Model weights
Browse files- .gitattributes +2 -0
- config.json +73 -0
- handler.py +195 -0
- model.safetensors +3 -0
- precious3_gpt_multi_modal.py +340 -0
- special_tokens_map.json +6 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Custom_MPTForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attn_config": {
|
| 6 |
+
"alibi": true,
|
| 7 |
+
"alibi_bias_max": 8,
|
| 8 |
+
"attn_impl": "torch",
|
| 9 |
+
"attn_pdrop": 0,
|
| 10 |
+
"attn_type": "multihead_attention",
|
| 11 |
+
"attn_uses_sequence_id": false,
|
| 12 |
+
"clip_qkv": null,
|
| 13 |
+
"prefix_lm": false,
|
| 14 |
+
"qk_gn": false,
|
| 15 |
+
"qk_ln": false,
|
| 16 |
+
"rope": false,
|
| 17 |
+
"rope_dail_config": {
|
| 18 |
+
"pos_idx_in_fp32": true,
|
| 19 |
+
"type": "original",
|
| 20 |
+
"xpos_scale_base": 512
|
| 21 |
+
},
|
| 22 |
+
"rope_hf_config": {
|
| 23 |
+
"factor": 1.0,
|
| 24 |
+
"type": "no_scaling"
|
| 25 |
+
},
|
| 26 |
+
"rope_impl": "dail",
|
| 27 |
+
"rope_theta": 10000,
|
| 28 |
+
"sliding_window_size": -1,
|
| 29 |
+
"softmax_scale": null
|
| 30 |
+
},
|
| 31 |
+
"auto_map": {
|
| 32 |
+
"AutoConfig": "mpt-7b--configuration_mpt.MPTConfig",
|
| 33 |
+
"AutoModelForCausalLM": "mpt-7b--modeling_mpt.MPTForCausalLM"
|
| 34 |
+
},
|
| 35 |
+
"bos_token_id": 0,
|
| 36 |
+
"d_model": 360,
|
| 37 |
+
"emb_pdrop": 0,
|
| 38 |
+
"embedding_fraction": 1.0,
|
| 39 |
+
"eos_token_id": 1,
|
| 40 |
+
"expansion_ratio": 5,
|
| 41 |
+
"fc_type": "torch",
|
| 42 |
+
"ffn_config": {
|
| 43 |
+
"fc_type": "torch",
|
| 44 |
+
"ffn_type": "mptmlp"
|
| 45 |
+
},
|
| 46 |
+
"init_config": {
|
| 47 |
+
"emb_init_std": null,
|
| 48 |
+
"emb_init_uniform_lim": null,
|
| 49 |
+
"fan_mode": "fan_in",
|
| 50 |
+
"init_div_is_residual": true,
|
| 51 |
+
"init_gain": 0,
|
| 52 |
+
"init_nonlinearity": "relu",
|
| 53 |
+
"init_std": 0.02,
|
| 54 |
+
"name": "kaiming_normal_",
|
| 55 |
+
"verbose": 0
|
| 56 |
+
},
|
| 57 |
+
"init_device": "cuda",
|
| 58 |
+
"learned_pos_emb": false,
|
| 59 |
+
"logit_scale": null,
|
| 60 |
+
"max_seq_len": 600,
|
| 61 |
+
"model_type": "mpt",
|
| 62 |
+
"n_heads": 36,
|
| 63 |
+
"n_layers": 36,
|
| 64 |
+
"no_bias": true,
|
| 65 |
+
"norm_type": "low_precision_layernorm",
|
| 66 |
+
"resid_pdrop": 0,
|
| 67 |
+
"torch_dtype": "bfloat16",
|
| 68 |
+
"transformers_version": "4.35.0",
|
| 69 |
+
"use_cache": false,
|
| 70 |
+
"use_pad_tok_in_ffn": true,
|
| 71 |
+
"verbose": 0,
|
| 72 |
+
"vocab_size": 63740
|
| 73 |
+
}
|
handler.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
from transformers import PreTrainedTokenizerFast
|
| 6 |
+
from transformers import GenerationConfig
|
| 7 |
+
import transformers
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import time
|
| 10 |
+
from precious3_gpt_multi_model import Custom_MPTForCausalLM
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
emb_gpt_genes = pd.read_pickle('./multi-modal-data/emb_gpt_genes.pickle')
|
| 14 |
+
emb_hgt_genes = pd.read_pickle('./multi-modal-data/emb_hgt_genes.pickle')
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def create_prompt(prompt_config):
|
| 18 |
+
|
| 19 |
+
prompt = "[BOS]"
|
| 20 |
+
|
| 21 |
+
multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
|
| 22 |
+
|
| 23 |
+
for k, v in prompt_config.items():
|
| 24 |
+
if k=='instruction':
|
| 25 |
+
prompt+=f"<{v}>"
|
| 26 |
+
elif k=='up':
|
| 27 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
| 28 |
+
elif k=='down':
|
| 29 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
| 30 |
+
else:
|
| 31 |
+
prompt+=f'<{k}>{v}</{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
| 32 |
+
return prompt
|
| 33 |
+
|
| 34 |
+
def custom_generate(input_ids,
|
| 35 |
+
acc_embs_up_kg_mean,
|
| 36 |
+
acc_embs_down_kg_mean,
|
| 37 |
+
acc_embs_up_txt_mean,
|
| 38 |
+
acc_embs_down_txt_mean,
|
| 39 |
+
device,
|
| 40 |
+
max_new_tokens,
|
| 41 |
+
num_return_sequences,
|
| 42 |
+
temperature=0.8,
|
| 43 |
+
top_p=0.2, top_k=3550, n_next_tokens=50,
|
| 44 |
+
unique_compounds):
|
| 45 |
+
torch.manual_seed(137)
|
| 46 |
+
|
| 47 |
+
# Set parameters
|
| 48 |
+
# temperature - Higher value for more randomness, lower for more control
|
| 49 |
+
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
|
| 50 |
+
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
|
| 51 |
+
# n_next_tokens - Number of top next tokens when predicting compounds
|
| 52 |
+
|
| 53 |
+
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
|
| 54 |
+
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device)
|
| 55 |
+
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
|
| 56 |
+
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Generate sequences
|
| 60 |
+
outputs = []
|
| 61 |
+
next_token_compounds = []
|
| 62 |
+
|
| 63 |
+
for _ in range(num_return_sequences):
|
| 64 |
+
start_time = time.time()
|
| 65 |
+
generated_sequence = []
|
| 66 |
+
current_token = input_ids.clone()
|
| 67 |
+
|
| 68 |
+
for _ in range(max_new_tokens): # Maximum length of generated sequence
|
| 69 |
+
# Forward pass through the model
|
| 70 |
+
logits = model.forward(input_ids=current_token,
|
| 71 |
+
modality0_emb=modality0_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
| 72 |
+
modality0_token_id=62191,
|
| 73 |
+
modality1_emb=modality1_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
| 74 |
+
modality1_token_id=62192,
|
| 75 |
+
modality2_emb=modality2_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
| 76 |
+
modality2_token_id=62193,
|
| 77 |
+
modality3_emb=modality3_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
| 78 |
+
modality3_token_id=62194)[0]
|
| 79 |
+
|
| 80 |
+
# Apply temperature to logits
|
| 81 |
+
if temperature != 1.0:
|
| 82 |
+
logits = logits / temperature
|
| 83 |
+
|
| 84 |
+
# Apply top-p sampling (nucleus sampling)
|
| 85 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 86 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
| 87 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 88 |
+
|
| 89 |
+
if top_k > 0:
|
| 90 |
+
sorted_indices_to_remove[..., top_k:] = 1
|
| 91 |
+
|
| 92 |
+
# Set the logit values of the removed indices to a very small negative value
|
| 93 |
+
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
|
| 94 |
+
|
| 95 |
+
logits = logits.where(sorted_indices_to_remove, inf_tensor)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Sample the next token
|
| 99 |
+
if current_token[0][-1] == tokenizer.encode('<drug>')[0]:
|
| 100 |
+
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), 50).indices)
|
| 101 |
+
|
| 102 |
+
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Append the sampled token to the generated sequence
|
| 106 |
+
generated_sequence.append(next_token.item())
|
| 107 |
+
|
| 108 |
+
Stop generation if an end token is generated
|
| 109 |
+
if next_token == tokenizer.eos_token_id:
|
| 110 |
+
break
|
| 111 |
+
|
| 112 |
+
# Prepare input for the next iteration
|
| 113 |
+
current_token = torch.cat((current_token, next_token), dim=-1)
|
| 114 |
+
print(time.time()-start_time)
|
| 115 |
+
outputs.append(generated_sequence)
|
| 116 |
+
return outputs, next_token_compounds
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def get_predicted_compounds(input_ids, generation_output, tokenizer, p3_compounds):
|
| 120 |
+
id_4_drug_token = list(generation_output.sequences[0][len(input_ids[0]):]).index(tokenizer.convert_tokens_to_ids(['<drug>'])[0])
|
| 121 |
+
id_4_drug_token += 1
|
| 122 |
+
print('This is token index where drug should be predicted: ', id_4_drug_token)
|
| 123 |
+
|
| 124 |
+
values, indices = torch.topk(generation_output["scores"][id_4_drug_token].view(-1), k=50)
|
| 125 |
+
indices_decoded = tokenizer.decode(indices, skip_special_tokens=True)
|
| 126 |
+
|
| 127 |
+
predicted_compound = indices_decoded.split(' ')
|
| 128 |
+
predicted_compound = [i.strip() for i in predicted_compound]
|
| 129 |
+
|
| 130 |
+
valid_compounds = sorted(set(predicted_compound) & set(p3_compounds), key = predicted_compound.index)
|
| 131 |
+
print(f"Model predicted {len(predicted_compound)} tokens. Valid compounds {len(valid_compounds)}")
|
| 132 |
+
return valid_compounds
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class EndpointHandler:
|
| 136 |
+
def __init__(self, path=""):
|
| 137 |
+
# load model and processor from path
|
| 138 |
+
self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to('cuda')
|
| 139 |
+
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file = os.path.join(path, "tokenizer.json"), unk_token="[UNK]",
|
| 140 |
+
pad_token="[PAD]",
|
| 141 |
+
eos_token="[EOS]",
|
| 142 |
+
bos_token="[BOS]")
|
| 143 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
| 144 |
+
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
| 145 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
| 146 |
+
unique_entities_p3 = pd.read_csv(os.path.join(path, 'all_entities_with_type.csv'))
|
| 147 |
+
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
| 152 |
+
"""
|
| 153 |
+
Args:
|
| 154 |
+
data (:dict:):
|
| 155 |
+
The payload with the text prompt and generation parameters.
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
inputs = data.pop("inputs", data)
|
| 159 |
+
parameters = data.pop("parameters", None)
|
| 160 |
+
mode = data.pop('mode', 'diff2compound')
|
| 161 |
+
|
| 162 |
+
if mode == 'diff2compound':
|
| 163 |
+
with open('./generation-configs/diff2compound.json', 'r') as f:
|
| 164 |
+
config_data = json.load(f)
|
| 165 |
+
else:
|
| 166 |
+
with open('./generation-configs/diff2compound.json', 'r') as f:
|
| 167 |
+
config_data = json.load(f)
|
| 168 |
+
|
| 169 |
+
prompt = create_prompt(config_data)
|
| 170 |
+
|
| 171 |
+
inputs = self.tokenizer(inputs, return_tensors="pt")
|
| 172 |
+
input_ids = inputs["input_ids"].to('cuda')
|
| 173 |
+
|
| 174 |
+
### Generation config https://huggingface.co/blog/how-to-generate
|
| 175 |
+
generation_config = GenerationConfig(**parameters,
|
| 176 |
+
pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1)
|
| 177 |
+
|
| 178 |
+
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) # max_new_tokens = 560 - len(input_ids[0])
|
| 179 |
+
|
| 180 |
+
torch.manual_seed(137)
|
| 181 |
+
|
| 182 |
+
with torch.no_grad():
|
| 183 |
+
generation_output = self.model.generate(
|
| 184 |
+
input_ids=input_ids,
|
| 185 |
+
generation_config=generation_config,
|
| 186 |
+
return_dict_in_generate=True,
|
| 187 |
+
output_scores=True,
|
| 188 |
+
max_new_tokens=max_new_tokens
|
| 189 |
+
)
|
| 190 |
+
if mode =='diff2compound':
|
| 191 |
+
predicted_compounds = get_predicted_compounds(input_ids=input_ids, generation_output=generation_output, tokenizer=self.tokenizer, p3_compounds=self.unique_compounds_p3)
|
| 192 |
+
output = {'output': predicted_compounds, "mode": mode, 'message': "Done!"}
|
| 193 |
+
else:
|
| 194 |
+
output = {'output': [None], "mode": mode, 'message': "Set mode"}
|
| 195 |
+
return output
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:17e1167c39df0e2ac88e4267a13f7b0d4a43b48eb124d7cef8230e6d0e98e257
|
| 3 |
+
size 178841976
|
precious3_gpt_multi_modal.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, Union, List
|
| 2 |
+
|
| 3 |
+
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
|
| 4 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
| 8 |
+
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
|
| 9 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, CausalLMOutputWithPast, \
|
| 10 |
+
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPast
|
| 11 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, MptForCausalLM, MptModel
|
| 12 |
+
from transformers import PreTrainedTokenizerFast
|
| 13 |
+
import os
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
|
| 16 |
+
from mpt_7b.modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
|
| 17 |
+
from mpt_7b.configuration_mpt import MPTConfig
|
| 18 |
+
from mpt_7b.blocks import MPTBlock
|
| 19 |
+
from mpt_7b.norm import NORM_CLASS_REGISTRY
|
| 20 |
+
from mpt_7b.custom_embedding import SharedEmbedding
|
| 21 |
+
from mpt_7b.attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
|
| 22 |
+
|
| 23 |
+
import logging
|
| 24 |
+
log = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
class Custom_MptModel(MPTModel): # MptModel
|
| 27 |
+
def __init__(self, config: MPTConfig, modality0_dim=128, modality2_dim=1536):
|
| 28 |
+
config._validate_config()
|
| 29 |
+
super().__init__(config)
|
| 30 |
+
self.attn_impl = config.attn_config['attn_impl']
|
| 31 |
+
self.prefix_lm = config.attn_config['prefix_lm']
|
| 32 |
+
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
| 33 |
+
self.alibi = config.attn_config['alibi']
|
| 34 |
+
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
| 35 |
+
self.learned_pos_emb = config.learned_pos_emb
|
| 36 |
+
if config.init_device == 'mixed':
|
| 37 |
+
if dist.get_local_rank() == 0:
|
| 38 |
+
config.init_device = 'cpu'
|
| 39 |
+
else:
|
| 40 |
+
config.init_device = 'meta'
|
| 41 |
+
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
| 42 |
+
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
| 43 |
+
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
| 44 |
+
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
| 45 |
+
self.embedding_fraction = config.embedding_fraction
|
| 46 |
+
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
| 47 |
+
if self.learned_pos_emb:
|
| 48 |
+
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
| 49 |
+
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
| 50 |
+
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
| 51 |
+
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
### Added for P3GPT - START
|
| 55 |
+
# Freeze all parameters except the projection layer
|
| 56 |
+
for param in self.wte.parameters():
|
| 57 |
+
param.requires_grad = False
|
| 58 |
+
|
| 59 |
+
for param in self.blocks.parameters():
|
| 60 |
+
param.requires_grad = False
|
| 61 |
+
|
| 62 |
+
# Add a projection layer for the custom embedding
|
| 63 |
+
# torch.set_default_dtype(torch.bfloat16)
|
| 64 |
+
self.modality0_embedding_projection = nn.ModuleList([nn.Linear(modality0_dim, config.d_model),
|
| 65 |
+
# nn.BatchNorm1d(config.d_model),
|
| 66 |
+
nn.ReLU(),
|
| 67 |
+
nn.Linear(config.d_model, config.d_model),
|
| 68 |
+
# nn.BatchNorm1d(config.d_model),
|
| 69 |
+
nn.ReLU(),
|
| 70 |
+
nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
self.modality2_embedding_projection = nn.ModuleList([nn.Linear(modality2_dim, config.d_model),
|
| 74 |
+
# nn.BatchNorm1d(config.d_model),
|
| 75 |
+
nn.ReLU(),
|
| 76 |
+
nn.Linear(config.d_model, config.d_model),
|
| 77 |
+
# nn.BatchNorm1d(config.d_model),
|
| 78 |
+
nn.ReLU(),
|
| 79 |
+
nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
### Added for P3GPT - FINISH
|
| 83 |
+
|
| 84 |
+
self.rope = config.attn_config['rope']
|
| 85 |
+
self.rope_impl = None
|
| 86 |
+
if self.rope:
|
| 87 |
+
self.rope_impl = config.attn_config['rope_impl']
|
| 88 |
+
self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
|
| 89 |
+
if config.init_device != 'meta':
|
| 90 |
+
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
| 91 |
+
self.apply(self.param_init_fn)
|
| 92 |
+
self.is_causal = not self.prefix_lm
|
| 93 |
+
self._attn_bias_initialized = False
|
| 94 |
+
self.attn_bias = None
|
| 95 |
+
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
| 96 |
+
if config.no_bias:
|
| 97 |
+
for module in self.modules():
|
| 98 |
+
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
| 99 |
+
log.info(f'Removing bias from module={module!r}.')
|
| 100 |
+
module.register_parameter('bias', None)
|
| 101 |
+
if hasattr(module, 'use_bias'):
|
| 102 |
+
log.info(f'Setting use_bias=False for module={module!r}.')
|
| 103 |
+
module.use_bias = False
|
| 104 |
+
log.debug(self)
|
| 105 |
+
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
| 106 |
+
|
| 107 |
+
# Initialize weights and apply final processing
|
| 108 |
+
# self.post_init()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_input_embeddings(self):
|
| 112 |
+
return self.wte
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def set_input_embeddings(self, new_embeddings):
|
| 116 |
+
# self.wte = new_embeddings
|
| 117 |
+
self.wte.weight = new_embeddings
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
|
| 121 |
+
attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
|
| 122 |
+
sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None,
|
| 123 |
+
output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None,
|
| 124 |
+
inputs_embeds: Optional[torch.Tensor]=None, modality0_emb: Optional[bool] = None,
|
| 125 |
+
modality0_token_id: Optional[bool] = None, modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
|
| 126 |
+
modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None, modality3_emb: Optional[bool] = None,
|
| 127 |
+
modality3_token_id: Optional[bool] = None,) -> BaseModelOutputWithPast:
|
| 128 |
+
|
| 129 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 130 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 131 |
+
if attention_mask is not None:
|
| 132 |
+
attention_mask = attention_mask.bool()
|
| 133 |
+
if prefix_mask is not None:
|
| 134 |
+
prefix_mask = prefix_mask.bool()
|
| 135 |
+
if not return_dict:
|
| 136 |
+
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
| 137 |
+
if output_attentions:
|
| 138 |
+
if self.attn_impl != 'torch':
|
| 139 |
+
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
| 140 |
+
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
|
| 141 |
+
raise NotImplementedError('MPT does not support training with left padding.')
|
| 142 |
+
if self.prefix_lm and prefix_mask is None:
|
| 143 |
+
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
| 144 |
+
if self.training:
|
| 145 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
| 146 |
+
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
| 147 |
+
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
| 148 |
+
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
| 149 |
+
|
| 150 |
+
### ADDED FOR P3 - START
|
| 151 |
+
|
| 152 |
+
if modality0_emb is not None:
|
| 153 |
+
modality0_emb = torch.tensor(modality0_emb, dtype=torch.bfloat16)
|
| 154 |
+
hidden_states = self.wte.weight.detach()
|
| 155 |
+
|
| 156 |
+
for layer in self.modality0_embedding_projection:
|
| 157 |
+
modality0_emb = layer(modality0_emb)
|
| 158 |
+
proj_modality0_emb = modality0_emb
|
| 159 |
+
|
| 160 |
+
# Replace the original embedding for the custom token with the custom embedding
|
| 161 |
+
hidden_states[modality0_token_id, :] = torch.mean(torch.squeeze(proj_modality0_emb, 1), dim=0)
|
| 162 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
| 163 |
+
|
| 164 |
+
if modality1_emb is not None:
|
| 165 |
+
modality1_emb = torch.tensor(modality1_emb, dtype=torch.bfloat16)
|
| 166 |
+
hidden_states = self.wte.weight.detach()
|
| 167 |
+
|
| 168 |
+
for layer in self.modality0_embedding_projection:
|
| 169 |
+
modality1_emb = layer(modality1_emb)
|
| 170 |
+
proj_modality1_emb = modality1_emb
|
| 171 |
+
|
| 172 |
+
# Replace the original embedding for the custom token with the custom embedding
|
| 173 |
+
hidden_states[modality1_token_id, :] = torch.mean(torch.squeeze(proj_modality1_emb, 1), dim=0)
|
| 174 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
| 175 |
+
|
| 176 |
+
if modality2_emb is not None:
|
| 177 |
+
modality2_emb = torch.tensor(modality2_emb, dtype=torch.bfloat16)
|
| 178 |
+
hidden_states = self.wte.weight.detach()
|
| 179 |
+
|
| 180 |
+
for layer in self.modality2_embedding_projection:
|
| 181 |
+
modality2_emb = layer(modality2_emb)
|
| 182 |
+
proj_modality2_emb = modality2_emb
|
| 183 |
+
|
| 184 |
+
# Replace the original embedding for the custom token with the custom embedding
|
| 185 |
+
hidden_states[modality2_token_id, :] = torch.mean(torch.squeeze(proj_modality2_emb, 1), dim=0)
|
| 186 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
| 187 |
+
|
| 188 |
+
if modality3_emb is not None:
|
| 189 |
+
modality3_emb = torch.tensor(modality3_emb, dtype=torch.bfloat16)
|
| 190 |
+
hidden_states = self.wte.weight.detach()
|
| 191 |
+
|
| 192 |
+
for layer in self.modality2_embedding_projection:
|
| 193 |
+
modality3_emb = layer(modality3_emb)
|
| 194 |
+
proj_modality3_emb = modality3_emb
|
| 195 |
+
|
| 196 |
+
# Replace the original embedding for the custom token with the custom embedding
|
| 197 |
+
hidden_states[modality3_token_id, :] = torch.mean(torch.squeeze(proj_modality3_emb, 1), dim=0)
|
| 198 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
| 199 |
+
|
| 200 |
+
### ADDED FOR P3 - END
|
| 201 |
+
|
| 202 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 203 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds.')
|
| 204 |
+
elif input_ids is not None:
|
| 205 |
+
bsz = input_ids.size(0)
|
| 206 |
+
S = input_ids.size(1)
|
| 207 |
+
x = self.wte(input_ids)
|
| 208 |
+
input_device = input_ids.device
|
| 209 |
+
elif inputs_embeds is not None:
|
| 210 |
+
bsz = inputs_embeds.size(0)
|
| 211 |
+
S = inputs_embeds.size(1)
|
| 212 |
+
x = inputs_embeds
|
| 213 |
+
input_device = inputs_embeds.device
|
| 214 |
+
else:
|
| 215 |
+
raise ValueError('You must specify input_ids or inputs_embeds')
|
| 216 |
+
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
| 217 |
+
rotary_emb_w_meta_info = None
|
| 218 |
+
past_position = 0
|
| 219 |
+
if past_key_values is not None:
|
| 220 |
+
if len(past_key_values) != self.config.n_layers:
|
| 221 |
+
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
| 222 |
+
past_position = past_key_values[0][0].size(1)
|
| 223 |
+
if self.attn_impl == 'torch':
|
| 224 |
+
past_position = past_key_values[0][0].size(3)
|
| 225 |
+
if self.learned_pos_emb or self.rope:
|
| 226 |
+
if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
|
| 227 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
| 228 |
+
if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
|
| 229 |
+
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
|
| 230 |
+
if attention_mask is not None:
|
| 231 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
| 232 |
+
if self.learned_pos_emb:
|
| 233 |
+
x = x + self.wpe(pos)
|
| 234 |
+
elif self.rope and self.rope_impl == 'hf':
|
| 235 |
+
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
|
| 236 |
+
elif self.rope and self.rope_impl == 'dail':
|
| 237 |
+
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
|
| 238 |
+
if self.embedding_fraction == 1:
|
| 239 |
+
x = self.emb_drop(x)
|
| 240 |
+
else:
|
| 241 |
+
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
| 242 |
+
assert isinstance(self.emb_drop, nn.Module)
|
| 243 |
+
x = self.emb_drop(x_shrunk)
|
| 244 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
| 245 |
+
attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
|
| 246 |
+
alibi_slopes = None
|
| 247 |
+
if self.alibi and self.attn_impl == 'flash':
|
| 248 |
+
alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
|
| 249 |
+
|
| 250 |
+
presents = () if use_cache else None
|
| 251 |
+
if use_cache and past_key_values is None:
|
| 252 |
+
past_key_values = [() for _ in range(self.config.n_layers)]
|
| 253 |
+
all_hidden_states = () if output_hidden_states else None
|
| 254 |
+
all_self_attns = () if output_attentions else None
|
| 255 |
+
flash_attn_padding_info = {}
|
| 256 |
+
if self.attn_impl == 'flash':
|
| 257 |
+
flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
|
| 258 |
+
for (b_idx, block) in enumerate(self.blocks):
|
| 259 |
+
if output_hidden_states:
|
| 260 |
+
assert all_hidden_states is not None
|
| 261 |
+
all_hidden_states = all_hidden_states + (x,)
|
| 262 |
+
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 263 |
+
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
|
| 264 |
+
if presents is not None:
|
| 265 |
+
presents += (present,)
|
| 266 |
+
if output_attentions:
|
| 267 |
+
assert all_self_attns is not None
|
| 268 |
+
all_self_attns = all_self_attns + (attn_weights,)
|
| 269 |
+
x = self.norm_f(x)
|
| 270 |
+
if output_hidden_states:
|
| 271 |
+
assert all_hidden_states is not None
|
| 272 |
+
all_hidden_states = all_hidden_states + (x,)
|
| 273 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class Custom_MPTForCausalLM(MPTForCausalLM):
|
| 277 |
+
|
| 278 |
+
def __init__(self, config: MPTConfig):
|
| 279 |
+
super().__init__(config)
|
| 280 |
+
# log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
|
| 281 |
+
self.transformer: MPTModel = Custom_MptModel(config)
|
| 282 |
+
self.lm_head = None
|
| 283 |
+
if not config.tie_word_embeddings:
|
| 284 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
|
| 285 |
+
self.lm_head._fsdp_wrap = True
|
| 286 |
+
for child in self.transformer.children():
|
| 287 |
+
if isinstance(child, torch.nn.ModuleList):
|
| 288 |
+
continue
|
| 289 |
+
if isinstance(child, torch.nn.Module):
|
| 290 |
+
child._fsdp_wrap = True
|
| 291 |
+
self.logit_scale = None
|
| 292 |
+
if config.logit_scale is not None:
|
| 293 |
+
logit_scale = config.logit_scale
|
| 294 |
+
if isinstance(logit_scale, str):
|
| 295 |
+
if logit_scale == 'inv_sqrt_d_model':
|
| 296 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
| 297 |
+
else:
|
| 298 |
+
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
| 299 |
+
self.logit_scale = logit_scale
|
| 300 |
+
|
| 301 |
+
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
|
| 302 |
+
attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
|
| 303 |
+
sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None,
|
| 304 |
+
return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None,
|
| 305 |
+
use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None,
|
| 306 |
+
modality0_emb: Optional[bool] = None, modality0_token_id: Optional[bool] = None,
|
| 307 |
+
modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
|
| 308 |
+
modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None,
|
| 309 |
+
modality3_emb: Optional[bool] = None, modality3_token_id: Optional[bool] = None) -> CausalLMOutputWithPast:
|
| 310 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 311 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 312 |
+
outputs = self.transformer(
|
| 313 |
+
input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask,
|
| 314 |
+
sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
| 315 |
+
use_cache=use_cache, inputs_embeds=inputs_embeds,
|
| 316 |
+
modality0_emb=modality0_emb,
|
| 317 |
+
modality0_token_id=modality0_token_id,
|
| 318 |
+
modality1_emb=modality1_emb,
|
| 319 |
+
modality1_token_id=modality1_token_id,
|
| 320 |
+
modality2_emb=modality2_emb,
|
| 321 |
+
modality2_token_id=modality2_token_id,
|
| 322 |
+
modality3_emb=modality3_emb,
|
| 323 |
+
modality3_token_id=modality3_token_id
|
| 324 |
+
)
|
| 325 |
+
if self.lm_head is not None:
|
| 326 |
+
logits = self.lm_head(outputs.last_hidden_state)
|
| 327 |
+
else:
|
| 328 |
+
out = outputs.last_hidden_state
|
| 329 |
+
out = out.to(self.transformer.wte.weight.device)
|
| 330 |
+
logits = self.transformer.wte(out, True)
|
| 331 |
+
if self.logit_scale is not None:
|
| 332 |
+
if self.logit_scale == 0:
|
| 333 |
+
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
| 334 |
+
logits *= self.logit_scale
|
| 335 |
+
loss = None
|
| 336 |
+
if labels is not None:
|
| 337 |
+
_labels = torch.roll(labels, shifts=-1)
|
| 338 |
+
_labels[:, -1] = -100
|
| 339 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
|
| 340 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "[BOS]",
|
| 3 |
+
"eos_token": "[EOS]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"unk_token": "[UNK]"
|
| 6 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea99402688e989d7fe75a55513c21cdfea22158a76765e99a102df307ff5ea5e
|
| 3 |
+
size 12308399
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:80f8520546b55cf3bc43997f06ffcd15aa71887b6fce7e6701bac6c0d9ff55d6
|
| 3 |
+
size 11670857
|