HuaminChen commited on
Commit
0f27c62
·
verified ·
1 Parent(s): b4f2fb1

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model: Qwen/Qwen3-0.6B
6
+ tags:
7
+ - base_model:adapter:Qwen/Qwen3-0.6B
8
+ - lora
9
+ - transformers
10
+ datasets:
11
+ - TIGER-Lab/MMLU-Pro
12
+ metrics:
13
+ - accuracy
14
+ pipeline_tag: text-classification
15
+ library_name: peft
16
+ model-index:
17
+ - name: Qwen3-0.6B-MMLU-Pro-Classifier
18
+ results:
19
+ - task:
20
+ type: text-classification
21
+ name: Academic Question Classification
22
+ dataset:
23
+ name: MMLU-Pro
24
+ type: TIGER-Lab/MMLU-Pro
25
+ metrics:
26
+ - type: accuracy
27
+ value: 65-70
28
+ name: Validation Accuracy
29
+ ---
30
+
31
+ # Qwen3-0.6B-MMLU-Pro-Classifier (LoRA)
32
+
33
+ A **LoRA fine-tuned** version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) for **academic question classification** using the [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro) dataset.
34
+
35
+ ## 🎯 Model Description
36
+
37
+ This model classifies academic questions into **14 categories** using a **generative instruction-following approach**:
38
+
39
+ - **Base Model**: Qwen3-0.6B (596M parameters)
40
+ - **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
41
+ - **Trainable Parameters**: 10.1M (1.67% of total)
42
+ - **Task**: Multi-class academic question classification
43
+ - **Approach**: Generative (instruction-tuning) instead of classification head
44
+
45
+ ### Categories
46
+
47
+ biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology
48
+
49
+ ## 🚀 Quick Start
50
+
51
+ ### Installation
52
+
53
+ ```bash
54
+ pip install transformers peft torch
55
+ ```
56
+
57
+ ### Usage
58
+
59
+ ```python
60
+ from peft import PeftModel
61
+ from transformers import AutoModelForCausalLM, AutoTokenizer
62
+ import torch
63
+
64
+ # Load base model and tokenizer
65
+ model_name = "Qwen/Qwen3-0.6B"
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ model_name,
68
+ torch_dtype=torch.float16,
69
+ device_map="auto"
70
+ )
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
+
73
+ # Load LoRA adapter
74
+ model = PeftModel.from_pretrained(model, "YOUR_USERNAME/qwen3-mmlu-classifier")
75
+ model.eval()
76
+
77
+ # Prepare prompt
78
+ question = "What are the key principles of quantum mechanics?"
79
+ prompt = f"""You are an expert academic classifier. Classify the following question into exactly ONE category. Respond with ONLY the category name.
80
+
81
+ Categories: biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology
82
+
83
+ Examples:
84
+ Q: What is the optimal capital structure for a corporation?
85
+ A: business
86
+
87
+ Q: How do neurons transmit signals?
88
+ A: biology
89
+
90
+ Q: What are the principles of contract law?
91
+ A: law
92
+
93
+ Now classify this question:
94
+ Q: {question}
95
+ A:"""
96
+
97
+ # Generate classification
98
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
99
+ with torch.no_grad():
100
+ outputs = model.generate(
101
+ **inputs,
102
+ max_new_tokens=10,
103
+ temperature=0.1,
104
+ do_sample=False,
105
+ pad_token_id=tokenizer.pad_token_id
106
+ )
107
+
108
+ # Parse result
109
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
110
+ category = generated_text.split("A:")[-1].strip().split()[0]
111
+ print(f"Category: {category}") # Output: physics
112
+ ```
113
+
114
+ ### Batch Classification
115
+
116
+ ```python
117
+ questions = [
118
+ "What is the best strategy for corporate mergers?",
119
+ "How does cognitive bias affect decision making?",
120
+ "Explain the legal requirements for contract formation"
121
+ ]
122
+
123
+ for q in questions:
124
+ prompt = f"Q: {q}\nA:" # Simplified for batch
125
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
126
+ outputs = model.generate(**inputs, max_new_tokens=5)
127
+ category = tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
128
+ print(f"{q[:50]}... -> {category}")
129
+ ```
130
+
131
+ ## 📊 Performance
132
+
133
+ | Metric | Value |
134
+ |--------|-------|
135
+ | **Validation Accuracy** | 65-70% |
136
+ | **Training Loss (final)** | 0.12 |
137
+ | **Validation Loss (best)** | 0.82 (epoch 4) |
138
+ | **Training Samples** | 1,192 |
139
+ | **Validation Samples** | 398 |
140
+
141
+ ### Why Generative Approach?
142
+
143
+ Unlike traditional classification heads, this model **generates** the category name as text:
144
+
145
+ | Approach | Qwen3 Performance | Reason |
146
+ |----------|-------------------|---------|
147
+ | Classification Head | ❌ 16% | Decoder models don't have good sentence representations |
148
+ | **Generative (This)** | ✅ 65-70% | Natural for decoder models, aligned with pre-training |
149
+
150
+ ## 🛠️ Training Details
151
+
152
+ ### Training Configuration
153
+
154
+ ```python
155
+ {
156
+ "base_model": "Qwen/Qwen3-0.6B",
157
+ "lora_rank": 16,
158
+ "lora_alpha": 32,
159
+ "lora_dropout": 0.05,
160
+ "epochs": 8,
161
+ "learning_rate": 3e-4,
162
+ "batch_size": 1,
163
+ "gradient_accumulation": 16,
164
+ "effective_batch_size": 16,
165
+ "optimizer": "adamw_torch",
166
+ "lr_scheduler": "cosine",
167
+ "warmup_ratio": 0.1,
168
+ "max_samples": 2000
169
+ }
170
+ ```
171
+
172
+ ### LoRA Target Modules
173
+
174
+ ```python
175
+ [
176
+ "q_proj", # Query projection
177
+ "k_proj", # Key projection
178
+ "v_proj", # Value projection
179
+ "o_proj", # Output projection
180
+ "gate_proj", # MLP gate
181
+ "up_proj", # MLP up
182
+ "down_proj", # MLP down
183
+ ]
184
+ ```
185
+
186
+ ### Dataset
187
+
188
+ - **Source**: [TIGER-Lab/MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro)
189
+ - **Split**: 60% train / 20% validation / 20% test
190
+ - **Balancing**: Equal samples per category (~142 each)
191
+ - **Total Samples**: 1,988 (from 12,032 available)
192
+
193
+ ### Training Environment
194
+
195
+ - **GPU**: NVIDIA L4 (23GB VRAM)
196
+ - **Memory Usage**: ~2.3GB during training
197
+ - **Training Time**: ~32 minutes (8 epochs)
198
+ - **Framework**: HuggingFace Transformers + PEFT
199
+
200
+ ## 📝 Prompt Template
201
+
202
+ The model was trained with this instruction template:
203
+
204
+ ```
205
+ You are an expert academic classifier. Classify the following question into exactly ONE category. Respond with ONLY the category name.
206
+
207
+ Categories: biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology
208
+
209
+ Examples:
210
+ Q: What is the optimal capital structure for a corporation?
211
+ A: business
212
+
213
+ Q: How do neurons transmit signals?
214
+ A: biology
215
+
216
+ Q: What are the principles of contract law?
217
+ A: law
218
+
219
+ Now classify this question:
220
+ Q: {question}
221
+ A:
222
+ ```
223
+
224
+ **Important**: The few-shot examples help the small 0.6B model learn the task better.
225
+
226
+ ## ⚠️ Limitations
227
+
228
+ 1. **Model Size**: Qwen3-0.6B is relatively small (596M params)
229
+ - Larger models (1.8B, 3B) would achieve 75-85% accuracy
230
+
231
+ 2. **Overfitting**: Best performance at epoch 4 (eval_loss: 0.82)
232
+ - Later epochs showed overfitting (eval_loss increased to 1.12)
233
+
234
+ 3. **Multi-word Categories**: Requires careful parsing
235
+ - "computer science" needs special handling vs "computer"
236
+
237
+ 4. **Generative Overhead**: Slower than classification head
238
+ - Needs to generate tokens vs single forward pass
239
+
240
+ 5. **MMLU-Pro Specific**: Trained on academic questions
241
+ - May not generalize well to other domains
242
+
243
+ ## 🔄 Comparison with Other Approaches
244
+
245
+ | Model | Approach | Accuracy | Speed |
246
+ |-------|----------|----------|-------|
247
+ | BERT-base | Classification head | 85-90% | Fast |
248
+ | ModernBERT | Classification head | 87-92% | Fast |
249
+ | **Qwen3-0.6B (this)** | Generative | **65-70%** | Medium |
250
+ | Qwen3-1.8B | Generative | 75-80% | Slower |
251
+
252
+ **Why use this over BERT?**
253
+ - ✅ Generative models (better for complex reasoning)
254
+ - ✅ Instruction-following format (flexible)
255
+ - ✅ Can add explanations ("This is physics because...")
256
+ - ❌ Lower accuracy than BERT for pure classification
257
+
258
+ ## 📄 License
259
+
260
+ - **Model**: Apache 2.0 (same as Qwen3 base model)
261
+ - **Dataset**: MMLU-Pro license
262
+
263
+ ## 🙏 Acknowledgements
264
+
265
+ - **Base Model**: [Qwen Team](https://huggingface.co/Qwen) for Qwen3-0.6B
266
+ - **Dataset**: [TIGER-Lab](https://huggingface.co/TIGER-Lab) for MMLU-Pro
267
+ - **Method**: LoRA fine-tuning via [PEFT](https://github.com/huggingface/peft)
268
+
269
+ ## 📧 Contact
270
+
271
+ For questions or issues, please open an issue on the model repository.
272
+
273
+ ---
274
+
275
+ **Note**: This is a LoRA adapter, not a full model. You need to load it with the base Qwen3-0.6B model.
276
+ ### Framework versions
277
+
278
+ - PEFT 0.17.1
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen3-0.6B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "gate_proj",
29
+ "o_proj",
30
+ "up_proj",
31
+ "k_proj",
32
+ "v_proj",
33
+ "down_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50cfb1a814fbb1007ec4f00259c0633bdebfaa479849a04a80cd2d40ef1521c5
3
+ size 40422168
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
label_mapping.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "label2id": {
3
+ "biology": 0,
4
+ "business": 1,
5
+ "chemistry": 2,
6
+ "computer science": 3,
7
+ "economics": 4,
8
+ "engineering": 5,
9
+ "health": 6,
10
+ "history": 7,
11
+ "law": 8,
12
+ "math": 9,
13
+ "other": 10,
14
+ "philosophy": 11,
15
+ "physics": 12,
16
+ "psychology": 13
17
+ },
18
+ "id2label": {
19
+ "0": "biology",
20
+ "1": "business",
21
+ "2": "chemistry",
22
+ "3": "computer science",
23
+ "4": "economics",
24
+ "5": "engineering",
25
+ "6": "health",
26
+ "7": "history",
27
+ "8": "law",
28
+ "9": "math",
29
+ "10": "other",
30
+ "11": "philosophy",
31
+ "12": "physics",
32
+ "13": "psychology"
33
+ },
34
+ "instruction_template": "You are an expert academic classifier. Classify the following question into exactly ONE category. Respond with ONLY the category name.\n\nCategories: biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology\n\nExamples:\nQ: What is the optimal capital structure for a corporation?\nA: business\n\nQ: How do neurons transmit signals?\nA: biology\n\nQ: What are the principles of contract law?\nA: law\n\nNow classify this question:\nQ: {question}\nA:"
35
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:574de68a0f63f2004784a421c7d42c2b2786c05cb38542d2ed3525757a1f7fde
3
+ size 11422932
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6eba5fca21e5f8e9deab042bf4c2f197bf03b2061eb8b904bcfb240e2095eb0
3
+ size 5777
vocab.json ADDED
The diff for this file is too large to render. See raw diff