
| 27 |
+
except ImportError:
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ModelOutput:
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
logits: torch.Tensor | None = None,
|
| 36 |
+
loss: torch.Tensor | float | None = None,
|
| 37 |
+
perplexity: torch.Tensor | float | None = None,
|
| 38 |
+
accuracy: float | None = None,
|
| 39 |
+
z_loss: torch.Tensor | float | None = None,
|
| 40 |
+
**kwargs
|
| 41 |
+
):
|
| 42 |
+
self.logits: torch.Tensor | None
|
| 43 |
+
self.loss: torch.Tensor | float | None
|
| 44 |
+
self.perplexity: torch.Tensor | float | None
|
| 45 |
+
self.accuracy: float | None
|
| 46 |
+
self.z_loss: torch.Tensor | float | None
|
| 47 |
+
|
| 48 |
+
self.logits = logits
|
| 49 |
+
self.loss = loss
|
| 50 |
+
self.perplexity = perplexity
|
| 51 |
+
self.accuracy = accuracy
|
| 52 |
+
self.z_loss = z_loss
|
| 53 |
+
|
| 54 |
+
for attr, value in kwargs.items():
|
| 55 |
+
setattr(self, attr, value)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class CastedLinear(nn.Linear):
|
| 59 |
+
|
| 60 |
+
def __init__(self, in_features, out_features, bias):
|
| 61 |
+
super().__init__(in_features, out_features, bias=bias)
|
| 62 |
+
|
| 63 |
+
def reset_parameters(self) -> None:
|
| 64 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
| 65 |
+
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 66 |
+
|
| 67 |
+
def forward(self, x):
|
| 68 |
+
return F.linear(x, self.weight.type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class CastedLinearIn(nn.Linear):
|
| 72 |
+
|
| 73 |
+
def __init__(self, in_features, out_features, bias):
|
| 74 |
+
super().__init__(in_features, out_features, bias=bias)
|
| 75 |
+
self.scale = nn.Parameter(torch.ones(in_features))
|
| 76 |
+
|
| 77 |
+
def reset_parameters(self) -> None:
|
| 78 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
| 79 |
+
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class CastedLinearOut(nn.Linear):
|
| 86 |
+
|
| 87 |
+
def __init__(self, in_features, out_features, bias):
|
| 88 |
+
super().__init__(in_features, out_features, bias=bias)
|
| 89 |
+
self.scale = nn.Parameter(torch.ones(out_features))
|
| 90 |
+
|
| 91 |
+
def reset_parameters(self) -> None:
|
| 92 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
| 93 |
+
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 94 |
+
|
| 95 |
+
def forward(self, x):
|
| 96 |
+
return F.linear(x, (self.scale.unsqueeze(1) * self.weight).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class MultiCastedLinearOrtho(nn.Module):
|
| 100 |
+
|
| 101 |
+
def __init__(self, in_features, out_features, bias):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.in_features = in_features
|
| 104 |
+
self.out_features = out_features
|
| 105 |
+
|
| 106 |
+
self.weights = nn.ParameterList()
|
| 107 |
+
for out_feature in out_features:
|
| 108 |
+
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 109 |
+
|
| 110 |
+
if bias:
|
| 111 |
+
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 112 |
+
else:
|
| 113 |
+
self.bias = self.register_parameter("bias", None)
|
| 114 |
+
|
| 115 |
+
self.reset_parameters()
|
| 116 |
+
|
| 117 |
+
def reset_parameters(self) -> None:
|
| 118 |
+
for i, weight in enumerate(self.weights):
|
| 119 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features[i]))
|
| 120 |
+
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 121 |
+
|
| 122 |
+
def forward(self, x):
|
| 123 |
+
return F.linear(x, torch.cat([weight for weight in self.weights], dim=0).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class MultiCastedLinearOrthoIn(nn.Module):
|
| 127 |
+
|
| 128 |
+
def __init__(self, in_features, out_features, bias):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.in_features = in_features
|
| 131 |
+
self.out_features = out_features
|
| 132 |
+
|
| 133 |
+
self.weights = nn.ParameterList()
|
| 134 |
+
for out_feature in out_features:
|
| 135 |
+
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 136 |
+
|
| 137 |
+
if bias:
|
| 138 |
+
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 139 |
+
else:
|
| 140 |
+
self.bias = self.register_parameter("bias", None)
|
| 141 |
+
|
| 142 |
+
self.scale = nn.Parameter(torch.ones(in_features))
|
| 143 |
+
|
| 144 |
+
self.reset_parameters()
|
| 145 |
+
|
| 146 |
+
def reset_parameters(self) -> None:
|
| 147 |
+
for weight in self.weights:
|
| 148 |
+
std = 0.5 * (self.in_features ** -0.5)
|
| 149 |
+
bound = (3 ** 0.5) * std
|
| 150 |
+
with torch.no_grad():
|
| 151 |
+
weight.uniform_(-bound, bound)
|
| 152 |
+
|
| 153 |
+
def forward(self, x):
|
| 154 |
+
return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class MultiCastedLinearOrthoOut(nn.Module):
|
| 158 |
+
|
| 159 |
+
def __init__(self, in_features, out_features, bias):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.in_features = in_features
|
| 162 |
+
self.out_features = out_features
|
| 163 |
+
|
| 164 |
+
self.weights = nn.ParameterList()
|
| 165 |
+
for out_feature in out_features:
|
| 166 |
+
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 167 |
+
|
| 168 |
+
if bias:
|
| 169 |
+
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 170 |
+
else:
|
| 171 |
+
self.bias = self.register_parameter("bias", None)
|
| 172 |
+
|
| 173 |
+
self.scale = nn.Parameter(torch.ones(sum(out_features)))
|
| 174 |
+
|
| 175 |
+
self.reset_parameters()
|
| 176 |
+
|
| 177 |
+
def reset_parameters(self) -> None:
|
| 178 |
+
for weight in self.weights:
|
| 179 |
+
std = 0.5 * (self.in_features ** -0.5)
|
| 180 |
+
bound = (3 ** 0.5) * std
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
weight.uniform_(-bound, bound)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
return F.linear(x, (self.scale.unsqueeze(1) * torch.cat([weight for weight in self.weights], dim=0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class GeGLU(nn.Module):
|
| 189 |
+
def forward(self, x):
|
| 190 |
+
x, gate = x.chunk(2, dim=-1)
|
| 191 |
+
x = x * gelu_new(gate)
|
| 192 |
+
return x
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class MaskedSoftmax(torch.autograd.Function):
|
| 196 |
+
@staticmethod
|
| 197 |
+
def forward(ctx, x: torch.Tensor, mask: torch.BoolTensor, dim: int) -> torch.Tensor:
|
| 198 |
+
ctx.dim: int
|
| 199 |
+
|
| 200 |
+
ctx.dim = dim
|
| 201 |
+
x.masked_fill_(mask, float('-inf'))
|
| 202 |
+
x = torch.softmax(x, ctx.dim)
|
| 203 |
+
x.masked_fill_(mask, 0.0)
|
| 204 |
+
ctx.save_for_backward(x)
|
| 205 |
+
return x
|
| 206 |
+
|
| 207 |
+
@staticmethod
|
| 208 |
+
def backward(ctx, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]:
|
| 209 |
+
output: torch.Tensor
|
| 210 |
+
|
| 211 |
+
output, = ctx.saved_tensors
|
| 212 |
+
inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, ctx.dim, output.dtype)
|
| 213 |
+
return inputGrad, None, None
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class Encoder(nn.Module):
|
| 217 |
+
|
| 218 |
+
def __init__(self, config) -> None:
|
| 219 |
+
super().__init__()
|
| 220 |
+
|
| 221 |
+
self.layers: nn.ModuleList[Layer]
|
| 222 |
+
|
| 223 |
+
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
| 224 |
+
|
| 225 |
+
for i, layer in enumerate(self.layers):
|
| 226 |
+
for weight in layer.mlp.up_proj.weights:
|
| 227 |
+
weight.data *= math.sqrt(1.0 / (2.0 * (i + 1)))
|
| 228 |
+
layer.mlp.down_proj.weight.data *= math.sqrt(1.0 / (2.0 * (i + 1)))
|
| 229 |
+
|
| 230 |
+
self.short_long_ratio = config.short_long_ratio
|
| 231 |
+
|
| 232 |
+
def set_window_length(self, config) -> None:
|
| 233 |
+
for i, layer in enumerate(self.layers):
|
| 234 |
+
if (i+1) % self.short_long_ratio == 0:
|
| 235 |
+
layer.set_window_length(config.window_length, config.not_flex)
|
| 236 |
+
else:
|
| 237 |
+
layer.set_window_length(256, config.not_flex)
|
| 238 |
+
|
| 239 |
+
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor:
|
| 240 |
+
hidden_layer: List[torch.Tensor]
|
| 241 |
+
attention_probs: List[torch.Tensor]
|
| 242 |
+
|
| 243 |
+
hidden_states = []
|
| 244 |
+
attention_probs = []
|
| 245 |
+
v1 = None
|
| 246 |
+
|
| 247 |
+
for layer in self.layers:
|
| 248 |
+
hidden_layer, v1, attention_p = layer(hidden_layer, embeddings, v1, mask)
|
| 249 |
+
hidden_states.append(hidden_layer)
|
| 250 |
+
attention_probs.append(attention_p)
|
| 251 |
+
|
| 252 |
+
return hidden_states, attention_probs
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class Layer(nn.Module):
|
| 256 |
+
|
| 257 |
+
def __init__(self, config, layer_idx: int) -> None:
|
| 258 |
+
super().__init__()
|
| 259 |
+
|
| 260 |
+
self.attention: SelfAttention
|
| 261 |
+
self.mlp: FeedForward
|
| 262 |
+
|
| 263 |
+
self.attention = SelfAttention(config, layer_idx)
|
| 264 |
+
self.mlp = FeedForward(config)
|
| 265 |
+
self.lambdas = nn.Parameter(torch.tensor([0., 0., 1., 0., 1., 0.]))
|
| 266 |
+
|
| 267 |
+
def set_window_length(self, window_length: int, not_flex: bool) -> None:
|
| 268 |
+
self.attention.set_window_length(window_length, not_flex)
|
| 269 |
+
|
| 270 |
+
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, v1: torch.Tensor | None, mask: torch.Tensor | None = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 271 |
+
output: torch.Tensor
|
| 272 |
+
attention_p: torch.Tensor
|
| 273 |
+
|
| 274 |
+
attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
|
| 275 |
+
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 276 |
+
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 277 |
+
|
| 278 |
+
attention_output, v1, attention_p = self.attention(attention_output, qk_layer, v1, mask)
|
| 279 |
+
mlp_layer = mlp_layer + attention_output
|
| 280 |
+
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 281 |
+
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
| 282 |
+
|
| 283 |
+
return output, v1, attention_p
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
class Embedding(nn.Module):
|
| 287 |
+
|
| 288 |
+
def __init__(self, config) -> None:
|
| 289 |
+
super().__init__()
|
| 290 |
+
|
| 291 |
+
assert hasattr(config, "vocab_size"), "The config must have a vocab_size attribute!"
|
| 292 |
+
assert hasattr(config, "hidden_size"), "The config must have a hidden_size attribute!"
|
| 293 |
+
assert hasattr(config, "embedding_dropout_p"), "The model must have a embedding_dropout_p attribute!"
|
| 294 |
+
|
| 295 |
+
self.word_embedding: nn.Embedding
|
| 296 |
+
self.word_norm: nn.LayerNorm
|
| 297 |
+
self.dropout: nn.Dropout
|
| 298 |
+
|
| 299 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 300 |
+
self.word_norm = nn.LayerNorm(config.hidden_size, eps=config.word_norm_eps, elementwise_affine=False, bias=False)
|
| 301 |
+
self.word_scale = nn.Parameter(torch.zeros(config.hidden_size))
|
| 302 |
+
|
| 303 |
+
self.dropout = nn.Dropout(config.embedding_dropout_p)
|
| 304 |
+
|
| 305 |
+
self.initialize(config.hidden_size, config.vocab_size)
|
| 306 |
+
|
| 307 |
+
@torch.no_grad()
|
| 308 |
+
def initialize(self, hidden_size: int, vocab_size: int) -> None:
|
| 309 |
+
std: float
|
| 310 |
+
|
| 311 |
+
std = math.sqrt(2.0 / (hidden_size + vocab_size))
|
| 312 |
+
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 313 |
+
|
| 314 |
+
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
| 315 |
+
word_embedding: torch.Tensor
|
| 316 |
+
|
| 317 |
+
word_embedding = self.word_embedding(input_ids)
|
| 318 |
+
word_embedding = self.word_norm(word_embedding)
|
| 319 |
+
word_embedding = (word_embedding * (self.word_scale + 1.0).unsqueeze(0).unsqueeze(0))
|
| 320 |
+
|
| 321 |
+
return self.dropout(word_embedding)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
class MaskClassifier(nn.Module):
|
| 325 |
+
|
| 326 |
+
def __init__(self, config, embedding_weights: nn.Parameter) -> None:
|
| 327 |
+
super().__init__()
|
| 328 |
+
|
| 329 |
+
self.projection: CastedLinear
|
| 330 |
+
self.emb2vocab: CastedLinear
|
| 331 |
+
self.pre_norm: nn.LayerNorm
|
| 332 |
+
self.post_norm: nn.LayerNorm
|
| 333 |
+
|
| 334 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
| 335 |
+
self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
|
| 336 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
| 337 |
+
self.emb2vocab = CastedLinearIn(config.hidden_size, config.vocab_size, bias=True)
|
| 338 |
+
|
| 339 |
+
self.initialize(config.hidden_size, config.vocab_size, embedding_weights)
|
| 340 |
+
|
| 341 |
+
@torch.no_grad()
|
| 342 |
+
def initialize(self, hidden_size: int, vocab_size: int, embedding_weights: nn.Parameter) -> None:
|
| 343 |
+
proj_std: float = math.sqrt(2.0 / (hidden_size + 4*hidden_size))
|
| 344 |
+
|
| 345 |
+
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 346 |
+
self.emb2vocab.weight = embedding_weights
|
| 347 |
+
self.emb2vocab.bias.zero_()
|
| 348 |
+
|
| 349 |
+
def project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 350 |
+
projection: torch.Tensor
|
| 351 |
+
|
| 352 |
+
projection = self.projection(hidden_layer)
|
| 353 |
+
projection = gelu_new(projection)
|
| 354 |
+
projection = self.post_norm(projection)
|
| 355 |
+
|
| 356 |
+
return projection
|
| 357 |
+
|
| 358 |
+
def calculate_output(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 359 |
+
return self.emb2vocab(hidden_layer)
|
| 360 |
+
|
| 361 |
+
def forward(self, hidden_layer: torch.Tensor, labels: torch.Tensor | None = None) -> torch.Tensor:
|
| 362 |
+
output: torch.Tensor
|
| 363 |
+
|
| 364 |
+
if labels is not None:
|
| 365 |
+
hidden_layer = torch.index_select(hidden_layer.flatten(0, 1), 0, torch.nonzero(labels.flatten() != -100).squeeze())
|
| 366 |
+
|
| 367 |
+
hidden_layer = self.pre_norm(hidden_layer)
|
| 368 |
+
hidden_layer = self.project(hidden_layer)
|
| 369 |
+
output = self.calculate_output(hidden_layer)
|
| 370 |
+
|
| 371 |
+
return output
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class SelfAttention(nn.Module):
|
| 375 |
+
|
| 376 |
+
def __init__(self, config, layer_idx) -> None:
|
| 377 |
+
super().__init__()
|
| 378 |
+
self.d_qk = config.d_qk
|
| 379 |
+
self.d_v = config.d_v
|
| 380 |
+
self.num_attention_heads = config.num_attention_heads
|
| 381 |
+
self.num_kv_heads = config.num_kv_heads
|
| 382 |
+
self.hidden_size = config.hidden_size
|
| 383 |
+
|
| 384 |
+
self.q_out_dim = self.d_qk * self.num_attention_heads
|
| 385 |
+
self.k_out_dim = self.d_qk * self.num_kv_heads
|
| 386 |
+
self.v_out_dim = self.d_v * self.num_kv_heads
|
| 387 |
+
|
| 388 |
+
self.qk_proj = MultiCastedLinearOrthoIn(self.hidden_size, [self.q_out_dim, self.k_out_dim], bias=False)
|
| 389 |
+
self.v_proj = CastedLinearIn(self.hidden_size, self.v_out_dim, bias=False)
|
| 390 |
+
self.out_proj = CastedLinearIn(self.d_v*self.num_attention_heads, self.hidden_size, bias=False)
|
| 391 |
+
|
| 392 |
+
self.pre_v_norm = nn.LayerNorm(config.hidden_size, eps=config.attention_pre_norm_eps, elementwise_affine=config.attention_pre_norm_affine)
|
| 393 |
+
self.pre_qk_norm = nn.LayerNorm(config.hidden_size, eps=config.attention_pre_norm_eps, elementwise_affine=config.attention_pre_norm_affine)
|
| 394 |
+
self.inter_norm = nn.LayerNorm(self.d_v * self.num_attention_heads, eps=config.attention_inter_norm_eps, elementwise_affine=config.attention_inter_norm_affine)
|
| 395 |
+
self.q_norm = nn.LayerNorm(config.d_qk, eps=config.attention_pre_norm_eps, elementwise_affine=False, bias=False)
|
| 396 |
+
self.k_norm = nn.LayerNorm(config.d_qk, eps=config.attention_pre_norm_eps, elementwise_affine=False, bias=False)
|
| 397 |
+
self.k_scale = nn.Parameter(torch.ones(self.num_kv_heads, config.d_qk))
|
| 398 |
+
self.q_scale = nn.Parameter(torch.ones(self.num_attention_heads, config.d_qk))
|
| 399 |
+
|
| 400 |
+
self.dropout = nn.Dropout(config.attention_output_dropout_p)
|
| 401 |
+
|
| 402 |
+
theta = 160_000 if (layer_idx + 1) % config.short_long_ratio == 0 else 10_000
|
| 403 |
+
|
| 404 |
+
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
| 405 |
+
self.scale: float = 1.0 / math.sqrt(self.d_qk)
|
| 406 |
+
|
| 407 |
+
self.dropout = nn.Dropout(config.attention_dropout if hasattr(config, "attention_dropout") else 0.0)
|
| 408 |
+
|
| 409 |
+
self.lambdas = nn.Parameter(torch.tensor([0.5]))
|
| 410 |
+
|
| 411 |
+
self.initialize()
|
| 412 |
+
|
| 413 |
+
self.sequence_length = config.max_sequence_length
|
| 414 |
+
self.is_causal = config.is_decoder
|
| 415 |
+
self.not_flex = config.not_flex
|
| 416 |
+
|
| 417 |
+
@torch.no_grad()
|
| 418 |
+
def initialize(self) -> None:
|
| 419 |
+
std: float = math.sqrt(2.0 / (self.hidden_size + 4*self.hidden_size))
|
| 420 |
+
for weight in self.qk_proj.weights:
|
| 421 |
+
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 422 |
+
nn.init.trunc_normal_(self.v_proj.weight, mean=0.0, std=std, a=2*std, b=2*std)
|
| 423 |
+
self.out_proj.weight.data.zero_()
|
| 424 |
+
|
| 425 |
+
def set_window_length(self, window_length: int, not_flex: bool) -> None:
|
| 426 |
+
self.window_length: int = window_length
|
| 427 |
+
if not not_flex:
|
| 428 |
+
self.block_mask = self.create_block_mask(window_length)
|
| 429 |
+
|
| 430 |
+
def causal_mask_mode(self, window_length, b, _, q_idx, kv_idx):
|
| 431 |
+
return (q_idx >= kv_idx) & ((q_idx - kv_idx) < window_length)
|
| 432 |
+
|
| 433 |
+
def bidirectional_mask_mode(self, window_length, b, _, q_idx, kv_idx):
|
| 434 |
+
return ((q_idx - kv_idx) < window_length) & ((kv_idx - q_idx) < window_length)
|
| 435 |
+
|
| 436 |
+
def create_block_mask(self, window_length: int) -> torch.Tensor:
|
| 437 |
+
if self.is_causal:
|
| 438 |
+
return create_block_mask(
|
| 439 |
+
partial(self.causal_mask_mode, self.window_length),
|
| 440 |
+
1, 1, self.sequence_length, self.sequence_length, device=self.k_scale.device
|
| 441 |
+
)
|
| 442 |
+
else:
|
| 443 |
+
return create_block_mask(
|
| 444 |
+
partial(self.bidirectional_mask_mode, self.window_length),
|
| 445 |
+
1, 1, self.sequence_length, self.sequence_length, device=self.k_scale.device
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 449 |
+
attention_scores: torch.Tensor
|
| 450 |
+
attention_probabilities: torch.Tensor
|
| 451 |
+
batch_size: int
|
| 452 |
+
query_length: int
|
| 453 |
+
key_length: int
|
| 454 |
+
|
| 455 |
+
batch_size, _, query_length, _ = query.size()
|
| 456 |
+
_, _, key_length, _ = key.size()
|
| 457 |
+
|
| 458 |
+
if self.is_causal:
|
| 459 |
+
window_mask = ~torch.ones(query_length, key_length, dtype=torch.bool, device=self.k_scale.device).tril().triu(diagonal=-self.window_length).view(1, 1, query_length, key_length)
|
| 460 |
+
else:
|
| 461 |
+
window_mask = ~torch.ones(query_length, key_length, dtype=torch.bool, device=self.k_scale.device).tril(diagonal=self.window_length).triu(diagonal=-self.window_length).view(1, 1, query_length, key_length)
|
| 462 |
+
|
| 463 |
+
if padding_mask is not None:
|
| 464 |
+
attention_mask = padding_mask | window_mask
|
| 465 |
+
else:
|
| 466 |
+
attention_mask = window_mask
|
| 467 |
+
|
| 468 |
+
attention_scores = torch.bmm(query.flatten(0, 1), key.transpose(-1, -2).flatten(0, 1)) * self.scale # shape: [B*H, T, T]
|
| 469 |
+
attention_scores = attention_scores.view(batch_size, self.num_attention_heads, query_length, key_length)
|
| 470 |
+
|
| 471 |
+
attention_probabilities = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
|
| 472 |
+
attention_probabilities = self.dropout(attention_probabilities)
|
| 473 |
+
|
| 474 |
+
value = torch.bmm(attention_probabilities.flatten(0, 1), value.flatten(0, 1))
|
| 475 |
+
value = value.view(batch_size, self.num_attention_heads, query_length, self.d_v)
|
| 476 |
+
|
| 477 |
+
return value, attention_probabilities.detach()
|
| 478 |
+
|
| 479 |
+
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, mask: torch.Tensor | None = None, doc_ids: torch.Tensor | None = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 480 |
+
hidden_layer = self.pre_v_norm(hidden_layer)
|
| 481 |
+
qk_layer = self.pre_qk_norm(qk_layer)
|
| 482 |
+
|
| 483 |
+
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
| 484 |
+
value = self.v_proj(hidden_layer)
|
| 485 |
+
|
| 486 |
+
query_length: int = hidden_layer.size(0)
|
| 487 |
+
key_length: int = hidden_layer.size(0)
|
| 488 |
+
batch_size: int = hidden_layer.size(1)
|
| 489 |
+
|
| 490 |
+
query = query.reshape(query_length, batch_size, self.num_attention_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
| 491 |
+
key = key.reshape(key_length, batch_size, self.num_kv_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
| 492 |
+
value = value.reshape(key_length, batch_size, self.num_kv_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
| 493 |
+
|
| 494 |
+
query, key = ((self.q_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.q_norm(query.float())).type_as(query), ((self.k_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.k_norm(key.float())).type_as(key)
|
| 495 |
+
|
| 496 |
+
if v1 is None:
|
| 497 |
+
v1 = value
|
| 498 |
+
value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1
|
| 499 |
+
|
| 500 |
+
query = self.rope_embedding(query)
|
| 501 |
+
key = self.rope_embedding(key)
|
| 502 |
+
|
| 503 |
+
if self.not_flex:
|
| 504 |
+
output, attention_probabilities = self.attention_operation(query, key, value, mask)
|
| 505 |
+
else:
|
| 506 |
+
def document_score_mod(score, b, _, q_idx, kv_idx):
|
| 507 |
+
return torch.where(doc_ids[q_idx] == doc_ids[kv_idx], score, -float("inf"))
|
| 508 |
+
|
| 509 |
+
if self.is_causal:
|
| 510 |
+
block_mask = create_block_mask(
|
| 511 |
+
partial(self.causal_mask_mode, self.window_length),
|
| 512 |
+
1, 1, query_length, key_length, device=self.k_scale.device
|
| 513 |
+
)
|
| 514 |
+
else:
|
| 515 |
+
block_mask = create_block_mask(
|
| 516 |
+
partial(self.bidirectional_mask_mode, self.window_length),
|
| 517 |
+
1, 1, query_length, key_length, device=self.k_scale.device
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
output = flex_attention(
|
| 521 |
+
query, key, value, block_mask=block_mask, enable_gqa=True
|
| 522 |
+
)
|
| 523 |
+
attention_probabilities = None
|
| 524 |
+
|
| 525 |
+
output = output.permute(2, 0, 1, 3).flatten(2, 3) # shape: [T, B, H*D]
|
| 526 |
+
output = self.inter_norm(output)
|
| 527 |
+
output = self.out_proj(output)
|
| 528 |
+
|
| 529 |
+
return self.dropout(output), v1, attention_probabilities
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
class FeedForward(nn.Module):
|
| 533 |
+
|
| 534 |
+
def __init__(self, config) -> None:
|
| 535 |
+
super().__init__()
|
| 536 |
+
|
| 537 |
+
self.up_proj: CastedLinear
|
| 538 |
+
self.down_proj: CastedLinear
|
| 539 |
+
self.pre_norm: nn.LayerNorm
|
| 540 |
+
self.inter_norm: nn.LayerNorm
|
| 541 |
+
self.activation: GeGLU
|
| 542 |
+
self.dropout: nn.Dropout
|
| 543 |
+
|
| 544 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.feed_forward_pre_norm_eps, elementwise_affine=config.feed_forward_pre_norm_affine)
|
| 545 |
+
self.up_proj = MultiCastedLinearOrthoIn(config.hidden_size, [config.intermediate_size, config.intermediate_size], bias=False)
|
| 546 |
+
self.activation = GeGLU()
|
| 547 |
+
self.inter_norm = nn.LayerNorm(config.intermediate_size, eps=config.feed_forward_inter_norm_eps, elementwise_affine=config.feed_forward_inter_norm_affine)
|
| 548 |
+
self.down_proj = CastedLinearIn(config.intermediate_size, config.hidden_size, bias=False)
|
| 549 |
+
self.dropout = nn.Dropout(config.feed_forward_dropout_p)
|
| 550 |
+
|
| 551 |
+
self.initialize(config.hidden_size)
|
| 552 |
+
|
| 553 |
+
@torch.no_grad()
|
| 554 |
+
def initialize(self, hidden_size: int) -> None:
|
| 555 |
+
std: float = math.sqrt(2.0 / (5*hidden_size))
|
| 556 |
+
|
| 557 |
+
for weight in self.up_proj.weights:
|
| 558 |
+
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 559 |
+
self.down_proj.weight.data.zero_()
|
| 560 |
+
|
| 561 |
+
def up_project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 562 |
+
hidden_layer = self.pre_norm(hidden_layer)
|
| 563 |
+
return self.up_proj(hidden_layer)
|
| 564 |
+
|
| 565 |
+
def activate(self, projection: torch.Tensor) -> torch.Tensor:
|
| 566 |
+
activated_projection: torch.Tensor
|
| 567 |
+
|
| 568 |
+
activated_projection = self.activation(projection)
|
| 569 |
+
activated_projection = self.inter_norm(activated_projection.float()).type_as(projection)
|
| 570 |
+
|
| 571 |
+
return activated_projection
|
| 572 |
+
|
| 573 |
+
def down_project(self, activated_projection: torch.Tensor) -> torch.Tensor:
|
| 574 |
+
output: torch.Tensor
|
| 575 |
+
|
| 576 |
+
output = self.down_proj(activated_projection)
|
| 577 |
+
|
| 578 |
+
return self.dropout(output)
|
| 579 |
+
|
| 580 |
+
def forward(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 581 |
+
output: torch.Tensor
|
| 582 |
+
|
| 583 |
+
output = self.up_project(hidden_layer)
|
| 584 |
+
output = self.activate(output)
|
| 585 |
+
output = self.down_project(output)
|
| 586 |
+
|
| 587 |
+
return output
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
| 591 |
+
|
| 592 |
+
def __init__(self, config, theta: int) -> None:
|
| 593 |
+
super().__init__()
|
| 594 |
+
|
| 595 |
+
assert hasattr(config, "d_qk"), "The config must have a d_qk attribute!"
|
| 596 |
+
assert hasattr(config, "max_sequence_length"), "The config must have a max_sequence_length attribute!"
|
| 597 |
+
|
| 598 |
+
self.inv_freq: torch.Tensor
|
| 599 |
+
self.cos_matrix: torch.Tensor
|
| 600 |
+
self.sin_matrix: torch.Tensor
|
| 601 |
+
head_size: int
|
| 602 |
+
max_seq_len: int
|
| 603 |
+
inv_freq: torch.Tensor
|
| 604 |
+
pos: torch.Tensor
|
| 605 |
+
embedding: torch.Tensor
|
| 606 |
+
|
| 607 |
+
head_size = config.d_qk
|
| 608 |
+
assert head_size % 2 == 0
|
| 609 |
+
max_seq_len = config.max_sequence_length
|
| 610 |
+
|
| 611 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, head_size, 2, dtype=torch.float32) / head_size))
|
| 612 |
+
pos = torch.arange(max_seq_len, dtype=torch.float32)
|
| 613 |
+
embedding = torch.einsum('n, d -> nd', pos, inv_freq)
|
| 614 |
+
embedding = torch.cat([embedding, embedding], dim=-1).unsqueeze(0)
|
| 615 |
+
self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
|
| 616 |
+
self.register_buffer("sin_matrix", embedding.sin(), persistent=False)
|
| 617 |
+
|
| 618 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 619 |
+
seq_len: int
|
| 620 |
+
cos_matrix: torch.Tensor
|
| 621 |
+
sin_matrix: torch.Tensor
|
| 622 |
+
x_rotate_half: torch.Tensor
|
| 623 |
+
out: torch.Tensor
|
| 624 |
+
|
| 625 |
+
hidden_layer = x.float()
|
| 626 |
+
|
| 627 |
+
seq_len = x.shape[2]
|
| 628 |
+
|
| 629 |
+
cos_matrix = self.cos_matrix[:, None, :seq_len, :]
|
| 630 |
+
sin_matrix = self.sin_matrix[:, None, :seq_len, :]
|
| 631 |
+
|
| 632 |
+
x_rotate_half = torch.cat(
|
| 633 |
+
[
|
| 634 |
+
-hidden_layer[:, :, :, x.size(-1) // 2:],
|
| 635 |
+
hidden_layer[:, :, :, :x.size(-1) // 2]
|
| 636 |
+
],
|
| 637 |
+
dim=-1
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
out = hidden_layer * cos_matrix + x_rotate_half * sin_matrix
|
| 641 |
+
return out.type_as(x)
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
#
|
| 645 |
+
# HuggingFace wrappers
|
| 646 |
+
#
|
| 647 |
+
|
| 648 |
+
class GptBertPreTrainedModel(PreTrainedModel):
|
| 649 |
+
config_class = GptBertConfig
|
| 650 |
+
supports_gradient_checkpointing = False
|
| 651 |
+
|
| 652 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 653 |
+
raise NotImplementedError("Gradient checkpointing is not supported by this model")
|
| 654 |
+
|
| 655 |
+
def _init_weights(self, module):
|
| 656 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 657 |
+
|
| 658 |
+
if isinstance(module, nn.Linear):
|
| 659 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 660 |
+
if module.bias is not None:
|
| 661 |
+
module.bias.data.zero_()
|
| 662 |
+
elif isinstance(module, nn.Embedding):
|
| 663 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 664 |
+
elif isinstance(module, nn.LayerNorm):
|
| 665 |
+
module.bias.data.zero_()
|
| 666 |
+
module.weight.data.fill_(1.0)
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
class GptBertModel(GptBertPreTrainedModel):
|
| 670 |
+
|
| 671 |
+
def __init__(self, config, add_mlm_layer=False, **kwargs):
|
| 672 |
+
super().__init__(config, **kwargs)
|
| 673 |
+
self.config = config
|
| 674 |
+
self.hidden_size = config.hidden_size
|
| 675 |
+
|
| 676 |
+
self.embedding = Embedding(config)
|
| 677 |
+
self.encoder = Encoder(config)
|
| 678 |
+
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
|
| 679 |
+
self.set_window_length(config)
|
| 680 |
+
|
| 681 |
+
def set_window_length(self, config) -> None:
|
| 682 |
+
self.encoder.set_window_length(config)
|
| 683 |
+
|
| 684 |
+
def get_input_embeddings(self):
|
| 685 |
+
return self.embedding.word_embedding
|
| 686 |
+
|
| 687 |
+
def set_input_embeddings(self, value):
|
| 688 |
+
self.embedding.word_embedding = value
|
| 689 |
+
|
| 690 |
+
def get_contextualized_embeddings(
|
| 691 |
+
self,
|
| 692 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 693 |
+
attention_mask: Optional[torch.Tensor] = None
|
| 694 |
+
) -> List[torch.Tensor]:
|
| 695 |
+
if input_ids is not None:
|
| 696 |
+
input_shape = input_ids.size()
|
| 697 |
+
else:
|
| 698 |
+
raise ValueError("You have to specify input_ids")
|
| 699 |
+
|
| 700 |
+
batch_size, seq_length = input_shape
|
| 701 |
+
device = input_ids.device
|
| 702 |
+
|
| 703 |
+
# if attention_mask is None:
|
| 704 |
+
# attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
|
| 705 |
+
if attention_mask is not None:
|
| 706 |
+
attention_mask = ~attention_mask.bool()
|
| 707 |
+
|
| 708 |
+
if len(attention_mask.size()) == 2:
|
| 709 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 710 |
+
elif len(attention_mask.size()) == 3:
|
| 711 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 712 |
+
|
| 713 |
+
if self.config.is_decoder:
|
| 714 |
+
attention_mask = attention_mask | torch.triu(torch.ones(seq_length, seq_length, dtype=torch.bool, device=device), 1).unsqueeze(0).unsqueeze(0)
|
| 715 |
+
|
| 716 |
+
static_embeddings = self.embedding(input_ids.t())
|
| 717 |
+
contextualized_embeddings, attention_probs = self.encoder(static_embeddings, static_embeddings, attention_mask)
|
| 718 |
+
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
|
| 719 |
+
last_layer = contextualized_embeddings[-1]
|
| 720 |
+
contextualized_embeddings = [contextualized_embeddings[0]] + [
|
| 721 |
+
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
|
| 722 |
+
for i in range(1, len(contextualized_embeddings))
|
| 723 |
+
]
|
| 724 |
+
return last_layer, contextualized_embeddings, attention_probs
|
| 725 |
+
|
| 726 |
+
def forward(
|
| 727 |
+
self,
|
| 728 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 729 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 730 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 731 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 732 |
+
output_hidden_states: Optional[bool] = None,
|
| 733 |
+
output_attentions: Optional[bool] = None,
|
| 734 |
+
return_dict: Optional[bool] = None,
|
| 735 |
+
**kwargs
|
| 736 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 737 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 738 |
+
|
| 739 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
| 740 |
+
|
| 741 |
+
if not return_dict:
|
| 742 |
+
return (
|
| 743 |
+
sequence_output,
|
| 744 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 745 |
+
*([attention_probs] if output_attentions else [])
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
return BaseModelOutput(
|
| 749 |
+
last_hidden_state=sequence_output,
|
| 750 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 751 |
+
attentions=attention_probs if output_attentions else None
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
class GptBertForMaskedLM(GptBertModel):
|
| 756 |
+
_keys_to_ignore_on_load_unexpected = ["head"]
|
| 757 |
+
|
| 758 |
+
def __init__(self, config, **kwargs):
|
| 759 |
+
super().__init__(config, add_mlm_layer=True, **kwargs)
|
| 760 |
+
|
| 761 |
+
def get_output_embeddings(self):
|
| 762 |
+
return self.classifier.emb2vocab.weight
|
| 763 |
+
|
| 764 |
+
def set_output_embeddings(self, new_embeddings):
|
| 765 |
+
self.classifier.emb2vocab.weight = new_embeddings
|
| 766 |
+
|
| 767 |
+
def forward(
|
| 768 |
+
self,
|
| 769 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 770 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 771 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 772 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 773 |
+
output_hidden_states: Optional[bool] = None,
|
| 774 |
+
output_attentions: Optional[bool] = None,
|
| 775 |
+
return_dict: Optional[bool] = None,
|
| 776 |
+
labels: Optional[torch.LongTensor] = None,
|
| 777 |
+
**kwargs
|
| 778 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 779 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 780 |
+
|
| 781 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
| 782 |
+
subword_prediction = self.classifier(sequence_output)
|
| 783 |
+
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 784 |
+
|
| 785 |
+
masked_lm_loss = None
|
| 786 |
+
if labels is not None:
|
| 787 |
+
labels_flatten = labels[:, 1:].flatten()
|
| 788 |
+
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 789 |
+
masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
| 790 |
+
|
| 791 |
+
if not return_dict:
|
| 792 |
+
output = (
|
| 793 |
+
subword_prediction,
|
| 794 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 795 |
+
*([attention_probs] if output_attentions else [])
|
| 796 |
+
)
|
| 797 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 798 |
+
|
| 799 |
+
return MaskedLMOutput(
|
| 800 |
+
loss=masked_lm_loss,
|
| 801 |
+
logits=subword_prediction,
|
| 802 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 803 |
+
attentions=attention_probs if output_attentions else None
|
| 804 |
+
)
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
class Classifier(nn.Module):
|
| 808 |
+
def __init__(self, config, num_labels: int):
|
| 809 |
+
super().__init__()
|
| 810 |
+
|
| 811 |
+
drop_out = getattr(config, "cls_dropout", None)
|
| 812 |
+
drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
|
| 813 |
+
|
| 814 |
+
self.projection: CastedLinear
|
| 815 |
+
self.emb2vocab: CastedLinear
|
| 816 |
+
self.pre_norm: nn.LayerNorm
|
| 817 |
+
self.post_norm: nn.LayerNorm
|
| 818 |
+
|
| 819 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
| 820 |
+
self.projection = CastedLinear(config.hidden_size, config.hidden_size, bias=False)
|
| 821 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
| 822 |
+
self.emb2vocab = CastedLinear(config.hidden_size, num_labels, bias=True)
|
| 823 |
+
self.dropout = nn.Dropout(drop_out)
|
| 824 |
+
|
| 825 |
+
self.initialize(config.hidden_size, config.intermediate_size, num_labels)
|
| 826 |
+
|
| 827 |
+
@torch.no_grad()
|
| 828 |
+
def initialize(self, hidden_size: int, intermediate_size: int, vocab_size: int) -> None:
|
| 829 |
+
proj_std: float = math.sqrt(2.0 / (hidden_size + intermediate_size))
|
| 830 |
+
|
| 831 |
+
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 832 |
+
nn.init.trunc_normal_(self.emb2vocab.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 833 |
+
self.emb2vocab.bias.zero_()
|
| 834 |
+
|
| 835 |
+
def project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 836 |
+
projection: torch.Tensor
|
| 837 |
+
|
| 838 |
+
projection = self.pre_norm(hidden_layer)
|
| 839 |
+
projection = self.dropout(projection)
|
| 840 |
+
projection = self.projection(hidden_layer)
|
| 841 |
+
projection = gelu_new(projection)
|
| 842 |
+
projection = self.post_norm(projection)
|
| 843 |
+
|
| 844 |
+
return projection
|
| 845 |
+
|
| 846 |
+
def calculate_output(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 847 |
+
return self.emb2vocab(hidden_layer)
|
| 848 |
+
|
| 849 |
+
def forward(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 850 |
+
output: torch.Tensor
|
| 851 |
+
projection: torch.Tensor
|
| 852 |
+
|
| 853 |
+
projection = self.project(hidden_layer)
|
| 854 |
+
output = self.calculate_output(projection)
|
| 855 |
+
|
| 856 |
+
return output
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
class GptBertForCausalLM(GptBertModel):
|
| 860 |
+
_keys_to_ignore_on_load_unexpected = ["head"]
|
| 861 |
+
|
| 862 |
+
def __init__(self, config, **kwargs):
|
| 863 |
+
config.is_decoder = True
|
| 864 |
+
super().__init__(config, add_mlm_layer=True, **kwargs)
|
| 865 |
+
|
| 866 |
+
def get_output_embeddings(self):
|
| 867 |
+
return self.classifier.emb2vocab.weight
|
| 868 |
+
|
| 869 |
+
def set_output_embeddings(self, new_embeddings):
|
| 870 |
+
self.classifier.emb2vocab.weight = new_embeddings
|
| 871 |
+
|
| 872 |
+
def get_input_embeddings(self):
|
| 873 |
+
return self.embedding.word_embedding
|
| 874 |
+
|
| 875 |
+
def set_input_embeddings(self, value):
|
| 876 |
+
self.embedding.word_embedding = value
|
| 877 |
+
|
| 878 |
+
def set_decoder(self, decoder):
|
| 879 |
+
self.encoder = decoder
|
| 880 |
+
|
| 881 |
+
def get_decoder(self):
|
| 882 |
+
return self.encoder
|
| 883 |
+
|
| 884 |
+
def can_generate(self):
|
| 885 |
+
return True
|
| 886 |
+
|
| 887 |
+
def forward(
|
| 888 |
+
self,
|
| 889 |
+
input_ids: torch.LongTensor = None,
|
| 890 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 891 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 892 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 893 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 894 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 895 |
+
labels: Optional[torch.LongTensor] = None,
|
| 896 |
+
use_cache: Optional[bool] = None,
|
| 897 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 898 |
+
output_attentions: Optional[bool] = None,
|
| 899 |
+
output_hidden_states: Optional[bool] = None,
|
| 900 |
+
return_dict: Optional[bool] = None
|
| 901 |
+
) -> Union[Tuple, CausalLMOutput]:
|
| 902 |
+
|
| 903 |
+
assert inputs_embeds is None, "inputs_embeds is not supported for now"
|
| 904 |
+
assert past_key_values is None, "past_key_values is not supported for now"
|
| 905 |
+
assert not use_cache, "use_cache is not supported for now"
|
| 906 |
+
|
| 907 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
| 908 |
+
subword_prediction = self.classifier(sequence_output)
|
| 909 |
+
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 910 |
+
|
| 911 |
+
masked_lm_loss = None
|
| 912 |
+
if labels is not None:
|
| 913 |
+
labels_flatten = labels[:, 1:].flatten()
|
| 914 |
+
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 915 |
+
masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
| 916 |
+
|
| 917 |
+
if not return_dict:
|
| 918 |
+
output = (
|
| 919 |
+
subword_prediction,
|
| 920 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 921 |
+
*([attention_probs] if output_attentions else [])
|
| 922 |
+
)
|
| 923 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 924 |
+
|
| 925 |
+
return CausalLMOutput(
|
| 926 |
+
loss=masked_lm_loss,
|
| 927 |
+
logits=subword_prediction,
|
| 928 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 929 |
+
attentions=attention_probs if output_attentions else None
|
| 930 |
+
)
|
| 931 |
+
|
| 932 |
+
def prepare_inputs_for_generation(
|
| 933 |
+
self,
|
| 934 |
+
input_ids: torch.Tensor,
|
| 935 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 937 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 938 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 939 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 940 |
+
use_cache: bool = True,
|
| 941 |
+
num_logits_to_keep: Optional[int] = None,
|
| 942 |
+
**kwargs,
|
| 943 |
+
):
|
| 944 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 945 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 946 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
| 947 |
+
if past_key_values is not None:
|
| 948 |
+
if inputs_embeds is not None: # Exception 1
|
| 949 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 950 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 951 |
+
input_ids = input_ids[:, cache_position]
|
| 952 |
+
|
| 953 |
+
if attention_mask is not None and position_ids is None:
|
| 954 |
+
# create position_ids on the fly for batch generation
|
| 955 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 956 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 957 |
+
if past_key_values:
|
| 958 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 959 |
+
|
| 960 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
| 961 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
| 962 |
+
|
| 963 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 964 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
| 965 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 966 |
+
else:
|
| 967 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
| 968 |
+
|
| 969 |
+
if num_logits_to_keep is not None:
|
| 970 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
| 971 |
+
|
| 972 |
+
model_inputs.update(
|
| 973 |
+
{
|
| 974 |
+
"position_ids": position_ids,
|
| 975 |
+
"cache_position": cache_position,
|
| 976 |
+
"past_key_values": past_key_values,
|
| 977 |
+
"use_cache": use_cache,
|
| 978 |
+
"attention_mask": attention_mask,
|
| 979 |
+
}
|
| 980 |
+
)
|
| 981 |
+
return model_inputs
|
| 982 |
+
|
| 983 |
+
|
| 984 |
+
class GptBertForSequenceClassification(GptBertModel):
|
| 985 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 986 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
| 987 |
+
|
| 988 |
+
def __init__(self, config, **kwargs):
|
| 989 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 990 |
+
|
| 991 |
+
self.num_labels = config.num_labels
|
| 992 |
+
self.head = Classifier(config, self.num_labels)
|
| 993 |
+
|
| 994 |
+
def forward(
|
| 995 |
+
self,
|
| 996 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 997 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 998 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 999 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1000 |
+
output_attentions: Optional[bool] = None,
|
| 1001 |
+
output_hidden_states: Optional[bool] = None,
|
| 1002 |
+
return_dict: Optional[bool] = None,
|
| 1003 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1004 |
+
**kwargs
|
| 1005 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1006 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1007 |
+
|
| 1008 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
| 1009 |
+
logits = self.head(sequence_output[:, 0, :])
|
| 1010 |
+
|
| 1011 |
+
loss = None
|
| 1012 |
+
if labels is not None:
|
| 1013 |
+
if self.config.problem_type is None:
|
| 1014 |
+
if self.num_labels == 1:
|
| 1015 |
+
self.config.problem_type = "regression"
|
| 1016 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1017 |
+
self.config.problem_type = "single_label_classification"
|
| 1018 |
+
else:
|
| 1019 |
+
self.config.problem_type = "multi_label_classification"
|
| 1020 |
+
|
| 1021 |
+
if self.config.problem_type == "regression":
|
| 1022 |
+
loss_fct = nn.MSELoss()
|
| 1023 |
+
if self.num_labels == 1:
|
| 1024 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1025 |
+
else:
|
| 1026 |
+
loss = loss_fct(logits, labels)
|
| 1027 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1028 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1029 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1030 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1031 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 1032 |
+
loss = loss_fct(logits, labels)
|
| 1033 |
+
|
| 1034 |
+
if not return_dict:
|
| 1035 |
+
output = (
|
| 1036 |
+
logits,
|
| 1037 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 1038 |
+
*([attention_probs] if output_attentions else [])
|
| 1039 |
+
)
|
| 1040 |
+
return ((loss,) + output) if loss is not None else output
|
| 1041 |
+
|
| 1042 |
+
return SequenceClassifierOutput(
|
| 1043 |
+
loss=loss,
|
| 1044 |
+
logits=logits,
|
| 1045 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 1046 |
+
attentions=attention_probs if output_attentions else None
|
| 1047 |
+
)
|
| 1048 |
+
|
| 1049 |
+
|
| 1050 |
+
class GptBertForTokenClassification(GptBertModel):
|
| 1051 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1052 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
| 1053 |
+
|
| 1054 |
+
def __init__(self, config, **kwargs):
|
| 1055 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1056 |
+
|
| 1057 |
+
self.num_labels = config.num_labels
|
| 1058 |
+
self.head = Classifier(config, self.num_labels)
|
| 1059 |
+
|
| 1060 |
+
def forward(
|
| 1061 |
+
self,
|
| 1062 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1063 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1064 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1065 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1066 |
+
output_attentions: Optional[bool] = None,
|
| 1067 |
+
output_hidden_states: Optional[bool] = None,
|
| 1068 |
+
return_dict: Optional[bool] = None,
|
| 1069 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1070 |
+
**kwargs
|
| 1071 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1072 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1073 |
+
|
| 1074 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
| 1075 |
+
logits = self.head(sequence_output)
|
| 1076 |
+
|
| 1077 |
+
loss = None
|
| 1078 |
+
if labels is not None:
|
| 1079 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1080 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1081 |
+
|
| 1082 |
+
if not return_dict:
|
| 1083 |
+
output = (
|
| 1084 |
+
logits,
|
| 1085 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 1086 |
+
*([attention_probs] if output_attentions else [])
|
| 1087 |
+
)
|
| 1088 |
+
return ((loss,) + output) if loss is not None else output
|
| 1089 |
+
|
| 1090 |
+
return TokenClassifierOutput(
|
| 1091 |
+
loss=loss,
|
| 1092 |
+
logits=logits,
|
| 1093 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 1094 |
+
attentions=attention_probs if output_attentions else None
|
| 1095 |
+
)
|
| 1096 |
+
|
| 1097 |
+
|
| 1098 |
+
class GptBertForQuestionAnswering(GptBertModel):
|
| 1099 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1100 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
| 1101 |
+
|
| 1102 |
+
def __init__(self, config, **kwargs):
|
| 1103 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1104 |
+
|
| 1105 |
+
self.num_labels = config.num_labels
|
| 1106 |
+
self.head = Classifier(config, self.num_labels)
|
| 1107 |
+
|
| 1108 |
+
def forward(
|
| 1109 |
+
self,
|
| 1110 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1112 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1113 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1114 |
+
output_attentions: Optional[bool] = None,
|
| 1115 |
+
output_hidden_states: Optional[bool] = None,
|
| 1116 |
+
return_dict: Optional[bool] = None,
|
| 1117 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 1118 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 1119 |
+
**kwargs
|
| 1120 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1121 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1122 |
+
|
| 1123 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
| 1124 |
+
logits = self.head(sequence_output)
|
| 1125 |
+
|
| 1126 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1127 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1128 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1129 |
+
|
| 1130 |
+
total_loss = None
|
| 1131 |
+
if start_positions is not None and end_positions is not None:
|
| 1132 |
+
# If we are on multi-GPU, split add a dimension
|
| 1133 |
+
if len(start_positions.size()) > 1:
|
| 1134 |
+
start_positions = start_positions.squeeze(-1)
|
| 1135 |
+
if len(end_positions.size()) > 1:
|
| 1136 |
+
end_positions = end_positions.squeeze(-1)
|
| 1137 |
+
|
| 1138 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1139 |
+
ignored_index = start_logits.size(1)
|
| 1140 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1141 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1142 |
+
|
| 1143 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
| 1144 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1145 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1146 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1147 |
+
|
| 1148 |
+
if not return_dict:
|
| 1149 |
+
output = (
|
| 1150 |
+
start_logits,
|
| 1151 |
+
end_logits,
|
| 1152 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 1153 |
+
*([attention_probs] if output_attentions else [])
|
| 1154 |
+
)
|
| 1155 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1156 |
+
|
| 1157 |
+
return QuestionAnsweringModelOutput(
|
| 1158 |
+
loss=total_loss,
|
| 1159 |
+
start_logits=start_logits,
|
| 1160 |
+
end_logits=end_logits,
|
| 1161 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 1162 |
+
attentions=attention_probs if output_attentions else None
|
| 1163 |
+
)
|
| 1164 |
+
|
| 1165 |
+
|
| 1166 |
+
class GptBertForMultipleChoice(GptBertModel):
|
| 1167 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1168 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
| 1169 |
+
|
| 1170 |
+
def __init__(self, config, **kwargs):
|
| 1171 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1172 |
+
|
| 1173 |
+
self.num_labels = getattr(config, "num_labels", 2)
|
| 1174 |
+
self.head = Classifier(config, self.num_labels)
|
| 1175 |
+
|
| 1176 |
+
def forward(
|
| 1177 |
+
self,
|
| 1178 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1179 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1180 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1181 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1182 |
+
labels: Optional[torch.Tensor] = None,
|
| 1183 |
+
output_attentions: Optional[bool] = None,
|
| 1184 |
+
output_hidden_states: Optional[bool] = None,
|
| 1185 |
+
return_dict: Optional[bool] = None,
|
| 1186 |
+
**kwargs
|
| 1187 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
| 1188 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1189 |
+
num_choices = input_ids.shape[1]
|
| 1190 |
+
|
| 1191 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 1192 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1193 |
+
|
| 1194 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
|
| 1195 |
+
logits = self.head(sequence_output)
|
| 1196 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1197 |
+
|
| 1198 |
+
loss = None
|
| 1199 |
+
if labels is not None:
|
| 1200 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1201 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1202 |
+
|
| 1203 |
+
if not return_dict:
|
| 1204 |
+
output = (
|
| 1205 |
+
reshaped_logits,
|
| 1206 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
| 1207 |
+
*([attention_probs] if output_attentions else [])
|
| 1208 |
+
)
|
| 1209 |
+
return ((loss,) + output) if loss is not None else output
|
| 1210 |
+
|
| 1211 |
+
return MultipleChoiceModelOutput(
|
| 1212 |
+
loss=loss,
|
| 1213 |
+
logits=reshaped_logits,
|
| 1214 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
| 1215 |
+
attentions=attention_probs if output_attentions else None
|
| 1216 |
+
)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d61679f17756370aec413fba4a6a2a6d83a5423e0e0ff9e7053342c57185808
|
| 3 |
+
size 1440265250
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<oad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 3 |
+
"bos_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"unk_token": "<unk>",
|
| 6 |
+
"sep_token": "</s>",
|
| 7 |
+
"pad_token": "<pad>",
|
| 8 |
+
"cls_token": "<s>",
|
| 9 |
+
"mask_token": "<mask>"
|
| 10 |
+
}
|