Update build
Browse files
build/torch-universal/triton_layer_norm/__init__.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
"""Triton layer normalization kernels
|
| 2 |
|
| 3 |
This kernel implements layers normalization using Triton. This kernel is from
|
| 4 |
the `flash-attention <https://github.com/Dao-AILab/flash-attention>`_ project.
|
|
|
|
| 1 |
+
"""Triton layer normalization kernels
|
| 2 |
|
| 3 |
This kernel implements layers normalization using Triton. This kernel is from
|
| 4 |
the `flash-attention <https://github.com/Dao-AILab/flash-attention>`_ project.
|
build/torch-universal/triton_layer_norm/_ops.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
ops = torch.ops._triton_layer_norm_4dc3a9b_dirty
|
| 3 |
+
|
| 4 |
+
def add_op_namespace_prefix(op_name: str):
|
| 5 |
+
"""
|
| 6 |
+
Prefix op by namespace.
|
| 7 |
+
"""
|
| 8 |
+
return f"_triton_layer_norm_4dc3a9b_dirty::{op_name}"
|
build/torch-universal/triton_layer_norm/layers.py
CHANGED
|
@@ -5,10 +5,32 @@ from .layer_norm import rms_norm_fn
|
|
| 5 |
|
| 6 |
|
| 7 |
class LlamaRMSNorm(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
weight: torch.Tensor
|
| 9 |
variance_epsilon: float
|
| 10 |
|
| 11 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
return rms_norm_fn(
|
| 13 |
hidden_states,
|
| 14 |
self.weight,
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class LlamaRMSNorm(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
RMS Layer Norm for Llama models.
|
| 10 |
+
|
| 11 |
+
Triton-optimized RMS layer norm. The interface is compatible with `LLamaRMSNorm` in
|
| 12 |
+
`transformers`.
|
| 13 |
+
|
| 14 |
+
Attributes:
|
| 15 |
+
weight (`torch.Tensor`): The learnable scaling parameter.
|
| 16 |
+
variance_epsilon (`float`): The epsilon value for numerical stability.
|
| 17 |
+
"""
|
| 18 |
weight: torch.Tensor
|
| 19 |
variance_epsilon: float
|
| 20 |
|
| 21 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 22 |
+
"""
|
| 23 |
+
Apply RMS normalization to the input hidden states.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
hidden_states (`torch.Tensor`):
|
| 27 |
+
Input tensor of shape `(batch_size, sequence_length, hidden_size)` or any shape
|
| 28 |
+
where the last dimension is the feature dimension to be normalized.
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
`torch.Tensor`:
|
| 32 |
+
The normalized tensor with the same shape as the input `hidden_states`.
|
| 33 |
+
"""
|
| 34 |
return rms_norm_fn(
|
| 35 |
hidden_states,
|
| 36 |
self.weight,
|