Update README.md
Browse files
README.md
CHANGED
|
@@ -1,201 +1,84 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
|
| 58 |
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
|
| 64 |
### Recommendations
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
|
|
|
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
|
| 201 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- function calling
|
| 5 |
+
- laser
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
datasets:
|
| 8 |
+
- jtatman/glaive_function_calling_v2_filtered_10k
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# Model Card
|
| 12 |
|
| 13 |
+
This is a laser fine tuning of Aloobun's [great 1.5b param reyna mini model](https://huggingface.co/aloobun/Reyna-Mini-1.8B-v0.2).
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
### Model Description
|
| 16 |
|
| 17 |
+
This model is quite conversational - even a bit more so after laser tuning even using Peft. The function calling is mediocre, but will be improved in future versions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
## Uses
|
| 20 |
|
| 21 |
+
As Aloobun's model is well performing and impressive on it's own, I decided to add some function calling while practicing the LaserRMT technique.
|
| 22 |
|
| 23 |
### Direct Use
|
| 24 |
|
| 25 |
+
Chat
|
| 26 |
+
Conversational
|
| 27 |
+
Text Generation
|
| 28 |
+
Function Calling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
## Bias, Risks, and Limitations
|
| 31 |
|
| 32 |
+
This model will take over your house, borrow your car, talk badly to your family, and generally make everything incrementally worse. If you use it for nefarious purposes.
|
|
|
|
|
|
|
| 33 |
|
| 34 |
### Recommendations
|
| 35 |
|
| 36 |
+
Use at your own risk. It's a great small model, owing to the base model before tuning.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
## Training Details
|
| 39 |
|
| 40 |
### Training Data
|
| 41 |
|
| 42 |
+
{
|
| 43 |
+
"eval/loss": 2.1797242164611816,
|
| 44 |
+
"_timestamp": 1708624900.2239263,
|
| 45 |
+
"_runtime": 20945.370138406754,
|
| 46 |
+
"train/train_loss": 2.515587423102269,
|
| 47 |
+
"train/global_step": 918,
|
| 48 |
+
"train/train_steps_per_second": 0.044,
|
| 49 |
+
"train/loss": 2.2062,
|
| 50 |
+
"train/learning_rate": 0,
|
| 51 |
+
"train/train_samples_per_second": 1.403,
|
| 52 |
+
"train/train_runtime": 20945.6359,
|
| 53 |
+
"eval/steps_per_second": 4.867,
|
| 54 |
+
"eval/samples_per_second": 4.867,
|
| 55 |
+
"_step": 923,
|
| 56 |
+
"train/epoch": 2.98,
|
| 57 |
+
"eval/runtime": 41.0972,
|
| 58 |
+
"train/grad_norm": 0.2638521194458008,
|
| 59 |
+
"train/total_flos": 141790931224363000
|
| 60 |
+
}
|
| 61 |
|
| 62 |
### Training Procedure
|
| 63 |
|
| 64 |
+
[LaserRMT](https://github.com/cognitivecomputations/laserRMT) was used to refine the weights, using the 16 highest scored weights specifically by noise-to-ratio analysis.
|
| 65 |
+
This technique avoids training unnecessarily low-performng weights that can turn to garbage. By pruning these weights, the model size is decreased slightly.
|
| 66 |
|
| 67 |
+

|
| 68 |
+
Axolotl was used for training and dataset tokenization.
|
| 69 |
|
| 70 |
+
#### Preprocessing [optional]
|
| 71 |
|
| 72 |
+
Dataset was formatted in ShareGpt format for the purposes of using with Axolotl, in conversational format.
|
| 73 |
|
| 74 |
#### Training Hyperparameters
|
| 75 |
|
| 76 |
+
lora_r: 64
|
| 77 |
+
lora_alpha: 16
|
| 78 |
+
lora_dropout: 0.05
|
| 79 |
+
gradient_accumulation_steps: 4
|
| 80 |
+
micro_batch_size: 1
|
| 81 |
+
num_epochs: 3
|
| 82 |
+
optimizer: adamw_bnb_8bit
|
| 83 |
+
lr_scheduler: cosine
|
| 84 |
+
learning_rate: 0.00025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|