Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- black-forest-labs/FLUX.1-dev
|
| 4 |
+
library_name: diffusers
|
| 5 |
+
license_name: flux-1-dev-non-commercial-license
|
| 6 |
+
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
|
| 7 |
+
pipeline_tag: image-to-image
|
| 8 |
+
tags:
|
| 9 |
+
- ControlNet
|
| 10 |
+
---
|
| 11 |
+
# ⚡ Flux.1-dev: Depth ControlNet ⚡
|
| 12 |
+
|
| 13 |
+
This is [Flux.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) ControlNet for Depth map developped by Jasper research team.
|
| 14 |
+
|
| 15 |
+
<p align="center">
|
| 16 |
+
<img style="width:700px;" src="examples/showcase.jpg">
|
| 17 |
+
</p>
|
| 18 |
+
|
| 19 |
+
# How to use
|
| 20 |
+
This model can be used directly with the `diffusers` library
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
import torch
|
| 24 |
+
from diffusers.utils import load_image
|
| 25 |
+
from diffusers import FluxControlNetModel
|
| 26 |
+
from diffusers.pipelines import FluxControlNetPipeline
|
| 27 |
+
|
| 28 |
+
# Load pipeline
|
| 29 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
| 30 |
+
"jasperai/Flux.1-dev-Controlnet-Depth",
|
| 31 |
+
torch_dtype=torch.bfloat16
|
| 32 |
+
)
|
| 33 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
| 34 |
+
"black-forest-labs/FLUX.1-dev",
|
| 35 |
+
controlnet=controlnet,
|
| 36 |
+
torch_dtype=torch.bfloat16
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Load a control image
|
| 41 |
+
control_image = load_image(
|
| 42 |
+
"https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Depth/resolve/main/examples/depth.jpg"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
prompt = "a statue of a gnome in a field of purple tulips"
|
| 46 |
+
|
| 47 |
+
image = pipe(
|
| 48 |
+
prompt,
|
| 49 |
+
control_image=control_image,
|
| 50 |
+
controlnet_conditioning_scale=0.6,
|
| 51 |
+
num_inference_steps=28,
|
| 52 |
+
guidance_scale=3.5,
|
| 53 |
+
height=control_image.size[1],
|
| 54 |
+
width=control_image.size[0]
|
| 55 |
+
).images[0]
|
| 56 |
+
image
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
<p align="center">
|
| 60 |
+
<img style="width:500px;" src="examples/output.jpg">
|
| 61 |
+
</p>
|
| 62 |
+
|
| 63 |
+
💡 Note: You can compute the conditioning map using for instance the `MidasDetector` from the `controlnet_aux` library
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
from controlnet_aux import MidasDetector
|
| 67 |
+
from diffusers.utils import load_image
|
| 68 |
+
|
| 69 |
+
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
| 70 |
+
|
| 71 |
+
# Load an image
|
| 72 |
+
im = load_image(
|
| 73 |
+
"https://huggingface.co/jasperai/jasperai/Flux.1-dev-Controlnet-Depth/resolve/main/examples/output.jpg"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
surface = midas(im)
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
# Training
|
| 80 |
+
This model was trained with depth maps computed with [Clipdrop's depth estimator model](https://clipdrop.co/apis/docs/portrait-depth-estimation) as well as open-souce depth estimation models such as Midas or Leres.
|
| 81 |
+
|
| 82 |
+
# Licence
|
| 83 |
+
The licence under the Flux.1-dev model applies to this model.
|