Commit
·
3a7d083
1
Parent(s):
18e0a83
add README
Browse filesSigned-off-by: jupyterjazz <[email protected]>
README.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<br><br>
|
| 2 |
+
|
| 3 |
+
<p align="center">
|
| 4 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
| 5 |
+
</p>
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
<p align="center">
|
| 9 |
+
<b>The embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
| 10 |
+
</p>
|
| 11 |
+
|
| 12 |
+
# [Jina Embeddings v4]((https://huggingface.co/jinaai/jina-embeddings-v4)): Universal Embeddings for Multimodal Multilingual Retrieval
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
[Blog](https://jina.ai/news/jina-embeddings-v4-universal-embeddings-for-multimodal-multilingual-retrieval) | [Technical Report](https://arxiv.org/abs/2506.18902) | [API](https://jina.ai/embeddings)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## Model Overview
|
| 19 |
+
|
| 20 |
+
This repository hosts a vLLM-compatible version of [`jina-embeddings-v4`](https://huggingface.co/jinaai/jina-embeddings-v4) with the retrieval adapter merged into the base `Qwen2.5-VL` weights. This architecture modification enables native compatibility with vLLM without requiring custom adapter-handling code.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
import torch
|
| 27 |
+
from PIL import Image
|
| 28 |
+
|
| 29 |
+
from vllm import LLM
|
| 30 |
+
from vllm.config import PoolerConfig
|
| 31 |
+
from vllm.inputs.data import TextPrompt
|
| 32 |
+
|
| 33 |
+
# Initialize model
|
| 34 |
+
model = LLM(
|
| 35 |
+
model="jinaai/jina-embeddings-v4-vllm-retrieval",
|
| 36 |
+
task="embed",
|
| 37 |
+
enforce_eager=True,
|
| 38 |
+
override_pooler_config=PoolerConfig(pooling_type="ALL", normalize=False),
|
| 39 |
+
dtype="float16",
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Create text prompts
|
| 43 |
+
query = "Overview of climate change impacts on coastal cities"
|
| 44 |
+
query_prompt = TextPrompt(
|
| 45 |
+
prompt=f"Query: {query}"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
passage = "The impacts of climate change on coastal cities are significant.."
|
| 49 |
+
passage_prompt = TextPrompt(
|
| 50 |
+
prompt=f"Passage: {passage}"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Create image prompt
|
| 54 |
+
image = Image.open("<path_to_image>")
|
| 55 |
+
image_prompt = TextPrompt(
|
| 56 |
+
prompt="<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n",
|
| 57 |
+
multi_modal_data={"image": image},
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Encode all prompts
|
| 61 |
+
prompts = [query_prompt, passage_prompt, image_prompt]
|
| 62 |
+
outputs = model.encode(prompts)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_embeddings(outputs):
|
| 66 |
+
VISION_START_TOKEN_ID, VISION_END_TOKEN_ID = 151652, 151653
|
| 67 |
+
|
| 68 |
+
embeddings = []
|
| 69 |
+
for output in outputs:
|
| 70 |
+
if VISION_START_TOKEN_ID in output.prompt_token_ids:
|
| 71 |
+
# Gather only vision tokens
|
| 72 |
+
img_start_pos = torch.where(
|
| 73 |
+
torch.tensor(output.prompt_token_ids) == VISION_START_TOKEN_ID
|
| 74 |
+
)[0][0]
|
| 75 |
+
img_end_pos = torch.where(
|
| 76 |
+
torch.tensor(output.prompt_token_ids) == VISION_END_TOKEN_ID
|
| 77 |
+
)[0][0]
|
| 78 |
+
embeddings_tensor = output.outputs.data.detach().clone()[
|
| 79 |
+
img_start_pos : img_end_pos + 1
|
| 80 |
+
]
|
| 81 |
+
else:
|
| 82 |
+
# Use all tokens for text-only prompts
|
| 83 |
+
embeddings_tensor = output.outputs.data.detach().clone()
|
| 84 |
+
|
| 85 |
+
# Pool and normalize embeddings
|
| 86 |
+
pooled_output = (
|
| 87 |
+
embeddings_tensor.sum(dim=0, dtype=torch.float32)
|
| 88 |
+
/ embeddings_tensor.shape[0]
|
| 89 |
+
)
|
| 90 |
+
embeddings.append(torch.nn.functional.normalize(pooled_output, dim=-1))
|
| 91 |
+
return embeddings
|
| 92 |
+
|
| 93 |
+
embeddings = get_embeddings(outputs)
|
| 94 |
+
```
|
| 95 |
+
|