Update README.md
Browse files
README.md
CHANGED
|
@@ -15,6 +15,81 @@ This model is based on work reported in https://doi.org/10.1002/advs.202306724.
|
|
| 15 |
|
| 16 |
This repository includes both, Hugging Face transformers and GGUF files (in different versions, the q5_K_M is recommended).
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
```
|
| 19 |
from llama_cpp import Llama
|
| 20 |
|
|
@@ -80,4 +155,4 @@ deltat=time.time() - start_time
|
|
| 80 |
print("--- %s seconds ---" % deltat)
|
| 81 |
toked=tokenizer(res)
|
| 82 |
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat)
|
| 83 |
-
```
|
|
|
|
| 15 |
|
| 16 |
This repository includes both, Hugging Face transformers and GGUF files (in different versions, the q5_K_M is recommended).
|
| 17 |
|
| 18 |
+
#### Hugging Face transformers files: Loading and inference
|
| 19 |
+
|
| 20 |
+
```
|
| 21 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 22 |
+
from accelerate import infer_auto_device_map
|
| 23 |
+
|
| 24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
+
model_name,
|
| 26 |
+
trust_remote_code=True,
|
| 27 |
+
device_map="auto", #device_map="cuda:0",
|
| 28 |
+
torch_dtype= torch.bfloat16,
|
| 29 |
+
# use_flash_attention_2=True,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 33 |
+
```
|
| 34 |
+
Chat template
|
| 35 |
+
```
|
| 36 |
+
messages = [
|
| 37 |
+
{"role": "system", "content": "You are a friendly materials scientist."},
|
| 38 |
+
{"role": "user", "content": "What is the strongest spider silk material?"},
|
| 39 |
+
{"role": "assistant", "content": "Sample response."},
|
| 40 |
+
]
|
| 41 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
'<|system|>\nYou are a friendly materials scientist.</s>\n<|user|>\nWhat is the strongest spider silk material?</s>\n<|assistant|>\nSample response.</s>\n<|assistant|>\n'
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
device='cuda'
|
| 48 |
+
def generate_response (text_input="Biological materials offer amazing possibilities, such as",
|
| 49 |
+
num_return_sequences=1,
|
| 50 |
+
temperature=1.,
|
| 51 |
+
max_new_tokens=127,
|
| 52 |
+
num_beams=1,
|
| 53 |
+
top_k = 50,
|
| 54 |
+
top_p =0.9,repetition_penalty=1.,eos_token_id=2,verbatim=False,
|
| 55 |
+
exponential_decay_length_penalty_fac=None,
|
| 56 |
+
):
|
| 57 |
+
|
| 58 |
+
inputs = tokenizer.encode(text_input, add_special_tokens =False, return_tensors ='pt')
|
| 59 |
+
if verbatim:
|
| 60 |
+
print ("Length of input, tokenized: ", inputs.shape, inputs)
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
outputs = model.generate(input_ids=inputs.to(device),
|
| 63 |
+
max_new_tokens=max_new_tokens,
|
| 64 |
+
temperature=temperature, #value used to modulate the next token probabilities.
|
| 65 |
+
num_beams=num_beams,
|
| 66 |
+
top_k = top_k,
|
| 67 |
+
top_p =top_p,
|
| 68 |
+
num_return_sequences = num_return_sequences, eos_token_id=eos_token_id,
|
| 69 |
+
do_sample =True,
|
| 70 |
+
repetition_penalty=repetition_penalty,
|
| 71 |
+
)
|
| 72 |
+
return tokenizer.batch_decode(outputs[:,inputs.shape[1]:].detach().cpu().numpy(), skip_special_tokens=True)
|
| 73 |
+
|
| 74 |
+
```
|
| 75 |
+
Then:
|
| 76 |
+
```
|
| 77 |
+
messages = [
|
| 78 |
+
{"role": "system", "content": "You are a friendly materials scientist."},
|
| 79 |
+
{"role": "user", "content": "What is the strongest spider silk material?"},
|
| 80 |
+
]
|
| 81 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 82 |
+
|
| 83 |
+
output_text=generate_response (text_input=prompt, eos_token_id=eos_token,
|
| 84 |
+
num_return_sequences=1, repetition_penalty=1.,
|
| 85 |
+
top_p=0.9, top_k=512,
|
| 86 |
+
temperature=0.1,max_new_tokens=512, verbatim=False,
|
| 87 |
+
)
|
| 88 |
+
print (output_text)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
#### GGUF files: Loading and inference
|
| 92 |
+
|
| 93 |
```
|
| 94 |
from llama_cpp import Llama
|
| 95 |
|
|
|
|
| 155 |
print("--- %s seconds ---" % deltat)
|
| 156 |
toked=tokenizer(res)
|
| 157 |
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat)
|
| 158 |
+
```
|