Add: training script
Browse files
train.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torch.utils.data import DataLoader, Dataset
|
| 5 |
+
from torchvision import datasets, transforms
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
from model import ColorNet
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
transform = transforms.Compose([
|
| 13 |
+
transforms.ToTensor()
|
| 14 |
+
])
|
| 15 |
+
|
| 16 |
+
train_dataset = datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
|
| 17 |
+
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=transform, download=True)
|
| 18 |
+
|
| 19 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
| 20 |
+
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
|
| 21 |
+
|
| 22 |
+
model = ColorNet()
|
| 23 |
+
criterion = nn.MSELoss()
|
| 24 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 25 |
+
|
| 26 |
+
model.train_model(model, train_loader, criterion, optimizer, num_epochs=10)
|