Add suggested inference code
Browse files
README.md
CHANGED
|
@@ -97,5 +97,102 @@ Krea realtime allows users to generate videos in a streaming fashion with ~1s ti
|
|
| 97 |
</table>
|
| 98 |
</div>
|
| 99 |
|
|
|
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
</table>
|
| 98 |
</div>
|
| 99 |
|
| 100 |
+
# Use it with our inference code
|
| 101 |
|
| 102 |
+
Set up
|
| 103 |
+
```bash
|
| 104 |
+
sudo apt install ffmpeg # install if you haven't already
|
| 105 |
+
git clone https://github.com/krea-ai/realtime-video
|
| 106 |
+
cd realtime-video
|
| 107 |
+
uv sync
|
| 108 |
+
uv pip install flash_attn --no-build-isolation
|
| 109 |
+
huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir-use-symlinks False --local-dir wan_models/Wan2.1-T2V-1.3B
|
| 110 |
+
huggingface-cli download krea/krea-realtime-video krea-realtime-video-14b.safetensors --local-dir-use-symlinks False --local-dir checkpoints/krea-realtime-video-14b.safetensors
|
| 111 |
+
```
|
| 112 |
|
| 113 |
+
Run
|
| 114 |
+
```bash
|
| 115 |
+
export MODEL_FOLDER=Wan-AI
|
| 116 |
+
export CUDA_VISIBLE_DEVICES=0 # pick the GPU you want to serve on
|
| 117 |
+
export DO_COMPILE=true
|
| 118 |
+
|
| 119 |
+
uvicorn release_server:app --host 0.0.0.0 --port 8000
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
And use the web app at http://localhost:8000/ in your browser
|
| 123 |
+
(for more advanced use-cases and custom pipeline check out our GitHub repository: https://github.com/krea-ai/realtime-video)
|
| 124 |
+
|
| 125 |
+
# Use it with 🧨 diffusers
|
| 126 |
+
|
| 127 |
+
Krea Realtime 14B can be used with the `diffusers` library utilizing the new Modular Diffusers structure (for now supporting text-to-video, video-to-video coming soon)
|
| 128 |
+
|
| 129 |
+
```bash
|
| 130 |
+
# Install diffusers from main
|
| 131 |
+
pip install git+github.com/huggingface/diffusers.git
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
```py
|
| 135 |
+
import torch
|
| 136 |
+
from collections import deque
|
| 137 |
+
from diffusers import ModularPipelineBlocks, FlowMatchEulerDiscreteScheduler
|
| 138 |
+
from diffusers.utils import export_to_video
|
| 139 |
+
from diffusers.modular_pipelines import PipelineState, WanModularPipeline
|
| 140 |
+
|
| 141 |
+
class WanRTStreamingPipeline(WanModularPipeline):
|
| 142 |
+
@property
|
| 143 |
+
def default_sample_height(self):
|
| 144 |
+
return 60
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def default_sample_width(self):
|
| 148 |
+
return 104
|
| 149 |
+
|
| 150 |
+
@property
|
| 151 |
+
def frame_seq_length(self):
|
| 152 |
+
return 1560
|
| 153 |
+
|
| 154 |
+
@property
|
| 155 |
+
def seq_length(self):
|
| 156 |
+
return 32760
|
| 157 |
+
|
| 158 |
+
@property
|
| 159 |
+
def kv_cache_num_frames(self):
|
| 160 |
+
return 3
|
| 161 |
+
|
| 162 |
+
@property
|
| 163 |
+
def frame_cache_len(self):
|
| 164 |
+
return 1 + (self.kv_cache_num_frames - 1) * 4
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
block_path = "krea/krea-realtime-video"
|
| 168 |
+
blocks = ModularPipelineBlocks.from_pretrained(block_path, trust_remote_code=True)
|
| 169 |
+
pipe = WanRTStreamingPipeline(blocks, block_path)
|
| 170 |
+
|
| 171 |
+
pipe.load_components(
|
| 172 |
+
trust_remote_code=True,
|
| 173 |
+
device_map="cuda",
|
| 174 |
+
torch_dtype={"default": torch.bfloat16, "vae": torch.float32},
|
| 175 |
+
)
|
| 176 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=5.0)
|
| 177 |
+
|
| 178 |
+
prompt = ["A cat sitting on a boat"]
|
| 179 |
+
|
| 180 |
+
num_frames_per_block = 3
|
| 181 |
+
num_blocks = 9
|
| 182 |
+
|
| 183 |
+
frames = []
|
| 184 |
+
state = PipelineState()
|
| 185 |
+
state.set("frame_cache_context", deque(maxlen=pipe.frame_cache_len))
|
| 186 |
+
for block_idx in range(num_blocks):
|
| 187 |
+
state = pipe(
|
| 188 |
+
state,
|
| 189 |
+
prompt=prompt,
|
| 190 |
+
num_inference_steps=6,
|
| 191 |
+
num_blocks=num_blocks,
|
| 192 |
+
num_frames_per_block=num_frames_per_block,
|
| 193 |
+
block_idx=block_idx,
|
| 194 |
+
)
|
| 195 |
+
frames.extend(state.values["videos"][0])
|
| 196 |
+
|
| 197 |
+
export_to_video(frames, "krt.mp4")
|
| 198 |
+
```
|