Upload 6 files
Browse files- configuration_phi3_v.py +217 -0
- image_embedding_phi3_v.py +301 -0
- image_processing_phi3_v.py +274 -0
- modeling_phi3_v.py +1632 -0
- moe_phi3_v.py +363 -0
- processing_phi3_v.py +217 -0
configuration_phi3_v.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
""" Phi-3-V model configuration"""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 26 |
+
"microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class Phi3VConfig(PretrainedConfig):
|
| 31 |
+
r"""
|
| 32 |
+
This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
|
| 33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 34 |
+
defaults will yield a similar configuration to that of the
|
| 35 |
+
[microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
|
| 36 |
+
|
| 37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 38 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
| 42 |
+
Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
|
| 43 |
+
`inputs_ids` passed when calling [`Phi3VModel`].
|
| 44 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
| 45 |
+
Dimension of the hidden representations.
|
| 46 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 47 |
+
Dimension of the MLP representations.
|
| 48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 49 |
+
Number of hidden layers in the Transformer decoder.
|
| 50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 52 |
+
num_key_value_heads (`int`, *optional*):
|
| 53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 59 |
+
`num_attention_heads`.
|
| 60 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 61 |
+
Dropout probability for mlp outputs.
|
| 62 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 63 |
+
The dropout ratio for the embeddings.
|
| 64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 65 |
+
The dropout ratio after computing the attention scores.
|
| 66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 67 |
+
The non-linear activation function (function or string) in the decoder.
|
| 68 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 69 |
+
The maximum sequence length that this model might ever be used with.
|
| 70 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 71 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
| 72 |
+
original RoPE embeddings when using long scaling.
|
| 73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 75 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 76 |
+
The epsilon value used for the RMSNorm.
|
| 77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 79 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 80 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 81 |
+
Whether to tie weight embeddings
|
| 82 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 83 |
+
The base period of the RoPE embeddings.
|
| 84 |
+
rope_scaling (`dict`, *optional*):
|
| 85 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
| 86 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
| 87 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
| 88 |
+
divided by the number of attention heads divided by 2.
|
| 89 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 90 |
+
The id of the "beginning-of-sequence" token.
|
| 91 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
| 92 |
+
The id of the "end-of-sequence" token.
|
| 93 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
| 94 |
+
The id of the padding token.
|
| 95 |
+
sliding_window (`int`, *optional*):
|
| 96 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
| 97 |
+
embd_layer (`str`, *optional*, defaults to `"default"`):
|
| 98 |
+
The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
|
| 99 |
+
|
| 100 |
+
Example:
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
>>> from transformers import Phi3VModel, Phi3VConfig
|
| 104 |
+
|
| 105 |
+
>>> # Initializing a Phi-3-V style configuration
|
| 106 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
|
| 107 |
+
|
| 108 |
+
>>> # Initializing a model from the configuration
|
| 109 |
+
>>> model = Phi3VModel(configuration)
|
| 110 |
+
|
| 111 |
+
>>> # Accessing the model configuration
|
| 112 |
+
>>> configuration = model.config
|
| 113 |
+
```"""
|
| 114 |
+
|
| 115 |
+
model_type = "phi3_v"
|
| 116 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 117 |
+
|
| 118 |
+
def __init__(
|
| 119 |
+
self,
|
| 120 |
+
vocab_size=32064,
|
| 121 |
+
hidden_size=3072,
|
| 122 |
+
intermediate_size=8192,
|
| 123 |
+
num_hidden_layers=32,
|
| 124 |
+
num_attention_heads=32,
|
| 125 |
+
num_key_value_heads=None,
|
| 126 |
+
resid_pdrop=0.0,
|
| 127 |
+
embd_pdrop=0.0,
|
| 128 |
+
attention_dropout=0.0,
|
| 129 |
+
hidden_act="silu",
|
| 130 |
+
max_position_embeddings=4096,
|
| 131 |
+
original_max_position_embeddings=4096,
|
| 132 |
+
initializer_range=0.02,
|
| 133 |
+
rms_norm_eps=1e-5,
|
| 134 |
+
use_cache=True,
|
| 135 |
+
tie_word_embeddings=False,
|
| 136 |
+
rope_theta=10000.0,
|
| 137 |
+
rope_scaling=None,
|
| 138 |
+
bos_token_id=1,
|
| 139 |
+
eos_token_id=32000,
|
| 140 |
+
pad_token_id=32000,
|
| 141 |
+
sliding_window=None,
|
| 142 |
+
embd_layer: str = "default",
|
| 143 |
+
**kwargs,
|
| 144 |
+
):
|
| 145 |
+
self.vocab_size = vocab_size
|
| 146 |
+
self.hidden_size = hidden_size
|
| 147 |
+
self.intermediate_size = intermediate_size
|
| 148 |
+
self.num_hidden_layers = num_hidden_layers
|
| 149 |
+
self.num_attention_heads = num_attention_heads
|
| 150 |
+
|
| 151 |
+
if num_key_value_heads is None:
|
| 152 |
+
num_key_value_heads = num_attention_heads
|
| 153 |
+
|
| 154 |
+
self.num_key_value_heads = num_key_value_heads
|
| 155 |
+
self.resid_pdrop = resid_pdrop
|
| 156 |
+
self.embd_pdrop = embd_pdrop
|
| 157 |
+
self.attention_dropout = attention_dropout
|
| 158 |
+
self.hidden_act = hidden_act
|
| 159 |
+
self.max_position_embeddings = max_position_embeddings
|
| 160 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 161 |
+
self.initializer_range = initializer_range
|
| 162 |
+
self.rms_norm_eps = rms_norm_eps
|
| 163 |
+
self.use_cache = use_cache
|
| 164 |
+
self.rope_theta = rope_theta
|
| 165 |
+
self.rope_scaling = rope_scaling
|
| 166 |
+
self._rope_scaling_validation()
|
| 167 |
+
self.sliding_window = sliding_window
|
| 168 |
+
self.embd_layer = embd_layer
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
super().__init__(
|
| 172 |
+
bos_token_id=bos_token_id,
|
| 173 |
+
eos_token_id=eos_token_id,
|
| 174 |
+
pad_token_id=pad_token_id,
|
| 175 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 176 |
+
**kwargs,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
def _rope_scaling_validation(self):
|
| 180 |
+
"""
|
| 181 |
+
Validate the `rope_scaling` configuration.
|
| 182 |
+
"""
|
| 183 |
+
if self.rope_scaling is None:
|
| 184 |
+
return
|
| 185 |
+
|
| 186 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
| 187 |
+
raise ValueError(
|
| 188 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
| 189 |
+
f"got {self.rope_scaling}"
|
| 190 |
+
)
|
| 191 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 192 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
| 193 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
| 194 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
| 195 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
| 196 |
+
if not (
|
| 197 |
+
isinstance(rope_scaling_short_factor, list)
|
| 198 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
| 199 |
+
):
|
| 200 |
+
raise ValueError(
|
| 201 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
| 202 |
+
)
|
| 203 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
| 204 |
+
raise ValueError(
|
| 205 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
| 206 |
+
)
|
| 207 |
+
if not (
|
| 208 |
+
isinstance(rope_scaling_long_factor, list)
|
| 209 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
| 210 |
+
):
|
| 211 |
+
raise ValueError(
|
| 212 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
| 213 |
+
)
|
| 214 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
| 215 |
+
raise ValueError(
|
| 216 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
| 217 |
+
)
|
image_embedding_phi3_v.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import math
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from transformers import CLIPVisionModel, PretrainedConfig
|
| 20 |
+
from transformers import CLIPVisionConfig
|
| 21 |
+
from transformers.utils import logging
|
| 22 |
+
from datetime import datetime
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
|
| 27 |
+
attention_dropout=0.0,
|
| 28 |
+
dropout=0.0,
|
| 29 |
+
hidden_act="quick_gelu",
|
| 30 |
+
hidden_size=1024,
|
| 31 |
+
image_size=336,
|
| 32 |
+
initializer_factor=1.0,
|
| 33 |
+
initializer_range=0.02,
|
| 34 |
+
intermediate_size=4096,
|
| 35 |
+
layer_norm_eps=1e-05,
|
| 36 |
+
num_attention_heads=16,
|
| 37 |
+
num_channels=3,
|
| 38 |
+
num_hidden_layers=24,
|
| 39 |
+
patch_size=14,
|
| 40 |
+
projection_dim=768
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
class Phi3ImageEmbedding(nn.Module):
|
| 44 |
+
"""Phi3 Image embedding."""
|
| 45 |
+
|
| 46 |
+
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
|
| 47 |
+
super().__init__()
|
| 48 |
+
|
| 49 |
+
# n_embed or hidden_size
|
| 50 |
+
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
|
| 51 |
+
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
|
| 52 |
+
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
|
| 53 |
+
self.drop = nn.Dropout(embd_drop)
|
| 54 |
+
else:
|
| 55 |
+
self.drop = None
|
| 56 |
+
|
| 57 |
+
self.wte = wte
|
| 58 |
+
|
| 59 |
+
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
|
| 60 |
+
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
|
| 61 |
+
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
|
| 62 |
+
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
|
| 63 |
+
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
|
| 64 |
+
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
|
| 65 |
+
self.img_processor = CLIPVisionModel(clip_config)
|
| 66 |
+
image_dim_out = config.img_processor['image_dim_out']
|
| 67 |
+
self.num_img_tokens = config.img_processor['num_img_tokens']
|
| 68 |
+
else:
|
| 69 |
+
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
|
| 70 |
+
|
| 71 |
+
self.image_dim_out = image_dim_out
|
| 72 |
+
self.img_sizes = None
|
| 73 |
+
|
| 74 |
+
# global_gn and sub_gn for hd transform, serves as line separator
|
| 75 |
+
self.use_hd_transform = kwargs.get('use_hd_transform', False)
|
| 76 |
+
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
|
| 77 |
+
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
|
| 78 |
+
# with_hd_transform and with_learnable_separator should have same value
|
| 79 |
+
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
|
| 80 |
+
if self.with_learnable_separator:
|
| 81 |
+
assert self.use_hd_transform, 'learnable separator is only for hd transform'
|
| 82 |
+
# 1024 * 4, merge spatial to channel dimension
|
| 83 |
+
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
|
| 84 |
+
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
|
| 85 |
+
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
|
| 86 |
+
|
| 87 |
+
projection_cls = kwargs.get('projection_cls', 'linear')
|
| 88 |
+
if projection_cls == 'linear':
|
| 89 |
+
self.img_projection = nn.Linear(image_dim_out, hidden_size)
|
| 90 |
+
elif projection_cls == 'mlp' and self.use_hd_transform:
|
| 91 |
+
dim_projection = hidden_size
|
| 92 |
+
depth = 2
|
| 93 |
+
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
|
| 94 |
+
for _ in range(1, depth):
|
| 95 |
+
layers.extend([nn.GELU(),
|
| 96 |
+
nn.Linear(dim_projection, dim_projection)])
|
| 97 |
+
self.img_projection = nn.Sequential(*layers)
|
| 98 |
+
elif projection_cls == 'mlp':
|
| 99 |
+
dim_projection = hidden_size
|
| 100 |
+
depth = 2
|
| 101 |
+
layers = [nn.Linear(image_dim_out, dim_projection)]
|
| 102 |
+
for _ in range(1, depth):
|
| 103 |
+
layers.extend([nn.GELU(),
|
| 104 |
+
nn.Linear(dim_projection, dim_projection)])
|
| 105 |
+
self.img_projection = nn.Sequential(*layers)
|
| 106 |
+
else:
|
| 107 |
+
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
|
| 108 |
+
|
| 109 |
+
self.vocab_size = config.vocab_size
|
| 110 |
+
self.img_features = None
|
| 111 |
+
|
| 112 |
+
if isinstance(config.img_processor, dict):
|
| 113 |
+
self.layer_idx = config.img_processor.get('layer_idx', -2)
|
| 114 |
+
self.type_feature = config.img_processor.get('type_feature', 'patch')
|
| 115 |
+
else:
|
| 116 |
+
self.layer_idx = -2
|
| 117 |
+
self.type_feature = 'patch'
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def set_img_features(self, img_features: torch.FloatTensor) -> None:
|
| 121 |
+
self.img_features = img_features
|
| 122 |
+
|
| 123 |
+
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
|
| 124 |
+
self.img_sizes = img_sizes
|
| 125 |
+
|
| 126 |
+
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
|
| 127 |
+
LAYER_IDX = self.layer_idx
|
| 128 |
+
TYPE_FEATURE = self.type_feature
|
| 129 |
+
|
| 130 |
+
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
|
| 131 |
+
img_feature = img_processor_output.hidden_states[LAYER_IDX]
|
| 132 |
+
|
| 133 |
+
if TYPE_FEATURE == "patch":
|
| 134 |
+
patch_feature = img_feature[:, 1:]
|
| 135 |
+
return patch_feature
|
| 136 |
+
|
| 137 |
+
if TYPE_FEATURE == "cls_patch":
|
| 138 |
+
return img_feature
|
| 139 |
+
|
| 140 |
+
raise NotImplementedError
|
| 141 |
+
|
| 142 |
+
def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
|
| 143 |
+
|
| 144 |
+
MAX_INPUT_ID = int(1e9)
|
| 145 |
+
img_embeds = pixel_values
|
| 146 |
+
img_sizes = image_sizes
|
| 147 |
+
|
| 148 |
+
if self.img_features is not None:
|
| 149 |
+
img_embeds = self.img_features.clone()
|
| 150 |
+
self.img_features = None
|
| 151 |
+
|
| 152 |
+
if self.img_sizes is not None:
|
| 153 |
+
img_sizes = self.img_sizes
|
| 154 |
+
|
| 155 |
+
input_shape = input_ids.size()
|
| 156 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 157 |
+
|
| 158 |
+
with torch.no_grad():
|
| 159 |
+
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
|
| 160 |
+
|
| 161 |
+
select = False
|
| 162 |
+
|
| 163 |
+
if isinstance(self.img_projection, nn.Sequential):
|
| 164 |
+
target_device = self.img_projection[0].bias.device
|
| 165 |
+
target_dtype = self.img_projection[0].bias.dtype
|
| 166 |
+
else: # It's a single nn.Linear layer
|
| 167 |
+
target_device = self.img_projection.bias.device
|
| 168 |
+
target_dtype = self.img_projection.bias.dtype
|
| 169 |
+
|
| 170 |
+
if len(positions.tolist()) > 0:
|
| 171 |
+
with torch.no_grad():
|
| 172 |
+
g_values = abs(input_ids[positions[:, 0], positions[:, 1]])
|
| 173 |
+
|
| 174 |
+
if self.use_hd_transform and img_sizes is not None and len(img_sizes):
|
| 175 |
+
hd_transform = True
|
| 176 |
+
assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
|
| 177 |
+
# img_embeds: (num_images, max_num_crops, 3, H, W)
|
| 178 |
+
# img_sizes: (num_images, 2).view(1, -1)
|
| 179 |
+
|
| 180 |
+
start_time = datetime.now()
|
| 181 |
+
bs = img_embeds.shape[0]
|
| 182 |
+
# Nx(HW)xC
|
| 183 |
+
img_features = self.get_img_features(img_embeds.flatten(0, 1))
|
| 184 |
+
base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)
|
| 185 |
+
|
| 186 |
+
assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'
|
| 187 |
+
|
| 188 |
+
# bs x max_num_crops x (24x24) x C
|
| 189 |
+
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
|
| 190 |
+
C = self.image_dim_out
|
| 191 |
+
H = base_feat_height
|
| 192 |
+
|
| 193 |
+
output_imgs = []
|
| 194 |
+
output_len = []
|
| 195 |
+
# training is tensor, inference is list
|
| 196 |
+
if isinstance(img_sizes, torch.Tensor):
|
| 197 |
+
img_sizes = img_sizes.view(-1, 2)
|
| 198 |
+
for _bs in range(bs):
|
| 199 |
+
h, w = img_sizes[_bs]
|
| 200 |
+
h = h // 336
|
| 201 |
+
w = w // 336
|
| 202 |
+
B_ = h * w
|
| 203 |
+
|
| 204 |
+
# 1 x (24x24) x 1024
|
| 205 |
+
global_img_feature = img_features[_bs, :1]
|
| 206 |
+
|
| 207 |
+
# 1 x 12 x 12 x 4096
|
| 208 |
+
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
|
| 209 |
+
temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)
|
| 210 |
+
|
| 211 |
+
# 1 x 156 x 4096
|
| 212 |
+
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
|
| 213 |
+
|
| 214 |
+
# (max_num_crops-1) x (12x12) x C
|
| 215 |
+
sub_img = img_features[_bs, 1:]
|
| 216 |
+
# 16x574x1024
|
| 217 |
+
# get rid of padding sub_img
|
| 218 |
+
sub_img = sub_img[:B_]
|
| 219 |
+
|
| 220 |
+
# (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
|
| 221 |
+
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
|
| 222 |
+
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
|
| 223 |
+
temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
|
| 224 |
+
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
|
| 225 |
+
# (1, num_img_tokens, 1024*4)
|
| 226 |
+
|
| 227 |
+
# glb + sub
|
| 228 |
+
if self.hd_transform_order == 'glb_sub':
|
| 229 |
+
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
|
| 230 |
+
elif self.hd_transform_order == 'sub_glb':
|
| 231 |
+
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
|
| 232 |
+
else:
|
| 233 |
+
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
|
| 234 |
+
|
| 235 |
+
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
|
| 236 |
+
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
|
| 237 |
+
output_len.append(temp_len)
|
| 238 |
+
|
| 239 |
+
num_img_tokens = output_len
|
| 240 |
+
img_set_tensor = []
|
| 241 |
+
for _output_img in output_imgs:
|
| 242 |
+
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
|
| 243 |
+
img_set_tensor.append(img_feature_proj)
|
| 244 |
+
logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
|
| 245 |
+
elif img_embeds.ndim == 4:
|
| 246 |
+
selected_g_values = g_values[::self.num_img_tokens]
|
| 247 |
+
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
|
| 248 |
+
start_time = datetime.now()
|
| 249 |
+
tt = (
|
| 250 |
+
self.get_img_features(img_embeds)
|
| 251 |
+
.to(target_device)
|
| 252 |
+
.to(target_dtype)
|
| 253 |
+
.reshape(-1, self.image_dim_out)
|
| 254 |
+
)
|
| 255 |
+
logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
|
| 256 |
+
img_set_tensor = self.img_projection(tt) # adapted visual features.
|
| 257 |
+
elif img_embeds.ndim == 3:
|
| 258 |
+
selected_g_values = g_values[::self.num_img_tokens]
|
| 259 |
+
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
|
| 260 |
+
tt = (
|
| 261 |
+
img_embeds
|
| 262 |
+
.to(target_device)
|
| 263 |
+
.to(target_dtype)
|
| 264 |
+
.view(-1, self.image_dim_out)
|
| 265 |
+
)
|
| 266 |
+
img_set_tensor = self.img_projection(tt) # adapted visual features.
|
| 267 |
+
else:
|
| 268 |
+
raise NotImplementedError
|
| 269 |
+
select = True
|
| 270 |
+
|
| 271 |
+
with torch.no_grad():
|
| 272 |
+
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
|
| 273 |
+
|
| 274 |
+
hidden_states = self.wte(input_ids)
|
| 275 |
+
|
| 276 |
+
if select:
|
| 277 |
+
if hd_transform:
|
| 278 |
+
idx = 0
|
| 279 |
+
for i, cnt in enumerate(num_img_tokens):
|
| 280 |
+
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
|
| 281 |
+
img_set_tensor[i]
|
| 282 |
+
.to(hidden_states.dtype)
|
| 283 |
+
.to(hidden_states.device)
|
| 284 |
+
)
|
| 285 |
+
idx += cnt
|
| 286 |
+
else:
|
| 287 |
+
idx = 0
|
| 288 |
+
assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
|
| 289 |
+
for i, g in enumerate(selected_g_values):
|
| 290 |
+
cnt = self.num_img_tokens
|
| 291 |
+
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
|
| 292 |
+
img_set_tensor[i * cnt : (i + 1) * cnt]
|
| 293 |
+
.to(hidden_states.dtype)
|
| 294 |
+
.to(hidden_states.device)
|
| 295 |
+
)
|
| 296 |
+
idx += cnt
|
| 297 |
+
|
| 298 |
+
if self.drop is not None:
|
| 299 |
+
hidden_states = self.drop(hidden_states)
|
| 300 |
+
|
| 301 |
+
return hidden_states
|
image_processing_phi3_v.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""Image processor class for Phi3-V."""
|
| 17 |
+
|
| 18 |
+
from typing import List, Optional, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
|
| 22 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 23 |
+
from transformers.image_transforms import (
|
| 24 |
+
convert_to_rgb,
|
| 25 |
+
)
|
| 26 |
+
from transformers.image_utils import (
|
| 27 |
+
OPENAI_CLIP_MEAN,
|
| 28 |
+
OPENAI_CLIP_STD,
|
| 29 |
+
ImageInput,
|
| 30 |
+
make_list_of_images,
|
| 31 |
+
valid_images,
|
| 32 |
+
)
|
| 33 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 34 |
+
|
| 35 |
+
from transformers import AutoImageProcessor
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if is_vision_available():
|
| 41 |
+
from PIL import Image
|
| 42 |
+
|
| 43 |
+
import torch
|
| 44 |
+
import torchvision
|
| 45 |
+
|
| 46 |
+
def padding_336(b):
|
| 47 |
+
width, height = b.size
|
| 48 |
+
tar = int(np.ceil(height / 336) * 336)
|
| 49 |
+
top_padding = int((tar - height)/2)
|
| 50 |
+
bottom_padding = tar - height - top_padding
|
| 51 |
+
left_padding = 0
|
| 52 |
+
right_padding = 0
|
| 53 |
+
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
| 54 |
+
|
| 55 |
+
return b
|
| 56 |
+
|
| 57 |
+
def calc_padded_size(width, height, padding_unit=336):
|
| 58 |
+
target_height = int(np.ceil(height / padding_unit) * padding_unit)
|
| 59 |
+
top_padding = int((target_height - height) / 2)
|
| 60 |
+
bottom_padding = target_height - height - top_padding
|
| 61 |
+
left_padding = 0
|
| 62 |
+
right_padding = 0
|
| 63 |
+
padded_width = width + left_padding + right_padding
|
| 64 |
+
padded_height = height + top_padding + bottom_padding
|
| 65 |
+
return padded_width, padded_height
|
| 66 |
+
|
| 67 |
+
def HD_transform(img, hd_num=16):
|
| 68 |
+
width, height = img.size
|
| 69 |
+
trans = False
|
| 70 |
+
if width < height:
|
| 71 |
+
img = img.transpose(Image.TRANSPOSE)
|
| 72 |
+
trans = True
|
| 73 |
+
width, height = img.size
|
| 74 |
+
ratio = (width/ height)
|
| 75 |
+
scale = 1
|
| 76 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
| 77 |
+
scale += 1
|
| 78 |
+
scale -= 1
|
| 79 |
+
new_w = int(scale * 336)
|
| 80 |
+
new_h = int(new_w / ratio)
|
| 81 |
+
|
| 82 |
+
img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
|
| 83 |
+
img = padding_336(img)
|
| 84 |
+
width, height = img.size
|
| 85 |
+
if trans:
|
| 86 |
+
img = img.transpose(Image.TRANSPOSE)
|
| 87 |
+
|
| 88 |
+
return img
|
| 89 |
+
|
| 90 |
+
def calc_hd_transform_size(width, height, hd_num=16):
|
| 91 |
+
transposed = False
|
| 92 |
+
if width < height:
|
| 93 |
+
width, height = height, width
|
| 94 |
+
transposed = True
|
| 95 |
+
|
| 96 |
+
ratio = width / height
|
| 97 |
+
scale = 1
|
| 98 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
| 99 |
+
scale += 1
|
| 100 |
+
scale -= 1
|
| 101 |
+
|
| 102 |
+
new_width = int(scale * 336)
|
| 103 |
+
new_height = int(new_width / ratio)
|
| 104 |
+
|
| 105 |
+
padded_width, padded_height = calc_padded_size(new_width, new_height)
|
| 106 |
+
|
| 107 |
+
if transposed:
|
| 108 |
+
padded_width, padded_height = padded_height, padded_width
|
| 109 |
+
|
| 110 |
+
return padded_width, padded_height
|
| 111 |
+
|
| 112 |
+
def pad_to_max_num_crops_tensor(images, max_crops=5):
|
| 113 |
+
"""
|
| 114 |
+
images: B x 3 x H x W, B<=max_crops
|
| 115 |
+
"""
|
| 116 |
+
B, _, H, W = images.shape
|
| 117 |
+
if B < max_crops:
|
| 118 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
| 119 |
+
images = torch.cat([images, pad], dim=0)
|
| 120 |
+
return images
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class Phi3VImageProcessor(BaseImageProcessor):
|
| 124 |
+
r"""
|
| 125 |
+
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
|
| 126 |
+
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 130 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
| 131 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
| 132 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 133 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
| 134 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 135 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 136 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 137 |
+
Whether to convert the image to RGB.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
model_input_names = ["pixel_values"]
|
| 141 |
+
|
| 142 |
+
def __init__(
|
| 143 |
+
self,
|
| 144 |
+
num_crops: int = 1,
|
| 145 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 146 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 147 |
+
do_convert_rgb: bool = True,
|
| 148 |
+
**kwargs,
|
| 149 |
+
) -> None:
|
| 150 |
+
super().__init__(**kwargs)
|
| 151 |
+
self.num_crops = num_crops
|
| 152 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 153 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 154 |
+
self.do_convert_rgb = do_convert_rgb
|
| 155 |
+
|
| 156 |
+
def calc_num_image_tokens(
|
| 157 |
+
self,
|
| 158 |
+
images: ImageInput
|
| 159 |
+
):
|
| 160 |
+
""" Calculate the number of image tokens for each image.
|
| 161 |
+
Args:
|
| 162 |
+
images (`ImageInput`):
|
| 163 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 164 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 165 |
+
"""
|
| 166 |
+
images = make_list_of_images(images)
|
| 167 |
+
|
| 168 |
+
if not valid_images(images):
|
| 169 |
+
raise ValueError(
|
| 170 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 171 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
images = [image.convert('RGB') for image in images]
|
| 175 |
+
# (H, W, C)
|
| 176 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
| 177 |
+
shapes = [[im.size[1], im.size[0]] for im in elems]
|
| 178 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
| 179 |
+
return num_img_tokens
|
| 180 |
+
|
| 181 |
+
def calc_num_image_tokens_from_image_size(self, width, height):
|
| 182 |
+
"""
|
| 183 |
+
Calculate the number of image tokens for a given image size.
|
| 184 |
+
Args:
|
| 185 |
+
width (`int`): Width of the image.
|
| 186 |
+
height (`int`): Height of the image.
|
| 187 |
+
"""
|
| 188 |
+
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
|
| 189 |
+
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
|
| 190 |
+
return num_img_tokens
|
| 191 |
+
|
| 192 |
+
def preprocess(
|
| 193 |
+
self,
|
| 194 |
+
images: ImageInput,
|
| 195 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 196 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 197 |
+
do_convert_rgb: bool = None,
|
| 198 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 199 |
+
):
|
| 200 |
+
"""
|
| 201 |
+
Args:
|
| 202 |
+
images (`ImageInput`):
|
| 203 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 204 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 205 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 206 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 207 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 208 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 209 |
+
`True`.
|
| 210 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 211 |
+
Whether to convert the image to RGB.
|
| 212 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 213 |
+
The type of tensors to return. Can be one of:
|
| 214 |
+
- Unset: Return a list of `np.ndarray`.
|
| 215 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 216 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 217 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 218 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 219 |
+
"""
|
| 220 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 221 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 222 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 223 |
+
|
| 224 |
+
images = make_list_of_images(images)
|
| 225 |
+
|
| 226 |
+
if not valid_images(images):
|
| 227 |
+
raise ValueError(
|
| 228 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 229 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
if do_convert_rgb:
|
| 233 |
+
images = [convert_to_rgb(image) for image in images]
|
| 234 |
+
|
| 235 |
+
image_sizes = []
|
| 236 |
+
img_processor = torchvision.transforms.Compose([
|
| 237 |
+
torchvision.transforms.ToTensor(),
|
| 238 |
+
torchvision.transforms.Normalize(image_mean, image_std)
|
| 239 |
+
])
|
| 240 |
+
|
| 241 |
+
# PIL images
|
| 242 |
+
# HD_transform pad images to size of multiiply of 336, 336
|
| 243 |
+
# convert to RGB first
|
| 244 |
+
images = [image.convert('RGB') for image in images]
|
| 245 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
| 246 |
+
# tensor transform and normalize
|
| 247 |
+
hd_images = [img_processor(im) for im in elems]
|
| 248 |
+
# create global image
|
| 249 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
|
| 250 |
+
|
| 251 |
+
# [(3, h, w)], where h, w is multiple of 336
|
| 252 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
| 253 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
| 254 |
+
# reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
|
| 255 |
+
# (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
|
| 256 |
+
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
| 257 |
+
# concat global image and local image
|
| 258 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
| 259 |
+
|
| 260 |
+
# pad to max_num_crops
|
| 261 |
+
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
|
| 262 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
| 263 |
+
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
|
| 264 |
+
padded_images = image_transformed
|
| 265 |
+
image_sizes = shapes
|
| 266 |
+
|
| 267 |
+
data = {"pixel_values": padded_images,
|
| 268 |
+
"image_sizes": image_sizes,
|
| 269 |
+
"num_img_tokens": num_img_tokens
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 273 |
+
|
| 274 |
+
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
|
modeling_phi3_v.py
ADDED
|
@@ -0,0 +1,1632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
""" PyTorch Phi-3-V model."""
|
| 17 |
+
|
| 18 |
+
import inspect
|
| 19 |
+
import math
|
| 20 |
+
import warnings
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from torch import nn
|
| 27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 28 |
+
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 31 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 32 |
+
from transformers.modeling_outputs import (
|
| 33 |
+
BaseModelOutputWithPast,
|
| 34 |
+
CausalLMOutputWithPast,
|
| 35 |
+
SequenceClassifierOutputWithPast,
|
| 36 |
+
TokenClassifierOutput,
|
| 37 |
+
)
|
| 38 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 39 |
+
from transformers.utils import (
|
| 40 |
+
add_code_sample_docstrings,
|
| 41 |
+
add_start_docstrings,
|
| 42 |
+
add_start_docstrings_to_model_forward,
|
| 43 |
+
is_flash_attn_2_available,
|
| 44 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 45 |
+
logging,
|
| 46 |
+
replace_return_docstrings,
|
| 47 |
+
)
|
| 48 |
+
from .configuration_phi3_v import Phi3VConfig
|
| 49 |
+
from .image_embedding_phi3_v import Phi3ImageEmbedding
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
if is_flash_attn_2_available():
|
| 53 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 54 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 55 |
+
|
| 56 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
| 57 |
+
|
| 58 |
+
logger = logging.get_logger(__name__)
|
| 59 |
+
|
| 60 |
+
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
|
| 61 |
+
_CONFIG_FOR_DOC = "Phi3VConfig"
|
| 62 |
+
|
| 63 |
+
PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 64 |
+
"microsoft/Phi-3-vision-128k-instruct",
|
| 65 |
+
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
|
| 70 |
+
class Phi3RMSNorm(nn.Module):
|
| 71 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 72 |
+
"""
|
| 73 |
+
Phi3RMSNorm is equivalent to T5LayerNorm
|
| 74 |
+
"""
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 77 |
+
self.variance_epsilon = eps
|
| 78 |
+
|
| 79 |
+
def forward(self, hidden_states):
|
| 80 |
+
input_dtype = hidden_states.dtype
|
| 81 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 82 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 83 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 84 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 88 |
+
def _get_unpad_data(attention_mask):
|
| 89 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 90 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 91 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 92 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 93 |
+
return (
|
| 94 |
+
indices,
|
| 95 |
+
cu_seqlens,
|
| 96 |
+
max_seqlen_in_batch,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
|
| 101 |
+
class Phi3RotaryEmbedding(nn.Module):
|
| 102 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 103 |
+
super().__init__()
|
| 104 |
+
|
| 105 |
+
self.dim = dim
|
| 106 |
+
self.max_position_embeddings = max_position_embeddings
|
| 107 |
+
self.base = base
|
| 108 |
+
self.register_buffer("inv_freq", None, persistent=False)
|
| 109 |
+
|
| 110 |
+
@torch.no_grad()
|
| 111 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 112 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 113 |
+
if self.inv_freq is None:
|
| 114 |
+
self.inv_freq = 1.0 / (
|
| 115 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
| 116 |
+
)
|
| 117 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 118 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 119 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 120 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 121 |
+
device_type = x.device.type
|
| 122 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 123 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 124 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 125 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 126 |
+
cos = emb.cos()
|
| 127 |
+
sin = emb.sin()
|
| 128 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
| 132 |
+
def __init__(self, dim, config, device=None):
|
| 133 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
| 134 |
+
|
| 135 |
+
self.short_factor = config.rope_scaling["short_factor"]
|
| 136 |
+
self.long_factor = config.rope_scaling["long_factor"]
|
| 137 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
| 138 |
+
|
| 139 |
+
@torch.no_grad()
|
| 140 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 141 |
+
seq_len = torch.max(position_ids) + 1
|
| 142 |
+
if seq_len > self.original_max_position_embeddings:
|
| 143 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
| 144 |
+
else:
|
| 145 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
| 146 |
+
|
| 147 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
| 148 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
| 149 |
+
|
| 150 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 151 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 152 |
+
|
| 153 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 154 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 155 |
+
device_type = x.device.type
|
| 156 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 157 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 158 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 159 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 160 |
+
|
| 161 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
| 162 |
+
if scale <= 1.0:
|
| 163 |
+
scaling_factor = 1.0
|
| 164 |
+
else:
|
| 165 |
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
| 166 |
+
|
| 167 |
+
cos = emb.cos() * scaling_factor
|
| 168 |
+
sin = emb.sin() * scaling_factor
|
| 169 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
| 173 |
+
def __init__(self, dim, config, device=None):
|
| 174 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
| 175 |
+
|
| 176 |
+
self.short_factor = config.rope_scaling["short_factor"]
|
| 177 |
+
self.long_factor = config.rope_scaling["long_factor"]
|
| 178 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
| 179 |
+
|
| 180 |
+
@torch.no_grad()
|
| 181 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 182 |
+
seq_len = torch.max(position_ids) + 1
|
| 183 |
+
if seq_len > self.original_max_position_embeddings:
|
| 184 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
| 185 |
+
else:
|
| 186 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
| 187 |
+
|
| 188 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
| 189 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
| 190 |
+
|
| 191 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 192 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 193 |
+
|
| 194 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 195 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 196 |
+
device_type = x.device.type
|
| 197 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 198 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 199 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 200 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 201 |
+
|
| 202 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
| 203 |
+
if scale <= 1.0:
|
| 204 |
+
scaling_factor = 1.0
|
| 205 |
+
else:
|
| 206 |
+
scaling_factor = 0.1 * math.log(scale) + 1.0
|
| 207 |
+
|
| 208 |
+
cos = emb.cos() * scaling_factor
|
| 209 |
+
sin = emb.sin() * scaling_factor
|
| 210 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 214 |
+
def rotate_half(x):
|
| 215 |
+
"""Rotates half the hidden dims of the input."""
|
| 216 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 217 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 218 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 222 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 223 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
q (`torch.Tensor`): The query tensor.
|
| 227 |
+
k (`torch.Tensor`): The key tensor.
|
| 228 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 229 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 230 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 231 |
+
Deprecated and unused.
|
| 232 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 233 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 234 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 235 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 236 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 237 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 238 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 239 |
+
Returns:
|
| 240 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 241 |
+
"""
|
| 242 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 243 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 244 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 245 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 246 |
+
return q_embed, k_embed
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class Phi3MLP(nn.Module):
|
| 250 |
+
def __init__(self, config):
|
| 251 |
+
super().__init__()
|
| 252 |
+
|
| 253 |
+
self.config = config
|
| 254 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
| 255 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 256 |
+
|
| 257 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 258 |
+
|
| 259 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 260 |
+
up_states = self.gate_up_proj(hidden_states)
|
| 261 |
+
|
| 262 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
| 263 |
+
up_states = up_states * self.activation_fn(gate)
|
| 264 |
+
|
| 265 |
+
return self.down_proj(up_states)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
| 269 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 270 |
+
"""
|
| 271 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 272 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 273 |
+
"""
|
| 274 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 275 |
+
if n_rep == 1:
|
| 276 |
+
return hidden_states
|
| 277 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 278 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class Phi3Attention(nn.Module):
|
| 282 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 283 |
+
|
| 284 |
+
def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None):
|
| 285 |
+
super().__init__()
|
| 286 |
+
self.config = config
|
| 287 |
+
self.layer_idx = layer_idx
|
| 288 |
+
if layer_idx is None:
|
| 289 |
+
logger.warning_once(
|
| 290 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 291 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 292 |
+
"when creating this class."
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
self.attention_dropout = config.attention_dropout
|
| 296 |
+
self.hidden_size = config.hidden_size
|
| 297 |
+
self.num_heads = config.num_attention_heads
|
| 298 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 299 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 300 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 301 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 302 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
| 303 |
+
self.rope_theta = config.rope_theta
|
| 304 |
+
self.rope_scaling = config.rope_scaling
|
| 305 |
+
self.is_causal = True
|
| 306 |
+
|
| 307 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 308 |
+
raise ValueError(
|
| 309 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 310 |
+
f" and `num_heads`: {self.num_heads})."
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
| 314 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 315 |
+
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
| 316 |
+
self._init_rope()
|
| 317 |
+
|
| 318 |
+
def _init_rope(self):
|
| 319 |
+
if self.rope_scaling is None:
|
| 320 |
+
self.rotary_emb = Phi3RotaryEmbedding(
|
| 321 |
+
self.head_dim,
|
| 322 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 323 |
+
base=self.rope_theta,
|
| 324 |
+
)
|
| 325 |
+
else:
|
| 326 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 327 |
+
if scaling_type == "su":
|
| 328 |
+
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
|
| 329 |
+
elif scaling_type == "yarn":
|
| 330 |
+
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
|
| 331 |
+
else:
|
| 332 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 333 |
+
|
| 334 |
+
def forward(
|
| 335 |
+
self,
|
| 336 |
+
hidden_states: torch.Tensor,
|
| 337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 338 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 339 |
+
past_key_value: Optional[Cache] = None,
|
| 340 |
+
output_attentions: bool = False,
|
| 341 |
+
use_cache: bool = False,
|
| 342 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 343 |
+
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
|
| 344 |
+
|
| 345 |
+
bsz, q_len, _ = hidden_states.size()
|
| 346 |
+
|
| 347 |
+
qkv = self.qkv_proj(hidden_states)
|
| 348 |
+
query_pos = self.num_heads * self.head_dim
|
| 349 |
+
query_states = qkv[..., :query_pos]
|
| 350 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 351 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 352 |
+
|
| 353 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 354 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 355 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 356 |
+
|
| 357 |
+
kv_seq_len = key_states.shape[-2]
|
| 358 |
+
if past_key_value is not None:
|
| 359 |
+
if self.layer_idx is None:
|
| 360 |
+
raise ValueError(
|
| 361 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
| 362 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
| 363 |
+
"with a layer index."
|
| 364 |
+
)
|
| 365 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 366 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
| 367 |
+
|
| 368 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 369 |
+
|
| 370 |
+
if past_key_value is not None:
|
| 371 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 372 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 373 |
+
|
| 374 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 375 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 376 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 377 |
+
|
| 378 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 379 |
+
|
| 380 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 381 |
+
raise ValueError(
|
| 382 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 383 |
+
f" {attn_weights.size()}"
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
if attention_mask is not None:
|
| 387 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 388 |
+
raise ValueError(
|
| 389 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 390 |
+
)
|
| 391 |
+
attn_weights = attn_weights + attention_mask
|
| 392 |
+
|
| 393 |
+
# upcast attention to fp32
|
| 394 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
| 395 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 396 |
+
|
| 397 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 398 |
+
|
| 399 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 400 |
+
raise ValueError(
|
| 401 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 402 |
+
f" {attn_output.size()}"
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 406 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 407 |
+
|
| 408 |
+
attn_output = self.o_proj(attn_output)
|
| 409 |
+
|
| 410 |
+
if not output_attentions:
|
| 411 |
+
attn_weights = None
|
| 412 |
+
|
| 413 |
+
return attn_output, attn_weights, past_key_value
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
class Phi3FlashAttention2(Phi3Attention):
|
| 417 |
+
"""
|
| 418 |
+
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
| 419 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 420 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 421 |
+
"""
|
| 422 |
+
|
| 423 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 424 |
+
def __init__(self, *args, **kwargs):
|
| 425 |
+
super().__init__(*args, **kwargs)
|
| 426 |
+
|
| 427 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 428 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 429 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 430 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 431 |
+
|
| 432 |
+
def forward(
|
| 433 |
+
self,
|
| 434 |
+
hidden_states: torch.Tensor,
|
| 435 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 437 |
+
past_key_value: Optional[Cache] = None,
|
| 438 |
+
output_attentions: bool = False,
|
| 439 |
+
use_cache: bool = False,
|
| 440 |
+
**kwargs,
|
| 441 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 442 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
| 443 |
+
|
| 444 |
+
if not _flash_supports_window_size:
|
| 445 |
+
logger.warning_once(
|
| 446 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
| 447 |
+
)
|
| 448 |
+
raise ValueError("The current flash attention version does not support sliding window attention.")
|
| 449 |
+
|
| 450 |
+
output_attentions = False
|
| 451 |
+
|
| 452 |
+
if "padding_mask" in kwargs:
|
| 453 |
+
warnings.warn(
|
| 454 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
# overwrite attention_mask with padding_mask
|
| 458 |
+
attention_mask = kwargs.pop("padding_mask")
|
| 459 |
+
|
| 460 |
+
bsz, q_len, _ = hidden_states.size()
|
| 461 |
+
|
| 462 |
+
qkv = self.qkv_proj(hidden_states)
|
| 463 |
+
query_pos = self.num_heads * self.head_dim
|
| 464 |
+
query_states = qkv[..., :query_pos]
|
| 465 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 466 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 467 |
+
|
| 468 |
+
# Flash attention requires the input to have the shape
|
| 469 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 470 |
+
# therefore we just need to keep the original shape
|
| 471 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 472 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 473 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 474 |
+
|
| 475 |
+
kv_seq_len = key_states.shape[-2]
|
| 476 |
+
if past_key_value is not None:
|
| 477 |
+
if self.layer_idx is None:
|
| 478 |
+
raise ValueError(
|
| 479 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
| 480 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
| 481 |
+
"with a layer index."
|
| 482 |
+
)
|
| 483 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 484 |
+
|
| 485 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
| 486 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
| 487 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
| 488 |
+
|
| 489 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 490 |
+
|
| 491 |
+
use_sliding_windows = (
|
| 492 |
+
_flash_supports_window_size
|
| 493 |
+
and getattr(self.config, "sliding_window", None) is not None
|
| 494 |
+
and kv_seq_len > self.config.sliding_window
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
if past_key_value is not None:
|
| 498 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
| 499 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
| 500 |
+
if (
|
| 501 |
+
getattr(self.config, "sliding_window", None) is not None
|
| 502 |
+
and kv_seq_len > self.config.sliding_window
|
| 503 |
+
and cache_has_contents
|
| 504 |
+
):
|
| 505 |
+
slicing_tokens = 1 - self.config.sliding_window
|
| 506 |
+
|
| 507 |
+
past_key = past_key_value[self.layer_idx][0]
|
| 508 |
+
past_value = past_key_value[self.layer_idx][1]
|
| 509 |
+
|
| 510 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
| 511 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
| 512 |
+
|
| 513 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
| 514 |
+
raise ValueError(
|
| 515 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
| 516 |
+
f" {past_key.shape}"
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
if attention_mask is not None:
|
| 520 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
| 521 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
| 522 |
+
|
| 523 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 524 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 525 |
+
|
| 526 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 527 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 528 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 529 |
+
|
| 530 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
| 531 |
+
|
| 532 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 533 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 534 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 535 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 536 |
+
# in fp32.
|
| 537 |
+
|
| 538 |
+
if query_states.dtype == torch.float32:
|
| 539 |
+
if torch.is_autocast_enabled():
|
| 540 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 541 |
+
# Handle the case where the model is quantized
|
| 542 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 543 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 544 |
+
else:
|
| 545 |
+
target_dtype = self.qkv_proj.weight.dtype
|
| 546 |
+
|
| 547 |
+
logger.warning_once(
|
| 548 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 549 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 550 |
+
f" {target_dtype}."
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
query_states = query_states.to(target_dtype)
|
| 554 |
+
key_states = key_states.to(target_dtype)
|
| 555 |
+
value_states = value_states.to(target_dtype)
|
| 556 |
+
|
| 557 |
+
# Reashape to the expected shape for Flash Attention
|
| 558 |
+
query_states = query_states.transpose(1, 2)
|
| 559 |
+
key_states = key_states.transpose(1, 2)
|
| 560 |
+
value_states = value_states.transpose(1, 2)
|
| 561 |
+
|
| 562 |
+
attn_output = self._flash_attention_forward(
|
| 563 |
+
query_states,
|
| 564 |
+
key_states,
|
| 565 |
+
value_states,
|
| 566 |
+
attention_mask,
|
| 567 |
+
q_len,
|
| 568 |
+
dropout=attn_dropout,
|
| 569 |
+
use_sliding_windows=use_sliding_windows,
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 573 |
+
attn_output = self.o_proj(attn_output)
|
| 574 |
+
|
| 575 |
+
if not output_attentions:
|
| 576 |
+
attn_weights = None
|
| 577 |
+
|
| 578 |
+
return attn_output, attn_weights, past_key_value
|
| 579 |
+
|
| 580 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
|
| 581 |
+
def _flash_attention_forward(
|
| 582 |
+
self,
|
| 583 |
+
query_states,
|
| 584 |
+
key_states,
|
| 585 |
+
value_states,
|
| 586 |
+
attention_mask,
|
| 587 |
+
query_length,
|
| 588 |
+
dropout=0.0,
|
| 589 |
+
softmax_scale=None,
|
| 590 |
+
use_sliding_windows=False,
|
| 591 |
+
):
|
| 592 |
+
"""
|
| 593 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 594 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 595 |
+
|
| 596 |
+
Args:
|
| 597 |
+
query_states (`torch.Tensor`):
|
| 598 |
+
Input query states to be passed to Flash Attention API
|
| 599 |
+
key_states (`torch.Tensor`):
|
| 600 |
+
Input key states to be passed to Flash Attention API
|
| 601 |
+
value_states (`torch.Tensor`):
|
| 602 |
+
Input value states to be passed to Flash Attention API
|
| 603 |
+
attention_mask (`torch.Tensor`):
|
| 604 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 605 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 606 |
+
dropout (`float`):
|
| 607 |
+
Attention dropout
|
| 608 |
+
softmax_scale (`float`, *optional*):
|
| 609 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 610 |
+
use_sliding_windows (`bool`, *optional*):
|
| 611 |
+
Whether to activate sliding window attention.
|
| 612 |
+
"""
|
| 613 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 614 |
+
causal = self.is_causal
|
| 615 |
+
else:
|
| 616 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 617 |
+
causal = self.is_causal and query_length != 1
|
| 618 |
+
|
| 619 |
+
# Contains at least one padding token in the sequence
|
| 620 |
+
if attention_mask is not None:
|
| 621 |
+
batch_size = query_states.shape[0]
|
| 622 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 623 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 627 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 628 |
+
|
| 629 |
+
if not use_sliding_windows:
|
| 630 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 631 |
+
query_states,
|
| 632 |
+
key_states,
|
| 633 |
+
value_states,
|
| 634 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 635 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 636 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 637 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 638 |
+
dropout_p=dropout,
|
| 639 |
+
softmax_scale=softmax_scale,
|
| 640 |
+
causal=causal,
|
| 641 |
+
)
|
| 642 |
+
else:
|
| 643 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 644 |
+
query_states,
|
| 645 |
+
key_states,
|
| 646 |
+
value_states,
|
| 647 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 648 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 649 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 650 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 651 |
+
dropout_p=dropout,
|
| 652 |
+
softmax_scale=softmax_scale,
|
| 653 |
+
causal=causal,
|
| 654 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 658 |
+
else:
|
| 659 |
+
if not use_sliding_windows:
|
| 660 |
+
attn_output = flash_attn_func(
|
| 661 |
+
query_states,
|
| 662 |
+
key_states,
|
| 663 |
+
value_states,
|
| 664 |
+
dropout,
|
| 665 |
+
softmax_scale=softmax_scale,
|
| 666 |
+
causal=causal,
|
| 667 |
+
)
|
| 668 |
+
else:
|
| 669 |
+
attn_output = flash_attn_func(
|
| 670 |
+
query_states,
|
| 671 |
+
key_states,
|
| 672 |
+
value_states,
|
| 673 |
+
dropout,
|
| 674 |
+
softmax_scale=softmax_scale,
|
| 675 |
+
causal=causal,
|
| 676 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
return attn_output
|
| 680 |
+
|
| 681 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
| 682 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 683 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
| 684 |
+
|
| 685 |
+
# On the first iteration we need to properly re-create the padding mask
|
| 686 |
+
# by slicing it on the proper place
|
| 687 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
| 688 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
| 689 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
| 690 |
+
|
| 691 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 692 |
+
|
| 693 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 694 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 695 |
+
|
| 696 |
+
if query_length == kv_seq_len:
|
| 697 |
+
query_layer = index_first_axis(
|
| 698 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
| 699 |
+
)
|
| 700 |
+
cu_seqlens_q = cu_seqlens_k
|
| 701 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 702 |
+
indices_q = indices_k
|
| 703 |
+
elif query_length == 1:
|
| 704 |
+
max_seqlen_in_batch_q = 1
|
| 705 |
+
cu_seqlens_q = torch.arange(
|
| 706 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 707 |
+
) # There is a memcpy here, that is very bad.
|
| 708 |
+
indices_q = cu_seqlens_q[:-1]
|
| 709 |
+
query_layer = query_layer.squeeze(1)
|
| 710 |
+
else:
|
| 711 |
+
# The -q_len: slice assumes left padding.
|
| 712 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 713 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 714 |
+
|
| 715 |
+
return (
|
| 716 |
+
query_layer,
|
| 717 |
+
key_layer,
|
| 718 |
+
value_layer,
|
| 719 |
+
indices_q,
|
| 720 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 721 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 722 |
+
)
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
|
| 726 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
| 727 |
+
class Phi3SdpaAttention(Phi3Attention):
|
| 728 |
+
"""
|
| 729 |
+
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 730 |
+
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 731 |
+
SDPA API.
|
| 732 |
+
"""
|
| 733 |
+
|
| 734 |
+
# Adapted from Phi3Attention.forward
|
| 735 |
+
def forward(
|
| 736 |
+
self,
|
| 737 |
+
hidden_states: torch.Tensor,
|
| 738 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 739 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 740 |
+
past_key_value: Optional[Cache] = None,
|
| 741 |
+
output_attentions: bool = False,
|
| 742 |
+
use_cache: bool = False,
|
| 743 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 744 |
+
if output_attentions:
|
| 745 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 746 |
+
logger.warning_once(
|
| 747 |
+
"Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 748 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 749 |
+
)
|
| 750 |
+
return super().forward(
|
| 751 |
+
hidden_states=hidden_states,
|
| 752 |
+
attention_mask=attention_mask,
|
| 753 |
+
position_ids=position_ids,
|
| 754 |
+
past_key_value=past_key_value,
|
| 755 |
+
output_attentions=output_attentions,
|
| 756 |
+
use_cache=use_cache,
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
bsz, q_len, _ = hidden_states.size()
|
| 760 |
+
|
| 761 |
+
qkv = self.qkv_proj(hidden_states)
|
| 762 |
+
query_pos = self.num_heads * self.head_dim
|
| 763 |
+
query_states = qkv[..., :query_pos]
|
| 764 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 765 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 766 |
+
|
| 767 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 768 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 769 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 770 |
+
|
| 771 |
+
kv_seq_len = key_states.shape[-2]
|
| 772 |
+
if past_key_value is not None:
|
| 773 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 774 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
| 775 |
+
|
| 776 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 777 |
+
|
| 778 |
+
if past_key_value is not None:
|
| 779 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 780 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 781 |
+
|
| 782 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 783 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 784 |
+
|
| 785 |
+
if attention_mask is not None:
|
| 786 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 787 |
+
raise ValueError(
|
| 788 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 792 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 793 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 794 |
+
query_states = query_states.contiguous()
|
| 795 |
+
key_states = key_states.contiguous()
|
| 796 |
+
value_states = value_states.contiguous()
|
| 797 |
+
|
| 798 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 799 |
+
query_states,
|
| 800 |
+
key_states,
|
| 801 |
+
value_states,
|
| 802 |
+
attn_mask=attention_mask,
|
| 803 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 804 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 805 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 809 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 810 |
+
|
| 811 |
+
attn_output = self.o_proj(attn_output)
|
| 812 |
+
|
| 813 |
+
return attn_output, None, past_key_value
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
PHI3_ATTENTION_CLASSES = {
|
| 817 |
+
"eager": Phi3Attention,
|
| 818 |
+
"flash_attention_2": Phi3FlashAttention2,
|
| 819 |
+
"sdpa": Phi3SdpaAttention,
|
| 820 |
+
}
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
class Phi3DecoderLayer(nn.Module):
|
| 824 |
+
def __init__(self, config: Phi3VConfig, layer_idx: int):
|
| 825 |
+
super().__init__()
|
| 826 |
+
|
| 827 |
+
self.config = config
|
| 828 |
+
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
| 829 |
+
|
| 830 |
+
self.mlp = Phi3MLP(config)
|
| 831 |
+
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 832 |
+
|
| 833 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
| 834 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
| 835 |
+
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 836 |
+
|
| 837 |
+
def forward(
|
| 838 |
+
self,
|
| 839 |
+
hidden_states: torch.Tensor,
|
| 840 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 841 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 842 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 843 |
+
output_attentions: Optional[bool] = False,
|
| 844 |
+
use_cache: Optional[bool] = False,
|
| 845 |
+
**kwargs,
|
| 846 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 847 |
+
if "padding_mask" in kwargs:
|
| 848 |
+
warnings.warn(
|
| 849 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 850 |
+
)
|
| 851 |
+
"""
|
| 852 |
+
Args:
|
| 853 |
+
hidden_states (`torch.FloatTensor`):
|
| 854 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 855 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 856 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 857 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 858 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
| 859 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
| 860 |
+
output_attentions (`bool`, *optional*):
|
| 861 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 862 |
+
returned tensors for more detail.
|
| 863 |
+
use_cache (`bool`, *optional*):
|
| 864 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 865 |
+
(see `past_key_values`).
|
| 866 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 867 |
+
"""
|
| 868 |
+
|
| 869 |
+
residual = hidden_states
|
| 870 |
+
|
| 871 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 872 |
+
|
| 873 |
+
# Self Attention
|
| 874 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
| 875 |
+
hidden_states=hidden_states,
|
| 876 |
+
attention_mask=attention_mask,
|
| 877 |
+
position_ids=position_ids,
|
| 878 |
+
past_key_value=past_key_value,
|
| 879 |
+
output_attentions=output_attentions,
|
| 880 |
+
use_cache=use_cache,
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
| 884 |
+
|
| 885 |
+
residual = hidden_states
|
| 886 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 887 |
+
hidden_states = self.mlp(hidden_states)
|
| 888 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
| 889 |
+
|
| 890 |
+
outputs = (hidden_states,)
|
| 891 |
+
|
| 892 |
+
if output_attentions:
|
| 893 |
+
outputs += (self_attn_weights,)
|
| 894 |
+
|
| 895 |
+
if use_cache:
|
| 896 |
+
outputs += (present_key_value,)
|
| 897 |
+
|
| 898 |
+
return outputs
|
| 899 |
+
|
| 900 |
+
|
| 901 |
+
PHI3V_START_DOCSTRING = r"""
|
| 902 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 903 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 904 |
+
etc.)
|
| 905 |
+
|
| 906 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 907 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 908 |
+
and behavior.
|
| 909 |
+
|
| 910 |
+
Parameters:
|
| 911 |
+
config ([`Phi3VConfig`]):
|
| 912 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 913 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 914 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 915 |
+
"""
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
@add_start_docstrings(
|
| 919 |
+
"The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
|
| 920 |
+
PHI3V_START_DOCSTRING,
|
| 921 |
+
)
|
| 922 |
+
class Phi3VPreTrainedModel(PreTrainedModel):
|
| 923 |
+
config_class = Phi3VConfig
|
| 924 |
+
base_model_prefix = "model"
|
| 925 |
+
supports_gradient_checkpointing = True
|
| 926 |
+
_no_split_modules = ["Phi3DecoderLayer"]
|
| 927 |
+
_skip_keys_device_placement = "past_key_values"
|
| 928 |
+
_supports_flash_attn_2 = True
|
| 929 |
+
_supports_sdpa = False
|
| 930 |
+
_supports_cache_class = True
|
| 931 |
+
|
| 932 |
+
_version = "0.0.5"
|
| 933 |
+
|
| 934 |
+
def _init_weights(self, module):
|
| 935 |
+
std = self.config.initializer_range
|
| 936 |
+
if isinstance(module, nn.Linear):
|
| 937 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 938 |
+
if module.bias is not None:
|
| 939 |
+
module.bias.data.zero_()
|
| 940 |
+
elif isinstance(module, nn.Embedding):
|
| 941 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 942 |
+
if module.padding_idx is not None:
|
| 943 |
+
module.weight.data[module.padding_idx].zero_()
|
| 944 |
+
|
| 945 |
+
|
| 946 |
+
PHI3V_INPUTS_DOCSTRING = r"""
|
| 947 |
+
Args:
|
| 948 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 949 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 950 |
+
it.
|
| 951 |
+
|
| 952 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 953 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 954 |
+
|
| 955 |
+
[What are input IDs?](../glossary#input-ids)
|
| 956 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 957 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 958 |
+
|
| 959 |
+
- 1 for tokens that are **not masked**,
|
| 960 |
+
- 0 for tokens that are **masked**.
|
| 961 |
+
|
| 962 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 963 |
+
|
| 964 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 965 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 966 |
+
|
| 967 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 968 |
+
`past_key_values`).
|
| 969 |
+
|
| 970 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 971 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 972 |
+
information on the default strategy.
|
| 973 |
+
|
| 974 |
+
- 1 indicates the head is **not masked**,
|
| 975 |
+
- 0 indicates the head is **masked**.
|
| 976 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 977 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 978 |
+
config.n_positions - 1]`.
|
| 979 |
+
|
| 980 |
+
[What are position IDs?](../glossary#position-ids)
|
| 981 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 982 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 983 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 984 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 985 |
+
|
| 986 |
+
Two formats are allowed:
|
| 987 |
+
- a [`~cache_utils.Cache`] instance;
|
| 988 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 989 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 990 |
+
cache format.
|
| 991 |
+
|
| 992 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 993 |
+
legacy cache format will be returned.
|
| 994 |
+
|
| 995 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 996 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 997 |
+
of shape `(batch_size, sequence_length)`.
|
| 998 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 999 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1000 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1001 |
+
model's internal embedding lookup matrix.
|
| 1002 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
| 1003 |
+
The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`].
|
| 1004 |
+
See [`Phi3ImageProcessor.__call__`] for details.
|
| 1005 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
| 1006 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
| 1007 |
+
use_cache (`bool`, *optional*):
|
| 1008 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1009 |
+
`past_key_values`).
|
| 1010 |
+
output_attentions (`bool`, *optional*):
|
| 1011 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1012 |
+
tensors for more detail.
|
| 1013 |
+
output_hidden_states (`bool`, *optional*):
|
| 1014 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1015 |
+
more detail.
|
| 1016 |
+
return_dict (`bool`, *optional*):
|
| 1017 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1018 |
+
"""
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
@add_start_docstrings(
|
| 1022 |
+
"The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
|
| 1023 |
+
PHI3V_START_DOCSTRING,
|
| 1024 |
+
)
|
| 1025 |
+
class Phi3VModel(Phi3VPreTrainedModel):
|
| 1026 |
+
"""
|
| 1027 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
| 1028 |
+
|
| 1029 |
+
Args:
|
| 1030 |
+
config: Phi3Config
|
| 1031 |
+
"""
|
| 1032 |
+
|
| 1033 |
+
def __init__(self, config: Phi3VConfig):
|
| 1034 |
+
super().__init__(config)
|
| 1035 |
+
self.padding_idx = config.pad_token_id
|
| 1036 |
+
self.vocab_size = config.vocab_size
|
| 1037 |
+
|
| 1038 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1039 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
| 1040 |
+
|
| 1041 |
+
self.vision_embed_tokens = None
|
| 1042 |
+
if isinstance(config.embd_layer, dict):
|
| 1043 |
+
# vision embedding layer
|
| 1044 |
+
embedding_config = {
|
| 1045 |
+
'embedding_cls': config.embd_layer['embedding_cls'],
|
| 1046 |
+
**config.embd_layer
|
| 1047 |
+
}
|
| 1048 |
+
self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config)
|
| 1049 |
+
# # set wte the same for vision embedding
|
| 1050 |
+
# self.vision_embed_tokens.wte.weight = self.embed_tokens.weight
|
| 1051 |
+
|
| 1052 |
+
self.layers = nn.ModuleList(
|
| 1053 |
+
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1054 |
+
)
|
| 1055 |
+
self._attn_implementation = config._attn_implementation
|
| 1056 |
+
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1057 |
+
|
| 1058 |
+
self.gradient_checkpointing = False
|
| 1059 |
+
# Initialize weights and apply final processing
|
| 1060 |
+
self.post_init()
|
| 1061 |
+
|
| 1062 |
+
def get_input_embeddings(self):
|
| 1063 |
+
return self.embed_tokens
|
| 1064 |
+
|
| 1065 |
+
def set_input_embeddings(self, value):
|
| 1066 |
+
self.embed_tokens = value
|
| 1067 |
+
|
| 1068 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
| 1069 |
+
def forward(
|
| 1070 |
+
self,
|
| 1071 |
+
input_ids: torch.LongTensor = None,
|
| 1072 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1073 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1074 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1075 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1076 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1077 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 1078 |
+
use_cache: Optional[bool] = None,
|
| 1079 |
+
output_attentions: Optional[bool] = None,
|
| 1080 |
+
output_hidden_states: Optional[bool] = None,
|
| 1081 |
+
return_dict: Optional[bool] = None,
|
| 1082 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1083 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1084 |
+
output_hidden_states = (
|
| 1085 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1086 |
+
)
|
| 1087 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1088 |
+
|
| 1089 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1090 |
+
|
| 1091 |
+
# retrieve input_ids and inputs_embeds
|
| 1092 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1093 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1094 |
+
elif input_ids is not None:
|
| 1095 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 1096 |
+
elif inputs_embeds is not None:
|
| 1097 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 1098 |
+
else:
|
| 1099 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1100 |
+
|
| 1101 |
+
past_key_values_length = 0
|
| 1102 |
+
|
| 1103 |
+
if self.gradient_checkpointing and self.training:
|
| 1104 |
+
if use_cache:
|
| 1105 |
+
logger.warning_once(
|
| 1106 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1107 |
+
)
|
| 1108 |
+
use_cache = False
|
| 1109 |
+
|
| 1110 |
+
if use_cache:
|
| 1111 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 1112 |
+
if use_legacy_cache:
|
| 1113 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 1114 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 1115 |
+
|
| 1116 |
+
if position_ids is None:
|
| 1117 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1118 |
+
position_ids = torch.arange(
|
| 1119 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 1120 |
+
)
|
| 1121 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 1122 |
+
else:
|
| 1123 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 1124 |
+
|
| 1125 |
+
if inputs_embeds is None:
|
| 1126 |
+
if pixel_values is not None and image_sizes is not None:
|
| 1127 |
+
assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined"
|
| 1128 |
+
inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
|
| 1129 |
+
else:
|
| 1130 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1131 |
+
|
| 1132 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
| 1133 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 1134 |
+
if is_padding_right:
|
| 1135 |
+
raise ValueError(
|
| 1136 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 1137 |
+
" this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
|
| 1138 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 1139 |
+
)
|
| 1140 |
+
|
| 1141 |
+
if self._attn_implementation == "flash_attention_2":
|
| 1142 |
+
# 2d mask is passed through the layers
|
| 1143 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 1144 |
+
else:
|
| 1145 |
+
# 4d mask is passed through the layers
|
| 1146 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 1147 |
+
attention_mask,
|
| 1148 |
+
(batch_size, seq_length),
|
| 1149 |
+
inputs_embeds,
|
| 1150 |
+
past_key_values_length,
|
| 1151 |
+
sliding_window=self.config.sliding_window,
|
| 1152 |
+
)
|
| 1153 |
+
|
| 1154 |
+
hidden_states = inputs_embeds
|
| 1155 |
+
|
| 1156 |
+
# decoder layers
|
| 1157 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1158 |
+
all_self_attns = () if output_attentions else None
|
| 1159 |
+
next_decoder_cache = None
|
| 1160 |
+
|
| 1161 |
+
for decoder_layer in self.layers:
|
| 1162 |
+
if output_hidden_states:
|
| 1163 |
+
all_hidden_states += (hidden_states,)
|
| 1164 |
+
|
| 1165 |
+
if self.gradient_checkpointing and self.training:
|
| 1166 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1167 |
+
decoder_layer.__call__,
|
| 1168 |
+
hidden_states,
|
| 1169 |
+
attention_mask,
|
| 1170 |
+
position_ids,
|
| 1171 |
+
past_key_values,
|
| 1172 |
+
output_attentions,
|
| 1173 |
+
use_cache,
|
| 1174 |
+
)
|
| 1175 |
+
else:
|
| 1176 |
+
layer_outputs = decoder_layer(
|
| 1177 |
+
hidden_states,
|
| 1178 |
+
attention_mask=attention_mask,
|
| 1179 |
+
position_ids=position_ids,
|
| 1180 |
+
past_key_value=past_key_values,
|
| 1181 |
+
output_attentions=output_attentions,
|
| 1182 |
+
use_cache=use_cache,
|
| 1183 |
+
)
|
| 1184 |
+
|
| 1185 |
+
hidden_states = layer_outputs[0]
|
| 1186 |
+
|
| 1187 |
+
if use_cache:
|
| 1188 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1189 |
+
|
| 1190 |
+
if output_attentions:
|
| 1191 |
+
all_self_attns += (layer_outputs[1],)
|
| 1192 |
+
|
| 1193 |
+
hidden_states = self.norm(hidden_states)
|
| 1194 |
+
|
| 1195 |
+
# add hidden states from the last decoder layer
|
| 1196 |
+
if output_hidden_states:
|
| 1197 |
+
all_hidden_states += (hidden_states,)
|
| 1198 |
+
|
| 1199 |
+
next_cache = None
|
| 1200 |
+
if use_cache:
|
| 1201 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 1202 |
+
if not return_dict:
|
| 1203 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1204 |
+
return BaseModelOutputWithPast(
|
| 1205 |
+
last_hidden_state=hidden_states,
|
| 1206 |
+
past_key_values=next_cache,
|
| 1207 |
+
hidden_states=all_hidden_states,
|
| 1208 |
+
attentions=all_self_attns,
|
| 1209 |
+
)
|
| 1210 |
+
|
| 1211 |
+
|
| 1212 |
+
class Phi3VForCausalLM(Phi3VPreTrainedModel):
|
| 1213 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1214 |
+
|
| 1215 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
|
| 1216 |
+
def __init__(self, config):
|
| 1217 |
+
super().__init__(config)
|
| 1218 |
+
self.model = Phi3VModel(config)
|
| 1219 |
+
self.vocab_size = config.vocab_size
|
| 1220 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1221 |
+
|
| 1222 |
+
# Initialize weights and apply final processing
|
| 1223 |
+
self.post_init()
|
| 1224 |
+
|
| 1225 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
| 1226 |
+
def get_input_embeddings(self):
|
| 1227 |
+
return self.model.embed_tokens
|
| 1228 |
+
|
| 1229 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
| 1230 |
+
def set_input_embeddings(self, value):
|
| 1231 |
+
self.model.embed_tokens = value
|
| 1232 |
+
|
| 1233 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
| 1234 |
+
def get_output_embeddings(self):
|
| 1235 |
+
return self.lm_head
|
| 1236 |
+
|
| 1237 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
| 1238 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1239 |
+
self.lm_head = new_embeddings
|
| 1240 |
+
|
| 1241 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
| 1242 |
+
def set_decoder(self, decoder):
|
| 1243 |
+
self.model = decoder
|
| 1244 |
+
|
| 1245 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
| 1246 |
+
def get_decoder(self):
|
| 1247 |
+
return self.model
|
| 1248 |
+
|
| 1249 |
+
# Ignore copy
|
| 1250 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
| 1251 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1252 |
+
def forward(
|
| 1253 |
+
self,
|
| 1254 |
+
input_ids: torch.LongTensor = None,
|
| 1255 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1256 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1257 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1258 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1259 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1260 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 1261 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1262 |
+
use_cache: Optional[bool] = None,
|
| 1263 |
+
output_attentions: Optional[bool] = None,
|
| 1264 |
+
output_hidden_states: Optional[bool] = None,
|
| 1265 |
+
return_dict: Optional[bool] = None,
|
| 1266 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1267 |
+
r"""
|
| 1268 |
+
Args:
|
| 1269 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1270 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1271 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1272 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1273 |
+
|
| 1274 |
+
Returns:
|
| 1275 |
+
|
| 1276 |
+
Example:
|
| 1277 |
+
|
| 1278 |
+
```python
|
| 1279 |
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
| 1280 |
+
|
| 1281 |
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
| 1282 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
| 1283 |
+
|
| 1284 |
+
>>> prompt = "This is an example script ."
|
| 1285 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1286 |
+
|
| 1287 |
+
>>> # Generate
|
| 1288 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1289 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1290 |
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
| 1291 |
+
```"""
|
| 1292 |
+
|
| 1293 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1294 |
+
output_hidden_states = (
|
| 1295 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1296 |
+
)
|
| 1297 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1298 |
+
|
| 1299 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1300 |
+
outputs = self.model(
|
| 1301 |
+
input_ids=input_ids,
|
| 1302 |
+
attention_mask=attention_mask,
|
| 1303 |
+
position_ids=position_ids,
|
| 1304 |
+
past_key_values=past_key_values,
|
| 1305 |
+
inputs_embeds=inputs_embeds,
|
| 1306 |
+
pixel_values=pixel_values,
|
| 1307 |
+
image_sizes=image_sizes,
|
| 1308 |
+
use_cache=use_cache,
|
| 1309 |
+
output_attentions=output_attentions,
|
| 1310 |
+
output_hidden_states=output_hidden_states,
|
| 1311 |
+
return_dict=return_dict,
|
| 1312 |
+
)
|
| 1313 |
+
|
| 1314 |
+
hidden_states = outputs[0]
|
| 1315 |
+
logits = self.lm_head(hidden_states)
|
| 1316 |
+
logits = logits.float()
|
| 1317 |
+
|
| 1318 |
+
loss = None
|
| 1319 |
+
if labels is not None:
|
| 1320 |
+
# Shift so that tokens < n predict n
|
| 1321 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1322 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1323 |
+
# Flatten the tokens
|
| 1324 |
+
loss_fct = CrossEntropyLoss()
|
| 1325 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1326 |
+
shift_labels = shift_labels.view(-1)
|
| 1327 |
+
# Enable model parallelism
|
| 1328 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1329 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1330 |
+
|
| 1331 |
+
if not return_dict:
|
| 1332 |
+
output = (logits,) + outputs[1:]
|
| 1333 |
+
return (loss,) + output if loss is not None else output
|
| 1334 |
+
|
| 1335 |
+
return CausalLMOutputWithPast(
|
| 1336 |
+
loss=loss,
|
| 1337 |
+
logits=logits,
|
| 1338 |
+
past_key_values=outputs.past_key_values,
|
| 1339 |
+
hidden_states=outputs.hidden_states,
|
| 1340 |
+
attentions=outputs.attentions,
|
| 1341 |
+
)
|
| 1342 |
+
|
| 1343 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
| 1344 |
+
def prepare_inputs_for_generation(
|
| 1345 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs
|
| 1346 |
+
):
|
| 1347 |
+
if past_key_values is not None:
|
| 1348 |
+
if isinstance(past_key_values, Cache):
|
| 1349 |
+
cache_length = past_key_values.get_seq_length()
|
| 1350 |
+
past_length = past_key_values.seen_tokens
|
| 1351 |
+
max_cache_length = past_key_values.get_max_length()
|
| 1352 |
+
else:
|
| 1353 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1354 |
+
max_cache_length = None
|
| 1355 |
+
|
| 1356 |
+
# Keep only the unprocessed tokens:
|
| 1357 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1358 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 1359 |
+
# input)
|
| 1360 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1361 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1362 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1363 |
+
# input_ids based on the past_length.
|
| 1364 |
+
elif past_length < input_ids.shape[1]:
|
| 1365 |
+
input_ids = input_ids[:, past_length:]
|
| 1366 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1367 |
+
|
| 1368 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1369 |
+
if (
|
| 1370 |
+
max_cache_length is not None
|
| 1371 |
+
and attention_mask is not None
|
| 1372 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1373 |
+
):
|
| 1374 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1375 |
+
|
| 1376 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1377 |
+
if attention_mask is not None and position_ids is None:
|
| 1378 |
+
# create position_ids on the fly for batch generation
|
| 1379 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1380 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1381 |
+
if past_key_values:
|
| 1382 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1383 |
+
|
| 1384 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1385 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1386 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1387 |
+
else:
|
| 1388 |
+
model_inputs = {"input_ids": input_ids}
|
| 1389 |
+
|
| 1390 |
+
model_inputs.update(
|
| 1391 |
+
{
|
| 1392 |
+
"position_ids": position_ids,
|
| 1393 |
+
"past_key_values": past_key_values,
|
| 1394 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1395 |
+
"attention_mask": attention_mask,
|
| 1396 |
+
"pixel_values": pixel_values,
|
| 1397 |
+
"image_sizes": image_sizes,
|
| 1398 |
+
}
|
| 1399 |
+
)
|
| 1400 |
+
return model_inputs
|
| 1401 |
+
|
| 1402 |
+
@staticmethod
|
| 1403 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
| 1404 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1405 |
+
reordered_past = ()
|
| 1406 |
+
for layer_past in past_key_values:
|
| 1407 |
+
reordered_past += (
|
| 1408 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1409 |
+
)
|
| 1410 |
+
return reordered_past
|
| 1411 |
+
|
| 1412 |
+
|
| 1413 |
+
@add_start_docstrings(
|
| 1414 |
+
"""
|
| 1415 |
+
The [`Phi3VModel`] with a sequence classification head on top (linear layer).
|
| 1416 |
+
|
| 1417 |
+
[`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1418 |
+
(e.g. GPT-2) do.
|
| 1419 |
+
|
| 1420 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1421 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1422 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1423 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1424 |
+
each row of the batch).
|
| 1425 |
+
""",
|
| 1426 |
+
PHI3V_START_DOCSTRING,
|
| 1427 |
+
)
|
| 1428 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
|
| 1429 |
+
class Phi3VForSequenceClassification(Phi3VPreTrainedModel):
|
| 1430 |
+
def __init__(self, config):
|
| 1431 |
+
super().__init__(config)
|
| 1432 |
+
self.num_labels = config.num_labels
|
| 1433 |
+
self.model = Phi3VModel(config)
|
| 1434 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1435 |
+
|
| 1436 |
+
# Initialize weights and apply final processing
|
| 1437 |
+
self.post_init()
|
| 1438 |
+
|
| 1439 |
+
def get_input_embeddings(self):
|
| 1440 |
+
return self.model.embed_tokens
|
| 1441 |
+
|
| 1442 |
+
def set_input_embeddings(self, value):
|
| 1443 |
+
self.model.embed_tokens = value
|
| 1444 |
+
|
| 1445 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
| 1446 |
+
def forward(
|
| 1447 |
+
self,
|
| 1448 |
+
input_ids: torch.LongTensor = None,
|
| 1449 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1450 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1451 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1452 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1453 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1454 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 1455 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1456 |
+
use_cache: Optional[bool] = None,
|
| 1457 |
+
output_attentions: Optional[bool] = None,
|
| 1458 |
+
output_hidden_states: Optional[bool] = None,
|
| 1459 |
+
return_dict: Optional[bool] = None,
|
| 1460 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1461 |
+
r"""
|
| 1462 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1463 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1464 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1465 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1466 |
+
"""
|
| 1467 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1468 |
+
|
| 1469 |
+
model_outputs = self.model(
|
| 1470 |
+
input_ids,
|
| 1471 |
+
attention_mask=attention_mask,
|
| 1472 |
+
position_ids=position_ids,
|
| 1473 |
+
past_key_values=past_key_values,
|
| 1474 |
+
inputs_embeds=inputs_embeds,
|
| 1475 |
+
pixel_values=pixel_values,
|
| 1476 |
+
image_sizes=image_sizes,
|
| 1477 |
+
use_cache=use_cache,
|
| 1478 |
+
output_attentions=output_attentions,
|
| 1479 |
+
output_hidden_states=output_hidden_states,
|
| 1480 |
+
return_dict=return_dict,
|
| 1481 |
+
)
|
| 1482 |
+
hidden_states = model_outputs[0]
|
| 1483 |
+
logits = self.score(hidden_states)
|
| 1484 |
+
|
| 1485 |
+
if input_ids is not None:
|
| 1486 |
+
batch_size = input_ids.shape[0]
|
| 1487 |
+
else:
|
| 1488 |
+
batch_size = inputs_embeds.shape[0]
|
| 1489 |
+
|
| 1490 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1491 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1492 |
+
if self.config.pad_token_id is None:
|
| 1493 |
+
sequence_lengths = -1
|
| 1494 |
+
else:
|
| 1495 |
+
if input_ids is not None:
|
| 1496 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1497 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1498 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1499 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1500 |
+
else:
|
| 1501 |
+
sequence_lengths = -1
|
| 1502 |
+
|
| 1503 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1504 |
+
|
| 1505 |
+
loss = None
|
| 1506 |
+
if labels is not None:
|
| 1507 |
+
labels = labels.to(logits.device)
|
| 1508 |
+
if self.config.problem_type is None:
|
| 1509 |
+
if self.num_labels == 1:
|
| 1510 |
+
self.config.problem_type = "regression"
|
| 1511 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1512 |
+
self.config.problem_type = "single_label_classification"
|
| 1513 |
+
else:
|
| 1514 |
+
self.config.problem_type = "multi_label_classification"
|
| 1515 |
+
|
| 1516 |
+
if self.config.problem_type == "regression":
|
| 1517 |
+
loss_fct = MSELoss()
|
| 1518 |
+
if self.num_labels == 1:
|
| 1519 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1520 |
+
else:
|
| 1521 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1522 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1523 |
+
loss_fct = CrossEntropyLoss()
|
| 1524 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1525 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1526 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1527 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1528 |
+
if not return_dict:
|
| 1529 |
+
output = (pooled_logits,) + model_outputs[1:]
|
| 1530 |
+
return ((loss,) + output) if loss is not None else output
|
| 1531 |
+
|
| 1532 |
+
return SequenceClassifierOutputWithPast(
|
| 1533 |
+
loss=loss,
|
| 1534 |
+
logits=pooled_logits,
|
| 1535 |
+
past_key_values=model_outputs.past_key_values,
|
| 1536 |
+
hidden_states=model_outputs.hidden_states,
|
| 1537 |
+
attentions=model_outputs.attentions,
|
| 1538 |
+
)
|
| 1539 |
+
|
| 1540 |
+
|
| 1541 |
+
@add_start_docstrings(
|
| 1542 |
+
"""
|
| 1543 |
+
[`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1544 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1545 |
+
""",
|
| 1546 |
+
PHI3V_START_DOCSTRING,
|
| 1547 |
+
)
|
| 1548 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
|
| 1549 |
+
class Phi3VForTokenClassification(Phi3VPreTrainedModel):
|
| 1550 |
+
def __init__(self, config: Phi3VConfig):
|
| 1551 |
+
super().__init__(config)
|
| 1552 |
+
self.num_labels = config.num_labels
|
| 1553 |
+
|
| 1554 |
+
self.model = Phi3VModel(config)
|
| 1555 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
| 1556 |
+
classifier_dropout = config.classifier_dropout
|
| 1557 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
| 1558 |
+
classifier_dropout = config.hidden_dropout
|
| 1559 |
+
else:
|
| 1560 |
+
classifier_dropout = 0.1
|
| 1561 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1562 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1563 |
+
|
| 1564 |
+
# Initialize weights and apply final processing
|
| 1565 |
+
self.post_init()
|
| 1566 |
+
|
| 1567 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
| 1568 |
+
@add_code_sample_docstrings(
|
| 1569 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1570 |
+
output_type=TokenClassifierOutput,
|
| 1571 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1572 |
+
)
|
| 1573 |
+
def forward(
|
| 1574 |
+
self,
|
| 1575 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1576 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 1577 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1578 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1579 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1580 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 1581 |
+
labels: Optional[torch.Tensor] = None,
|
| 1582 |
+
use_cache: Optional[bool] = None,
|
| 1583 |
+
output_attentions: Optional[bool] = None,
|
| 1584 |
+
output_hidden_states: Optional[bool] = None,
|
| 1585 |
+
return_dict: Optional[bool] = None,
|
| 1586 |
+
**deprecated_arguments,
|
| 1587 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1588 |
+
r"""
|
| 1589 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1590 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1591 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1592 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1593 |
+
"""
|
| 1594 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1595 |
+
|
| 1596 |
+
model_outputs = self.model(
|
| 1597 |
+
input_ids,
|
| 1598 |
+
past_key_values=past_key_values,
|
| 1599 |
+
attention_mask=attention_mask,
|
| 1600 |
+
inputs_embeds=inputs_embeds,
|
| 1601 |
+
pixel_values=pixel_values,
|
| 1602 |
+
image_sizes=image_sizes,
|
| 1603 |
+
use_cache=use_cache,
|
| 1604 |
+
output_attentions=output_attentions,
|
| 1605 |
+
output_hidden_states=output_hidden_states,
|
| 1606 |
+
return_dict=return_dict,
|
| 1607 |
+
)
|
| 1608 |
+
|
| 1609 |
+
hidden_states = model_outputs[0]
|
| 1610 |
+
hidden_states = self.dropout(hidden_states)
|
| 1611 |
+
logits = self.classifier(hidden_states)
|
| 1612 |
+
|
| 1613 |
+
loss = None
|
| 1614 |
+
if labels is not None:
|
| 1615 |
+
# move labels to correct device to enable model parallelism
|
| 1616 |
+
labels = labels.to(logits.device)
|
| 1617 |
+
batch_size, seq_length = labels.shape
|
| 1618 |
+
loss_fct = CrossEntropyLoss()
|
| 1619 |
+
loss = loss_fct(
|
| 1620 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
| 1621 |
+
)
|
| 1622 |
+
|
| 1623 |
+
if not return_dict:
|
| 1624 |
+
output = (logits,) + model_outputs[2:]
|
| 1625 |
+
return ((loss,) + output) if loss is not None else output
|
| 1626 |
+
|
| 1627 |
+
return TokenClassifierOutput(
|
| 1628 |
+
loss=loss,
|
| 1629 |
+
logits=logits,
|
| 1630 |
+
hidden_states=model_outputs.hidden_states,
|
| 1631 |
+
attentions=model_outputs.attentions,
|
| 1632 |
+
)
|
moe_phi3_v.py
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tqdm.notebook import tqdm
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import copy
|
| 5 |
+
|
| 6 |
+
from .modeling_phi3_v import Phi3VForCausalLM, Phi3MLP
|
| 7 |
+
from .configuration_phi3_v import Phi3VConfig
|
| 8 |
+
|
| 9 |
+
from torch.optim import Adam
|
| 10 |
+
from typing import Optional, Tuple
|
| 11 |
+
|
| 12 |
+
from transformers import (
|
| 13 |
+
PreTrainedModel,
|
| 14 |
+
AutoConfig,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Define the Gating Layer
|
| 19 |
+
class GatingLayer(nn.Module):
|
| 20 |
+
def __init__(self, input_dim, num_experts, k, layer_dtype=torch.float16):
|
| 21 |
+
super(GatingLayer, self).__init__()
|
| 22 |
+
self.num_experts = num_experts
|
| 23 |
+
self.k = k
|
| 24 |
+
self.gate = nn.Linear(input_dim, num_experts).to(dtype=layer_dtype)
|
| 25 |
+
|
| 26 |
+
def forward(self, x):
|
| 27 |
+
gate_scores = torch.softmax(self.gate(x), dim=-1)
|
| 28 |
+
topk_values, topk_indices = torch.topk(gate_scores, self.k, dim=-1)
|
| 29 |
+
return topk_values, topk_indices
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class MoE(nn.Module):
|
| 33 |
+
def __init__(self, input_dim, experts, gating_layer, config):
|
| 34 |
+
super(MoE, self).__init__()
|
| 35 |
+
self.experts = nn.ModuleList(experts)
|
| 36 |
+
self.gating_layer = gating_layer
|
| 37 |
+
self.output_dim = config.hidden_size
|
| 38 |
+
|
| 39 |
+
def forward(self, x):
|
| 40 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 41 |
+
gate_values, gate_indices = self.gating_layer(x)
|
| 42 |
+
batch_size, seq_length, _ = x.size()
|
| 43 |
+
|
| 44 |
+
moe_output = torch.zeros(
|
| 45 |
+
batch_size,
|
| 46 |
+
seq_length,
|
| 47 |
+
self.output_dim,
|
| 48 |
+
dtype=self.gating_layer.gate.weight.dtype,
|
| 49 |
+
device=x.device,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
for i in range(self.gating_layer.k):
|
| 53 |
+
expert_outputs = []
|
| 54 |
+
for b in range(batch_size):
|
| 55 |
+
for s in range(seq_length):
|
| 56 |
+
expert_index = gate_indices[b, s, i]
|
| 57 |
+
expert = self.experts[expert_index]
|
| 58 |
+
up_states = expert.gate_up_proj(x[b, s].unsqueeze(0))
|
| 59 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
| 60 |
+
up_states = up_states * expert.activation_fn(gate)
|
| 61 |
+
expert_output = expert.down_proj(up_states)
|
| 62 |
+
expert_outputs.append(expert_output)
|
| 63 |
+
|
| 64 |
+
expert_outputs = torch.stack(expert_outputs, dim=0).view(
|
| 65 |
+
batch_size, seq_length, -1
|
| 66 |
+
)
|
| 67 |
+
gate_values_i = (
|
| 68 |
+
gate_values[:, :, i].unsqueeze(-1).expand_as(expert_outputs)
|
| 69 |
+
)
|
| 70 |
+
moe_output += gate_values_i * expert_outputs
|
| 71 |
+
|
| 72 |
+
return moe_output
|
| 73 |
+
|
| 74 |
+
# Define the ModifiedPhi3DecoderLayer Layer
|
| 75 |
+
class ModifiedPhi3DecoderLayer(nn.Module):
|
| 76 |
+
def __init__(self, original_layer, moe_layer):
|
| 77 |
+
super(ModifiedPhi3DecoderLayer, self).__init__()
|
| 78 |
+
self.self_attn = original_layer.self_attn
|
| 79 |
+
self.mlp = moe_layer
|
| 80 |
+
self.input_layernorm = original_layer.input_layernorm
|
| 81 |
+
self.resid_attn_dropout = original_layer.resid_attn_dropout
|
| 82 |
+
self.resid_mlp_dropout = original_layer.resid_mlp_dropout
|
| 83 |
+
self.post_attention_layernorm = original_layer.post_attention_layernorm
|
| 84 |
+
|
| 85 |
+
def forward(
|
| 86 |
+
self,
|
| 87 |
+
hidden_states: torch.Tensor,
|
| 88 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 89 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 90 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 91 |
+
output_attentions: Optional[bool] = False,
|
| 92 |
+
use_cache: Optional[bool] = False,
|
| 93 |
+
) -> Tuple[
|
| 94 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 95 |
+
]:
|
| 96 |
+
residual = hidden_states
|
| 97 |
+
|
| 98 |
+
with torch.autocast(device_type="cuda", dtype=hidden_states.dtype):
|
| 99 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 100 |
+
|
| 101 |
+
# Self Attention
|
| 102 |
+
attn_outputs = self.self_attn(
|
| 103 |
+
hidden_states=hidden_states,
|
| 104 |
+
attention_mask=attention_mask,
|
| 105 |
+
position_ids=position_ids,
|
| 106 |
+
past_key_value=past_key_value,
|
| 107 |
+
output_attentions=output_attentions,
|
| 108 |
+
use_cache=use_cache,
|
| 109 |
+
)
|
| 110 |
+
attn_output = attn_outputs[0]
|
| 111 |
+
hidden_states = residual + self.resid_attn_dropout(attn_output)
|
| 112 |
+
|
| 113 |
+
residual = hidden_states
|
| 114 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 115 |
+
hidden_states = self.mlp(hidden_states)
|
| 116 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
| 117 |
+
|
| 118 |
+
outputs = (hidden_states,)
|
| 119 |
+
|
| 120 |
+
if output_attentions:
|
| 121 |
+
outputs += (attn_outputs[1],)
|
| 122 |
+
|
| 123 |
+
if use_cache:
|
| 124 |
+
outputs += (attn_outputs[2],)
|
| 125 |
+
|
| 126 |
+
return outputs
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
#Define Phi3VForCausalLMMoEConfig
|
| 130 |
+
class Phi3VForCausalLMMoEConfig(Phi3VConfig):
|
| 131 |
+
model_type = "phi3_v_moe"
|
| 132 |
+
|
| 133 |
+
def __init__(self, config=None, k=1, num_expert_models=2, **kwargs):
|
| 134 |
+
if config is not None:
|
| 135 |
+
kwargs.update(config.to_dict())
|
| 136 |
+
super().__init__(**kwargs)
|
| 137 |
+
self.k = k
|
| 138 |
+
self.num_expert_models = num_expert_models
|
| 139 |
+
self.architectures = "Phi3VForCausalLMMoE"
|
| 140 |
+
self.auto_map = {
|
| 141 |
+
"AutoConfig": "moe_phi3_v.Phi3VForCausalLMMoEConfig",
|
| 142 |
+
"AutoModelForCausalLM": "moe_phi3_v.Phi3VForCausalLMMoE",
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
#Define MoE Model
|
| 146 |
+
class Phi3VForCausalLMMoE(Phi3VForCausalLM):
|
| 147 |
+
config_class = Phi3VForCausalLMMoEConfig
|
| 148 |
+
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
config,
|
| 152 |
+
base_model=None,
|
| 153 |
+
expert_models=None,
|
| 154 |
+
layer_dtype=torch.bfloat16,
|
| 155 |
+
**kwargs,
|
| 156 |
+
):
|
| 157 |
+
super().__init__(config)
|
| 158 |
+
|
| 159 |
+
self.layer_dtype = layer_dtype
|
| 160 |
+
self.custom_device = torch.device(
|
| 161 |
+
"cuda" if torch.cuda.is_available() else "cpu"
|
| 162 |
+
)
|
| 163 |
+
k = self.config.k
|
| 164 |
+
self.num_layers = len(base_model.model.layers) if base_model else 0
|
| 165 |
+
|
| 166 |
+
self.config.auto_map = {
|
| 167 |
+
"AutoConfig": "moe_phi3_v.Phi3VForCausalLMMoEConfig",
|
| 168 |
+
"AutoModelForCausalLM": "moe_phi3_v.Phi3VForCausalLMMoE",
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
self.model = base_model or Phi3VForCausalLM(
|
| 172 |
+
self.config
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
if base_model and expert_models:
|
| 176 |
+
self.num_expert_models = len(expert_models)
|
| 177 |
+
self._init_moe_layers(base_model, expert_models, k, layer_dtype)
|
| 178 |
+
else:
|
| 179 |
+
print(
|
| 180 |
+
"Init function called and generating dummy experts: k=",
|
| 181 |
+
k,
|
| 182 |
+
"experts=",
|
| 183 |
+
self.config.num_expert_models,
|
| 184 |
+
)
|
| 185 |
+
num_dummy_experts = self.config.num_expert_models
|
| 186 |
+
self._init_moe_layers_with_dummy_experts(
|
| 187 |
+
self.model, k, num_dummy_experts, layer_dtype
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
self.config.model_type = "phi3_v_moe"
|
| 191 |
+
|
| 192 |
+
def _init_base_model(self):
|
| 193 |
+
return PreTrainedModel(self.config)
|
| 194 |
+
|
| 195 |
+
def _init_moe_layers(self, base_model, expert_models, k, layer_dtype):
|
| 196 |
+
self.num_layers = len(base_model.model.layers)
|
| 197 |
+
for i in tqdm(range(self.num_layers)):
|
| 198 |
+
experts = []
|
| 199 |
+
for expert_model in expert_models:
|
| 200 |
+
expert = copy.deepcopy(expert_model.model.layers[i].mlp).to(
|
| 201 |
+
dtype=layer_dtype
|
| 202 |
+
)
|
| 203 |
+
experts.append(expert)
|
| 204 |
+
|
| 205 |
+
gating_layer = GatingLayer(
|
| 206 |
+
input_dim=self.config.hidden_size,
|
| 207 |
+
num_experts=len(experts),
|
| 208 |
+
k=k,
|
| 209 |
+
layer_dtype=layer_dtype,
|
| 210 |
+
)
|
| 211 |
+
moe_layer = MoE(
|
| 212 |
+
input_dim=self.config.hidden_size,
|
| 213 |
+
experts=experts,
|
| 214 |
+
gating_layer=gating_layer,
|
| 215 |
+
config=self.config,
|
| 216 |
+
).to(dtype=layer_dtype)
|
| 217 |
+
|
| 218 |
+
self.model.model.layers[i] = ModifiedPhi3DecoderLayer(
|
| 219 |
+
self.model.model.layers[i], moe_layer
|
| 220 |
+
).to(dtype=layer_dtype)
|
| 221 |
+
|
| 222 |
+
def _init_moe_layers_with_dummy_experts(
|
| 223 |
+
self, base_model, k, num_dummy_experts, layer_dtype
|
| 224 |
+
):
|
| 225 |
+
self.num_layers = len(base_model.model.layers)
|
| 226 |
+
|
| 227 |
+
for i in tqdm(range(self.num_layers)):
|
| 228 |
+
experts = []
|
| 229 |
+
for _ in range(num_dummy_experts):
|
| 230 |
+
dummy_expert = Phi3MLP(self.config).to(dtype=layer_dtype)
|
| 231 |
+
experts.append(dummy_expert)
|
| 232 |
+
|
| 233 |
+
gating_layer = GatingLayer(
|
| 234 |
+
input_dim=self.config.hidden_size,
|
| 235 |
+
num_experts=len(experts),
|
| 236 |
+
k=k,
|
| 237 |
+
layer_dtype=layer_dtype,
|
| 238 |
+
)
|
| 239 |
+
moe_layer = MoE(
|
| 240 |
+
input_dim=self.config.hidden_size,
|
| 241 |
+
experts=experts,
|
| 242 |
+
gating_layer=gating_layer,
|
| 243 |
+
config=self.config,
|
| 244 |
+
).to(dtype=layer_dtype)
|
| 245 |
+
|
| 246 |
+
self.model.model.layers[i] = ModifiedPhi3DecoderLayer(
|
| 247 |
+
self.model.model.layers[i], moe_layer
|
| 248 |
+
).to(dtype=layer_dtype)
|
| 249 |
+
|
| 250 |
+
def forward(self, *args, **kwargs):
|
| 251 |
+
return self.model.forward(*args, **kwargs)
|
| 252 |
+
|
| 253 |
+
def generate(self, *args, **kwargs):
|
| 254 |
+
return self.model.generate(*args, **kwargs)
|
| 255 |
+
|
| 256 |
+
@classmethod
|
| 257 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 258 |
+
# Initialize the model using the superclass method
|
| 259 |
+
model = super(Phi3VForCausalLMMoE, cls).from_pretrained(
|
| 260 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
return model
|
| 264 |
+
|
| 265 |
+
def preselect_gating_layer_params(self, processor, prompts_per_expert, epochs = 1000):
|
| 266 |
+
self.to(self.custom_device)
|
| 267 |
+
self.eval()
|
| 268 |
+
|
| 269 |
+
all_gating_layer_params = []
|
| 270 |
+
|
| 271 |
+
for layer_idx in tqdm(range(self.num_layers)):
|
| 272 |
+
print(f"Training gating layer parameters for layer {layer_idx}")
|
| 273 |
+
|
| 274 |
+
expert_embeddings = []
|
| 275 |
+
for prompts in prompts_per_expert:
|
| 276 |
+
embeddings = []
|
| 277 |
+
for prompt in prompts:
|
| 278 |
+
inputs = processor(
|
| 279 |
+
text=prompt["text"], images=prompt["image"], return_tensors="pt"
|
| 280 |
+
).to(self.custom_device)
|
| 281 |
+
with torch.no_grad():
|
| 282 |
+
if (
|
| 283 |
+
inputs.pixel_values is not None
|
| 284 |
+
and inputs.image_sizes is not None
|
| 285 |
+
):
|
| 286 |
+
outputs = self.model.model.vision_embed_tokens(
|
| 287 |
+
inputs.input_ids,
|
| 288 |
+
pixel_values=inputs.pixel_values,
|
| 289 |
+
image_sizes=inputs.image_sizes,
|
| 290 |
+
).mean(dim=1)
|
| 291 |
+
else:
|
| 292 |
+
outputs = self.model.model.embed_tokens(
|
| 293 |
+
inputs.input_ids
|
| 294 |
+
).mean(dim=1)
|
| 295 |
+
embeddings.append(outputs)
|
| 296 |
+
expert_embeddings.append(torch.stack(embeddings).mean(dim=0))
|
| 297 |
+
expert_embeddings = torch.stack(expert_embeddings).to(self.layer_dtype)
|
| 298 |
+
|
| 299 |
+
class SimpleGatingLayer(nn.Module):
|
| 300 |
+
def __init__(self, input_dim, num_experts, layer_dtype=torch.float16):
|
| 301 |
+
super(SimpleGatingLayer, self).__init__()
|
| 302 |
+
self.gate = nn.Linear(input_dim, num_experts).to(dtype=layer_dtype)
|
| 303 |
+
|
| 304 |
+
def forward(self, x):
|
| 305 |
+
return self.gate(x)
|
| 306 |
+
|
| 307 |
+
input_dim = expert_embeddings.shape[2]
|
| 308 |
+
num_experts = len(prompts_per_expert)
|
| 309 |
+
gating_layer = SimpleGatingLayer(
|
| 310 |
+
input_dim, num_experts, layer_dtype=self.layer_dtype
|
| 311 |
+
).to(self.custom_device)
|
| 312 |
+
|
| 313 |
+
criterion = nn.CrossEntropyLoss()
|
| 314 |
+
optimizer = Adam(gating_layer.parameters(), lr=1e-3)
|
| 315 |
+
|
| 316 |
+
for epoch in tqdm(range(epochs), desc=f"Training Gating Layer {layer_idx}"):
|
| 317 |
+
optimizer.zero_grad()
|
| 318 |
+
expert_embeddings_reshaped = expert_embeddings.view(
|
| 319 |
+
num_experts, input_dim
|
| 320 |
+
)
|
| 321 |
+
outputs = gating_layer(expert_embeddings_reshaped)
|
| 322 |
+
labels = torch.arange(num_experts).to(self.custom_device)
|
| 323 |
+
loss = criterion(outputs, labels)
|
| 324 |
+
loss.backward()
|
| 325 |
+
optimizer.step()
|
| 326 |
+
|
| 327 |
+
all_gating_layer_params.append(gating_layer.state_dict())
|
| 328 |
+
|
| 329 |
+
return all_gating_layer_params
|
| 330 |
+
|
| 331 |
+
def set_gating_layer_params(self, gating_layer_params):
|
| 332 |
+
for layer_idx, params in enumerate(gating_layer_params):
|
| 333 |
+
self.model.model.layers[layer_idx].mlp.gating_layer.load_state_dict(params)
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def freeze_except_gating_layers(model):
|
| 337 |
+
# freeze_except_gating_layers(moe_model)
|
| 338 |
+
|
| 339 |
+
# Freeze all parameters
|
| 340 |
+
for param in model.parameters():
|
| 341 |
+
param.requires_grad = False
|
| 342 |
+
|
| 343 |
+
# Unfreeze gating layer parameters
|
| 344 |
+
for layer in model.model.model.layers:
|
| 345 |
+
for name, param in layer.mlp.gating_layer.named_parameters():
|
| 346 |
+
param.requires_grad = True
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def un_freeze_all(model):
|
| 350 |
+
# freeze_except_gating_layers(moe_model)
|
| 351 |
+
|
| 352 |
+
# Freeze all parameters
|
| 353 |
+
for param in model.parameters():
|
| 354 |
+
param.requires_grad = True
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
from transformers import AutoConfig
|
| 358 |
+
|
| 359 |
+
AutoConfig.register("phi3_v_moe", Phi3VForCausalLMMoEConfig)
|
| 360 |
+
|
| 361 |
+
from transformers.models.auto.modeling_auto import MODEL_MAPPING
|
| 362 |
+
|
| 363 |
+
MODEL_MAPPING.update({"phi3_v_moe": Phi3VForCausalLMMoE})
|
processing_phi3_v.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
Processor class for Phi3-V.
|
| 18 |
+
"""
|
| 19 |
+
import re
|
| 20 |
+
from typing import List, Optional, Union
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
|
| 24 |
+
import transformers
|
| 25 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 26 |
+
from transformers.image_utils import ImageInput
|
| 27 |
+
from transformers.processing_utils import ProcessorMixin
|
| 28 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
| 29 |
+
from transformers.utils import TensorType
|
| 30 |
+
from .image_processing_phi3_v import Phi3VImageProcessor
|
| 31 |
+
transformers.Phi3VImageProcessor = Phi3VImageProcessor
|
| 32 |
+
|
| 33 |
+
class Phi3VProcessor(ProcessorMixin):
|
| 34 |
+
r"""
|
| 35 |
+
Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
|
| 36 |
+
|
| 37 |
+
[`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
| 38 |
+
[`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
image_processor ([`Phi3VImageProcessor`], *optional*):
|
| 42 |
+
The image processor is a required input.
|
| 43 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
| 44 |
+
The tokenizer is a required input.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
attributes = ["image_processor", "tokenizer"]
|
| 48 |
+
image_processor_class = "Phi3VImageProcessor"
|
| 49 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
| 50 |
+
special_image_token = "<|image|>"
|
| 51 |
+
|
| 52 |
+
def __init__(self, image_processor, tokenizer):
|
| 53 |
+
self.image_processor = image_processor
|
| 54 |
+
self.tokenizer = tokenizer
|
| 55 |
+
self.num_img_tokens = image_processor.num_img_tokens
|
| 56 |
+
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
|
| 57 |
+
|
| 58 |
+
def __call__(
|
| 59 |
+
self,
|
| 60 |
+
text: Union[TextInput, List[TextInput]],
|
| 61 |
+
images: ImageInput = None,
|
| 62 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 63 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 64 |
+
max_length=None,
|
| 65 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 66 |
+
) -> BatchFeature:
|
| 67 |
+
"""
|
| 68 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 69 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 70 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 71 |
+
Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 72 |
+
of the above two methods for more information.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 76 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 77 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 78 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 79 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 80 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 81 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 82 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
| 83 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 84 |
+
index) among:
|
| 85 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 86 |
+
sequence if provided).
|
| 87 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 88 |
+
acceptable input length for the model if that argument is not provided.
|
| 89 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 90 |
+
lengths).
|
| 91 |
+
max_length (`int`, *optional*):
|
| 92 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 93 |
+
truncation (`bool`, *optional*):
|
| 94 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
| 95 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 96 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 97 |
+
|
| 98 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 99 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 100 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 101 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 105 |
+
|
| 106 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 107 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 108 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 109 |
+
`None`).
|
| 110 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 111 |
+
"""
|
| 112 |
+
if images is not None:
|
| 113 |
+
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
| 114 |
+
else:
|
| 115 |
+
image_inputs = {}
|
| 116 |
+
inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
|
| 117 |
+
return inputs
|
| 118 |
+
|
| 119 |
+
def calc_num_image_tokens(self, images: ImageInput):
|
| 120 |
+
""" Calculate the number of image tokens for each image.
|
| 121 |
+
Args:
|
| 122 |
+
images (`ImageInput`):
|
| 123 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 124 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 125 |
+
"""
|
| 126 |
+
return self.image_processor.calc_num_image_tokens(images)
|
| 127 |
+
|
| 128 |
+
def calc_num_image_tokens_from_image_size(self, width, height):
|
| 129 |
+
""" Calculate the number of image token for an image with given width and height.
|
| 130 |
+
Args:
|
| 131 |
+
width (`int`):
|
| 132 |
+
Width of the image.
|
| 133 |
+
height (`int`):
|
| 134 |
+
Height of the image.
|
| 135 |
+
"""
|
| 136 |
+
return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def special_image_token_id(self):
|
| 141 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
| 142 |
+
|
| 143 |
+
def get_special_image_token_id(self):
|
| 144 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
| 145 |
+
|
| 146 |
+
def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
|
| 147 |
+
|
| 148 |
+
if not len(images):
|
| 149 |
+
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
|
| 150 |
+
return BatchFeature(data={**model_inputs})
|
| 151 |
+
|
| 152 |
+
pattern = r"<\|image_\d+\|>"
|
| 153 |
+
prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
|
| 154 |
+
|
| 155 |
+
if 'num_img_tokens' in images:
|
| 156 |
+
num_img_tokens = images['num_img_tokens']
|
| 157 |
+
else:
|
| 158 |
+
assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
|
| 159 |
+
num_crops = images['num_crops']
|
| 160 |
+
num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
|
| 161 |
+
|
| 162 |
+
images, image_sizes = images['pixel_values'], images['image_sizes']
|
| 163 |
+
|
| 164 |
+
# image_tags needs to start from 1 to n
|
| 165 |
+
image_tags = re.findall(pattern, texts)
|
| 166 |
+
# image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
|
| 167 |
+
# image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
|
| 168 |
+
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
|
| 169 |
+
unique_image_ids = sorted(list(set(image_ids)))
|
| 170 |
+
# image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
|
| 171 |
+
# check the condition
|
| 172 |
+
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
|
| 173 |
+
# total images must be the same as the number of image tags
|
| 174 |
+
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
|
| 175 |
+
|
| 176 |
+
image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
|
| 177 |
+
|
| 178 |
+
def insert_separator(X, sep_list):
|
| 179 |
+
if len(X) > len(sep_list):
|
| 180 |
+
sep_list.append([])
|
| 181 |
+
return [ele for sublist in zip(X, sep_list) for ele in sublist]
|
| 182 |
+
input_ids = []
|
| 183 |
+
offset = 0
|
| 184 |
+
for x in insert_separator(prompt_chunks, image_ids_pad):
|
| 185 |
+
input_ids.extend(x[offset:])
|
| 186 |
+
|
| 187 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
|
| 188 |
+
attention_mask = (input_ids > -1000000).to(torch.long)
|
| 189 |
+
|
| 190 |
+
return BatchFeature(data={"input_ids": input_ids,
|
| 191 |
+
"attention_mask": attention_mask,
|
| 192 |
+
"pixel_values": images,
|
| 193 |
+
"image_sizes": image_sizes})
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 197 |
+
def batch_decode(self, *args, **kwargs):
|
| 198 |
+
"""
|
| 199 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 200 |
+
refer to the docstring of this method for more information.
|
| 201 |
+
"""
|
| 202 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 203 |
+
|
| 204 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 205 |
+
def decode(self, *args, **kwargs):
|
| 206 |
+
"""
|
| 207 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 208 |
+
the docstring of this method for more information.
|
| 209 |
+
"""
|
| 210 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 211 |
+
|
| 212 |
+
@property
|
| 213 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 214 |
+
def model_input_names(self):
|
| 215 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 216 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 217 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|