kathywu95 commited on
Commit
b7ec9ae
·
verified ·
1 Parent(s): af6ed51

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
9
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
10
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
11
+ },
12
+ "bos_token_id": 0,
13
+ "dtype": "bfloat16",
14
+ "eos_token_id": 1,
15
+ "ep_size": 1,
16
+ "first_k_dense_replace": 1,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 7168,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18432,
21
+ "kv_lora_rank": 512,
22
+ "max_position_embeddings": 163840,
23
+ "model_type": "deepseek_v3",
24
+ "moe_intermediate_size": 2048,
25
+ "moe_layer_freq": 1,
26
+ "n_group": 8,
27
+ "n_routed_experts": 256,
28
+ "n_shared_experts": 1,
29
+ "norm_topk_prob": true,
30
+ "num_attention_heads": 128,
31
+ "num_experts_per_tok": 8,
32
+ "num_hidden_layers": 2,
33
+ "num_key_value_heads": 128,
34
+ "num_nextn_predict_layers": 1,
35
+ "q_lora_rank": 1536,
36
+ "qk_nope_head_dim": 128,
37
+ "qk_rope_head_dim": 64,
38
+ "quantization_config": {
39
+ "activation_scheme": "dynamic",
40
+ "fmt": "e4m3",
41
+ "quant_method": "fp8",
42
+ "weight_block_size": [
43
+ 128,
44
+ 128
45
+ ]
46
+ },
47
+ "rms_norm_eps": 1e-06,
48
+ "rope_scaling": {
49
+ "beta_fast": 32,
50
+ "beta_slow": 1,
51
+ "factor": 40,
52
+ "mscale": 1.0,
53
+ "mscale_all_dim": 1.0,
54
+ "original_max_position_embeddings": 4096,
55
+ "type": "yarn"
56
+ },
57
+ "rope_theta": 10000,
58
+ "routed_scaling_factor": 2.5,
59
+ "scoring_func": "sigmoid",
60
+ "tie_word_embeddings": false,
61
+ "topk_group": 4,
62
+ "topk_method": "noaux_tc",
63
+ "transformers_version": "4.57.0",
64
+ "use_cache": true,
65
+ "v_head_dim": 128,
66
+ "vocab_size": 129280
67
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
86
+ Whether to tie weight embeddings
87
+ rope_theta (`float`, *optional*, defaults to 10000.0):
88
+ The base period of the RoPE embeddings.
89
+ rope_scaling (`Dict`, *optional*):
90
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
91
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
92
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
93
+ `max_position_embeddings` to the expected new maximum.
94
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+
99
+ ```python
100
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
101
+
102
+ >>> # Initializing a Deepseek-V3 style configuration
103
+ >>> configuration = DeepseekV3Config()
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+
109
+ model_type = "deepseek_v3"
110
+ keys_to_ignore_at_inference = ["past_key_values"]
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=129280,
115
+ hidden_size=7168,
116
+ intermediate_size=18432,
117
+ moe_intermediate_size = 2048,
118
+ num_hidden_layers=61,
119
+ num_nextn_predict_layers=1,
120
+ num_attention_heads=128,
121
+ num_key_value_heads=128,
122
+ n_shared_experts = 1,
123
+ n_routed_experts = 256,
124
+ ep_size = 1,
125
+ routed_scaling_factor = 2.5,
126
+ kv_lora_rank = 512,
127
+ q_lora_rank = 1536,
128
+ qk_rope_head_dim = 64,
129
+ v_head_dim = 128,
130
+ qk_nope_head_dim = 128,
131
+ topk_method = 'noaux_tc',
132
+ n_group = 8,
133
+ topk_group = 4,
134
+ num_experts_per_tok = 8,
135
+ moe_layer_freq = 1,
136
+ first_k_dense_replace = 3,
137
+ norm_topk_prob = True,
138
+ scoring_func = 'sigmoid',
139
+ hidden_act="silu",
140
+ max_position_embeddings=4096,
141
+ initializer_range=0.02,
142
+ rms_norm_eps=1e-6,
143
+ use_cache=True,
144
+ pad_token_id=None,
145
+ bos_token_id=0,
146
+ eos_token_id=1,
147
+ tie_word_embeddings=False,
148
+ rope_theta=10000.0,
149
+ rope_scaling=None,
150
+ attention_bias=False,
151
+ attention_dropout=0.0,
152
+ **kwargs,
153
+ ):
154
+ self.vocab_size = vocab_size
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.hidden_size = hidden_size
157
+ self.intermediate_size = intermediate_size
158
+ self.moe_intermediate_size = moe_intermediate_size
159
+ self.num_hidden_layers = num_hidden_layers
160
+ self.num_nextn_predict_layers = num_nextn_predict_layers
161
+ self.num_attention_heads = num_attention_heads
162
+ self.n_shared_experts = n_shared_experts
163
+ self.n_routed_experts = n_routed_experts
164
+ self.ep_size = ep_size
165
+ self.routed_scaling_factor = routed_scaling_factor
166
+ self.kv_lora_rank = kv_lora_rank
167
+ self.q_lora_rank = q_lora_rank
168
+ self.qk_rope_head_dim = qk_rope_head_dim
169
+ self.v_head_dim = v_head_dim
170
+ self.qk_nope_head_dim = qk_nope_head_dim
171
+ self.topk_method = topk_method
172
+ self.n_group = n_group
173
+ self.topk_group = topk_group
174
+ self.num_experts_per_tok = num_experts_per_tok
175
+ self.moe_layer_freq = moe_layer_freq
176
+ self.first_k_dense_replace = first_k_dense_replace
177
+ self.norm_topk_prob = norm_topk_prob
178
+ self.scoring_func = scoring_func
179
+ # for backward compatibility
180
+ if num_key_value_heads is None:
181
+ num_key_value_heads = num_attention_heads
182
+
183
+ self.num_key_value_heads = num_key_value_heads
184
+ self.hidden_act = hidden_act
185
+ self.initializer_range = initializer_range
186
+ self.rms_norm_eps = rms_norm_eps
187
+ self.use_cache = use_cache
188
+ self.rope_theta = rope_theta
189
+ self.rope_scaling = rope_scaling
190
+ self.attention_bias = attention_bias
191
+ self.attention_dropout = attention_dropout
192
+
193
+ super().__init__(
194
+ pad_token_id=pad_token_id,
195
+ bos_token_id=bos_token_id,
196
+ eos_token_id=eos_token_id,
197
+ tie_word_embeddings=tie_word_embeddings,
198
+ **kwargs,
199
+ )
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99d967aeb1a2a07a2165e270aef5315137b57b86248bd1b41a88e013b719eb6
3
+ size 4991938112
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7be994d57fc122d88f9cfe559d481124e5a7f392fe636dec3ad89e5d7f6242be
3
+ size 4992525216
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba240377780850ee60564d989b8c57e58376a1c1b5dd777975bf2fdd91c95ccd
3
+ size 3964695776
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c41885a350e6ea399c17170ba55e67cb324ab636aa7ed7819c96c7ad264681cc
3
+ size 1853358208
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|begin▁of▁sentence|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": true,
22
+ "model_max_length": 131072,
23
+ "pad_token": {
24
+ "__type": "AddedToken",
25
+ "content": "<|end▁of▁sentence|>",
26
+ "lstrip": false,
27
+ "normalized": true,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "sp_model_kwargs": {},
32
+ "unk_token": null,
33
+ "tokenizer_class": "LlamaTokenizerFast",
34
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{{'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}"
35
+ }