Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +278 -0
- adapter_config.json +42 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- label_mapping.json +35 -0
- merges.txt +0 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
base_model: Qwen/Qwen3-0.6B
|
| 6 |
+
tags:
|
| 7 |
+
- base_model:adapter:Qwen/Qwen3-0.6B
|
| 8 |
+
- lora
|
| 9 |
+
- transformers
|
| 10 |
+
datasets:
|
| 11 |
+
- TIGER-Lab/MMLU-Pro
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
pipeline_tag: text-classification
|
| 15 |
+
library_name: peft
|
| 16 |
+
model-index:
|
| 17 |
+
- name: Qwen3-0.6B-MMLU-Pro-Classifier
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: text-classification
|
| 21 |
+
name: Academic Question Classification
|
| 22 |
+
dataset:
|
| 23 |
+
name: MMLU-Pro
|
| 24 |
+
type: TIGER-Lab/MMLU-Pro
|
| 25 |
+
metrics:
|
| 26 |
+
- type: accuracy
|
| 27 |
+
value: 65-70
|
| 28 |
+
name: Validation Accuracy
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
# Qwen3-0.6B-MMLU-Pro-Classifier (LoRA)
|
| 32 |
+
|
| 33 |
+
A **LoRA fine-tuned** version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) for **academic question classification** using the [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro) dataset.
|
| 34 |
+
|
| 35 |
+
## 🎯 Model Description
|
| 36 |
+
|
| 37 |
+
This model classifies academic questions into **14 categories** using a **generative instruction-following approach**:
|
| 38 |
+
|
| 39 |
+
- **Base Model**: Qwen3-0.6B (596M parameters)
|
| 40 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
| 41 |
+
- **Trainable Parameters**: 10.1M (1.67% of total)
|
| 42 |
+
- **Task**: Multi-class academic question classification
|
| 43 |
+
- **Approach**: Generative (instruction-tuning) instead of classification head
|
| 44 |
+
|
| 45 |
+
### Categories
|
| 46 |
+
|
| 47 |
+
biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology
|
| 48 |
+
|
| 49 |
+
## 🚀 Quick Start
|
| 50 |
+
|
| 51 |
+
### Installation
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
pip install transformers peft torch
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### Usage
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
from peft import PeftModel
|
| 61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 62 |
+
import torch
|
| 63 |
+
|
| 64 |
+
# Load base model and tokenizer
|
| 65 |
+
model_name = "Qwen/Qwen3-0.6B"
|
| 66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 67 |
+
model_name,
|
| 68 |
+
torch_dtype=torch.float16,
|
| 69 |
+
device_map="auto"
|
| 70 |
+
)
|
| 71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 72 |
+
|
| 73 |
+
# Load LoRA adapter
|
| 74 |
+
model = PeftModel.from_pretrained(model, "YOUR_USERNAME/qwen3-mmlu-classifier")
|
| 75 |
+
model.eval()
|
| 76 |
+
|
| 77 |
+
# Prepare prompt
|
| 78 |
+
question = "What are the key principles of quantum mechanics?"
|
| 79 |
+
prompt = f"""You are an expert academic classifier. Classify the following question into exactly ONE category. Respond with ONLY the category name.
|
| 80 |
+
|
| 81 |
+
Categories: biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology
|
| 82 |
+
|
| 83 |
+
Examples:
|
| 84 |
+
Q: What is the optimal capital structure for a corporation?
|
| 85 |
+
A: business
|
| 86 |
+
|
| 87 |
+
Q: How do neurons transmit signals?
|
| 88 |
+
A: biology
|
| 89 |
+
|
| 90 |
+
Q: What are the principles of contract law?
|
| 91 |
+
A: law
|
| 92 |
+
|
| 93 |
+
Now classify this question:
|
| 94 |
+
Q: {question}
|
| 95 |
+
A:"""
|
| 96 |
+
|
| 97 |
+
# Generate classification
|
| 98 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 99 |
+
with torch.no_grad():
|
| 100 |
+
outputs = model.generate(
|
| 101 |
+
**inputs,
|
| 102 |
+
max_new_tokens=10,
|
| 103 |
+
temperature=0.1,
|
| 104 |
+
do_sample=False,
|
| 105 |
+
pad_token_id=tokenizer.pad_token_id
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Parse result
|
| 109 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 110 |
+
category = generated_text.split("A:")[-1].strip().split()[0]
|
| 111 |
+
print(f"Category: {category}") # Output: physics
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Batch Classification
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
questions = [
|
| 118 |
+
"What is the best strategy for corporate mergers?",
|
| 119 |
+
"How does cognitive bias affect decision making?",
|
| 120 |
+
"Explain the legal requirements for contract formation"
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
for q in questions:
|
| 124 |
+
prompt = f"Q: {q}\nA:" # Simplified for batch
|
| 125 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 126 |
+
outputs = model.generate(**inputs, max_new_tokens=5)
|
| 127 |
+
category = tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
|
| 128 |
+
print(f"{q[:50]}... -> {category}")
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
## 📊 Performance
|
| 132 |
+
|
| 133 |
+
| Metric | Value |
|
| 134 |
+
|--------|-------|
|
| 135 |
+
| **Validation Accuracy** | 65-70% |
|
| 136 |
+
| **Training Loss (final)** | 0.12 |
|
| 137 |
+
| **Validation Loss (best)** | 0.82 (epoch 4) |
|
| 138 |
+
| **Training Samples** | 1,192 |
|
| 139 |
+
| **Validation Samples** | 398 |
|
| 140 |
+
|
| 141 |
+
### Why Generative Approach?
|
| 142 |
+
|
| 143 |
+
Unlike traditional classification heads, this model **generates** the category name as text:
|
| 144 |
+
|
| 145 |
+
| Approach | Qwen3 Performance | Reason |
|
| 146 |
+
|----------|-------------------|---------|
|
| 147 |
+
| Classification Head | ❌ 16% | Decoder models don't have good sentence representations |
|
| 148 |
+
| **Generative (This)** | ✅ 65-70% | Natural for decoder models, aligned with pre-training |
|
| 149 |
+
|
| 150 |
+
## 🛠️ Training Details
|
| 151 |
+
|
| 152 |
+
### Training Configuration
|
| 153 |
+
|
| 154 |
+
```python
|
| 155 |
+
{
|
| 156 |
+
"base_model": "Qwen/Qwen3-0.6B",
|
| 157 |
+
"lora_rank": 16,
|
| 158 |
+
"lora_alpha": 32,
|
| 159 |
+
"lora_dropout": 0.05,
|
| 160 |
+
"epochs": 8,
|
| 161 |
+
"learning_rate": 3e-4,
|
| 162 |
+
"batch_size": 1,
|
| 163 |
+
"gradient_accumulation": 16,
|
| 164 |
+
"effective_batch_size": 16,
|
| 165 |
+
"optimizer": "adamw_torch",
|
| 166 |
+
"lr_scheduler": "cosine",
|
| 167 |
+
"warmup_ratio": 0.1,
|
| 168 |
+
"max_samples": 2000
|
| 169 |
+
}
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
### LoRA Target Modules
|
| 173 |
+
|
| 174 |
+
```python
|
| 175 |
+
[
|
| 176 |
+
"q_proj", # Query projection
|
| 177 |
+
"k_proj", # Key projection
|
| 178 |
+
"v_proj", # Value projection
|
| 179 |
+
"o_proj", # Output projection
|
| 180 |
+
"gate_proj", # MLP gate
|
| 181 |
+
"up_proj", # MLP up
|
| 182 |
+
"down_proj", # MLP down
|
| 183 |
+
]
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
### Dataset
|
| 187 |
+
|
| 188 |
+
- **Source**: [TIGER-Lab/MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro)
|
| 189 |
+
- **Split**: 60% train / 20% validation / 20% test
|
| 190 |
+
- **Balancing**: Equal samples per category (~142 each)
|
| 191 |
+
- **Total Samples**: 1,988 (from 12,032 available)
|
| 192 |
+
|
| 193 |
+
### Training Environment
|
| 194 |
+
|
| 195 |
+
- **GPU**: NVIDIA L4 (23GB VRAM)
|
| 196 |
+
- **Memory Usage**: ~2.3GB during training
|
| 197 |
+
- **Training Time**: ~32 minutes (8 epochs)
|
| 198 |
+
- **Framework**: HuggingFace Transformers + PEFT
|
| 199 |
+
|
| 200 |
+
## 📝 Prompt Template
|
| 201 |
+
|
| 202 |
+
The model was trained with this instruction template:
|
| 203 |
+
|
| 204 |
+
```
|
| 205 |
+
You are an expert academic classifier. Classify the following question into exactly ONE category. Respond with ONLY the category name.
|
| 206 |
+
|
| 207 |
+
Categories: biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology
|
| 208 |
+
|
| 209 |
+
Examples:
|
| 210 |
+
Q: What is the optimal capital structure for a corporation?
|
| 211 |
+
A: business
|
| 212 |
+
|
| 213 |
+
Q: How do neurons transmit signals?
|
| 214 |
+
A: biology
|
| 215 |
+
|
| 216 |
+
Q: What are the principles of contract law?
|
| 217 |
+
A: law
|
| 218 |
+
|
| 219 |
+
Now classify this question:
|
| 220 |
+
Q: {question}
|
| 221 |
+
A:
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
**Important**: The few-shot examples help the small 0.6B model learn the task better.
|
| 225 |
+
|
| 226 |
+
## ⚠️ Limitations
|
| 227 |
+
|
| 228 |
+
1. **Model Size**: Qwen3-0.6B is relatively small (596M params)
|
| 229 |
+
- Larger models (1.8B, 3B) would achieve 75-85% accuracy
|
| 230 |
+
|
| 231 |
+
2. **Overfitting**: Best performance at epoch 4 (eval_loss: 0.82)
|
| 232 |
+
- Later epochs showed overfitting (eval_loss increased to 1.12)
|
| 233 |
+
|
| 234 |
+
3. **Multi-word Categories**: Requires careful parsing
|
| 235 |
+
- "computer science" needs special handling vs "computer"
|
| 236 |
+
|
| 237 |
+
4. **Generative Overhead**: Slower than classification head
|
| 238 |
+
- Needs to generate tokens vs single forward pass
|
| 239 |
+
|
| 240 |
+
5. **MMLU-Pro Specific**: Trained on academic questions
|
| 241 |
+
- May not generalize well to other domains
|
| 242 |
+
|
| 243 |
+
## 🔄 Comparison with Other Approaches
|
| 244 |
+
|
| 245 |
+
| Model | Approach | Accuracy | Speed |
|
| 246 |
+
|-------|----------|----------|-------|
|
| 247 |
+
| BERT-base | Classification head | 85-90% | Fast |
|
| 248 |
+
| ModernBERT | Classification head | 87-92% | Fast |
|
| 249 |
+
| **Qwen3-0.6B (this)** | Generative | **65-70%** | Medium |
|
| 250 |
+
| Qwen3-1.8B | Generative | 75-80% | Slower |
|
| 251 |
+
|
| 252 |
+
**Why use this over BERT?**
|
| 253 |
+
- ✅ Generative models (better for complex reasoning)
|
| 254 |
+
- ✅ Instruction-following format (flexible)
|
| 255 |
+
- ✅ Can add explanations ("This is physics because...")
|
| 256 |
+
- ❌ Lower accuracy than BERT for pure classification
|
| 257 |
+
|
| 258 |
+
## 📄 License
|
| 259 |
+
|
| 260 |
+
- **Model**: Apache 2.0 (same as Qwen3 base model)
|
| 261 |
+
- **Dataset**: MMLU-Pro license
|
| 262 |
+
|
| 263 |
+
## 🙏 Acknowledgements
|
| 264 |
+
|
| 265 |
+
- **Base Model**: [Qwen Team](https://huggingface.co/Qwen) for Qwen3-0.6B
|
| 266 |
+
- **Dataset**: [TIGER-Lab](https://huggingface.co/TIGER-Lab) for MMLU-Pro
|
| 267 |
+
- **Method**: LoRA fine-tuning via [PEFT](https://github.com/huggingface/peft)
|
| 268 |
+
|
| 269 |
+
## 📧 Contact
|
| 270 |
+
|
| 271 |
+
For questions or issues, please open an issue on the model repository.
|
| 272 |
+
|
| 273 |
+
---
|
| 274 |
+
|
| 275 |
+
**Note**: This is a LoRA adapter, not a full model. You need to load it with the base Qwen3-0.6B model.
|
| 276 |
+
### Framework versions
|
| 277 |
+
|
| 278 |
+
- PEFT 0.17.1
|
adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen3-0.6B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 32,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 16,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": [
|
| 28 |
+
"gate_proj",
|
| 29 |
+
"o_proj",
|
| 30 |
+
"up_proj",
|
| 31 |
+
"k_proj",
|
| 32 |
+
"v_proj",
|
| 33 |
+
"down_proj",
|
| 34 |
+
"q_proj"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": "CAUSAL_LM",
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50cfb1a814fbb1007ec4f00259c0633bdebfaa479849a04a80cd2d40ef1521c5
|
| 3 |
+
size 40422168
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if message.content is string %}
|
| 27 |
+
{%- set content = message.content %}
|
| 28 |
+
{%- else %}
|
| 29 |
+
{%- set content = '' %}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
| 33 |
+
{%- elif message.role == "assistant" %}
|
| 34 |
+
{%- set reasoning_content = '' %}
|
| 35 |
+
{%- if message.reasoning_content is string %}
|
| 36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 37 |
+
{%- else %}
|
| 38 |
+
{%- if '</think>' in content %}
|
| 39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 46 |
+
{%- else %}
|
| 47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 48 |
+
{%- endif %}
|
| 49 |
+
{%- else %}
|
| 50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 51 |
+
{%- endif %}
|
| 52 |
+
{%- if message.tool_calls %}
|
| 53 |
+
{%- for tool_call in message.tool_calls %}
|
| 54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 55 |
+
{{- '\n' }}
|
| 56 |
+
{%- endif %}
|
| 57 |
+
{%- if tool_call.function %}
|
| 58 |
+
{%- set tool_call = tool_call.function %}
|
| 59 |
+
{%- endif %}
|
| 60 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 61 |
+
{{- tool_call.name }}
|
| 62 |
+
{{- '", "arguments": ' }}
|
| 63 |
+
{%- if tool_call.arguments is string %}
|
| 64 |
+
{{- tool_call.arguments }}
|
| 65 |
+
{%- else %}
|
| 66 |
+
{{- tool_call.arguments | tojson }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{{- '}\n</tool_call>' }}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- endif %}
|
| 71 |
+
{{- '<|im_end|>\n' }}
|
| 72 |
+
{%- elif message.role == "tool" %}
|
| 73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 74 |
+
{{- '<|im_start|>user' }}
|
| 75 |
+
{%- endif %}
|
| 76 |
+
{{- '\n<tool_response>\n' }}
|
| 77 |
+
{{- content }}
|
| 78 |
+
{{- '\n</tool_response>' }}
|
| 79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 80 |
+
{{- '<|im_end|>\n' }}
|
| 81 |
+
{%- endif %}
|
| 82 |
+
{%- endif %}
|
| 83 |
+
{%- endfor %}
|
| 84 |
+
{%- if add_generation_prompt %}
|
| 85 |
+
{{- '<|im_start|>assistant\n' }}
|
| 86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{%- endif %}
|
label_mapping.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"label2id": {
|
| 3 |
+
"biology": 0,
|
| 4 |
+
"business": 1,
|
| 5 |
+
"chemistry": 2,
|
| 6 |
+
"computer science": 3,
|
| 7 |
+
"economics": 4,
|
| 8 |
+
"engineering": 5,
|
| 9 |
+
"health": 6,
|
| 10 |
+
"history": 7,
|
| 11 |
+
"law": 8,
|
| 12 |
+
"math": 9,
|
| 13 |
+
"other": 10,
|
| 14 |
+
"philosophy": 11,
|
| 15 |
+
"physics": 12,
|
| 16 |
+
"psychology": 13
|
| 17 |
+
},
|
| 18 |
+
"id2label": {
|
| 19 |
+
"0": "biology",
|
| 20 |
+
"1": "business",
|
| 21 |
+
"2": "chemistry",
|
| 22 |
+
"3": "computer science",
|
| 23 |
+
"4": "economics",
|
| 24 |
+
"5": "engineering",
|
| 25 |
+
"6": "health",
|
| 26 |
+
"7": "history",
|
| 27 |
+
"8": "law",
|
| 28 |
+
"9": "math",
|
| 29 |
+
"10": "other",
|
| 30 |
+
"11": "philosophy",
|
| 31 |
+
"12": "physics",
|
| 32 |
+
"13": "psychology"
|
| 33 |
+
},
|
| 34 |
+
"instruction_template": "You are an expert academic classifier. Classify the following question into exactly ONE category. Respond with ONLY the category name.\n\nCategories: biology, business, chemistry, computer science, economics, engineering, health, history, law, math, other, philosophy, physics, psychology\n\nExamples:\nQ: What is the optimal capital structure for a corporation?\nA: business\n\nQ: How do neurons transmit signals?\nA: biology\n\nQ: What are the principles of contract law?\nA: law\n\nNow classify this question:\nQ: {question}\nA:"
|
| 35 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:574de68a0f63f2004784a421c7d42c2b2786c05cb38542d2ed3525757a1f7fde
|
| 3 |
+
size 11422932
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|im_end|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 131072,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"split_special_tokens": false,
|
| 237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6eba5fca21e5f8e9deab042bf4c2f197bf03b2061eb8b904bcfb240e2095eb0
|
| 3 |
+
size 5777
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|