|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """PyTorch BailingMoE model.""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import ( | 
					
						
						|  | AttentionMaskConverter, | 
					
						
						|  | _prepare_4d_attention_mask, | 
					
						
						|  | _prepare_4d_causal_attention_mask, | 
					
						
						|  | _prepare_4d_causal_attention_mask_for_sdpa, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_outputs import MoeModelOutputWithPast | 
					
						
						|  | from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils.import_utils import is_torch_fx_available | 
					
						
						|  | from .configuration_bailing_moe_v2 import BailingMoeV2Config | 
					
						
						|  | from transformers.generation.utils import GenerationMixin | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from transformers.utils import ModelOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_fx_available(): | 
					
						
						|  | if not is_torch_greater_or_equal_than_1_13: | 
					
						
						|  | import torch.fx | 
					
						
						|  |  | 
					
						
						|  | _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "BailingMoeV2Config" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def roll_tensor(tensor, shifts=-1, dims=-1, fill_value=0): | 
					
						
						|  | """Roll the tensor input along the given dimension(s). | 
					
						
						|  | Inserted elements are set to be 0.0. | 
					
						
						|  | """ | 
					
						
						|  | rolled_tensor = torch.roll(tensor, shifts=shifts, dims=dims) | 
					
						
						|  | rolled_tensor.select(dims, shifts).fill_(fill_value) | 
					
						
						|  | return rolled_tensor, rolled_tensor.sum() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class MoEV2CausalLMOutputWithPast(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for causal language model (or autoregressive) outputs as well as Mixture of Expert's router hidden | 
					
						
						|  | states terms, to train a MoE model. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Language modeling loss (for next-token prediction). | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | 
					
						
						|  | `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | z_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided): | 
					
						
						|  | z_loss for the sparse modules. | 
					
						
						|  | aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided): | 
					
						
						|  | aux_loss for the sparse modules. | 
					
						
						|  | router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`. | 
					
						
						|  |  | 
					
						
						|  | Router logits of the encoder model, useful to compute the auxiliary loss and the z_loss for the sparse | 
					
						
						|  | modules. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: Optional[torch.FloatTensor] = None | 
					
						
						|  | past_key_values: Optional[Cache] = None | 
					
						
						|  | hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | attentions: Optional[tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | z_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | aux_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | router_logits: Optional[tuple[torch.FloatTensor]] = None | 
					
						
						|  | mtp_loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | mtp_logits: Optional[tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MoeV2ModelOutputWithPast(MoeModelOutputWithPast): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, mtp_hidden_states=None, **kwargs): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.mtp_hidden_states = mtp_hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask" | 
					
						
						|  | ) | 
					
						
						|  | return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_causal_mask( | 
					
						
						|  | input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | 
					
						
						|  | ): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoeV2.modeling_BailingMoeV2.AttentionMaskConverter._make_causal_mask" | 
					
						
						|  | ) | 
					
						
						|  | return AttentionMaskConverter._make_causal_mask( | 
					
						
						|  | input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2RMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | BailingMoeV2RMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(BailingMoeV2RMSNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2RotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | 
					
						
						|  | self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | 
					
						
						|  | else: | 
					
						
						|  | self.rope_type = "default" | 
					
						
						|  | self.max_seq_len_cached = config.max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = config.max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
						
						|  |  | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.original_inv_freq = self.inv_freq | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @dynamic_rope_update | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() * self.attention_scaling | 
					
						
						|  | sin = emb.sin() * self.attention_scaling | 
					
						
						|  |  | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rotary_dim = cos.shape[-1] | 
					
						
						|  | q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] | 
					
						
						|  | k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin) | 
					
						
						|  | k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q_embed = torch.cat([q_embed, q_pass], dim=-1) | 
					
						
						|  | k_embed = torch.cat([k_embed, k_pass], dim=-1) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2MLP(nn.Module): | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config, intermediate_size: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  |  | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2Gate(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  | self.num_experts = config.num_experts | 
					
						
						|  |  | 
					
						
						|  | self.n_group = config.n_group | 
					
						
						|  | self.topk_group = config.topk_group | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.gating_dim = config.hidden_size | 
					
						
						|  | self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim))) | 
					
						
						|  | self.routed_scaling_factor = config.routed_scaling_factor | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer("expert_bias", torch.zeros((self.num_experts))) | 
					
						
						|  | self.reset_parameters() | 
					
						
						|  |  | 
					
						
						|  | def reset_parameters(self) -> None: | 
					
						
						|  | import torch.nn.init as init | 
					
						
						|  |  | 
					
						
						|  | init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | 
					
						
						|  |  | 
					
						
						|  | def group_limited_topk( | 
					
						
						|  | self, | 
					
						
						|  | scores: torch.Tensor, | 
					
						
						|  | ): | 
					
						
						|  | num_tokens, _ = scores.size() | 
					
						
						|  |  | 
					
						
						|  | group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1) | 
					
						
						|  | group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] | 
					
						
						|  | group_mask = torch.zeros_like(group_scores) | 
					
						
						|  | group_mask.scatter_(1, group_idx, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | score_mask = ( | 
					
						
						|  | group_mask.unsqueeze(-1) | 
					
						
						|  | .expand(num_tokens, self.n_group, self.num_experts // self.n_group) | 
					
						
						|  | .reshape(num_tokens, -1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf')) | 
					
						
						|  | probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | return probs, top_indices | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) | 
					
						
						|  | logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32)) | 
					
						
						|  |  | 
					
						
						|  | scores = torch.sigmoid(logits.float()).type_as(logits) | 
					
						
						|  |  | 
					
						
						|  | scores_for_routing = scores + self.expert_bias | 
					
						
						|  | _, topk_idx = self.group_limited_topk(scores_for_routing) | 
					
						
						|  |  | 
					
						
						|  | scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits) | 
					
						
						|  |  | 
					
						
						|  | topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores | 
					
						
						|  | topk_weight = topk_weight * self.routed_scaling_factor | 
					
						
						|  |  | 
					
						
						|  | return topk_idx, topk_weight, logits | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2SparseMoeBlock(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A mixed expert module containing shared experts. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.num_experts_per_tok = config.num_experts_per_tok | 
					
						
						|  | self._setup_experts() | 
					
						
						|  | self.gate = BailingMoeV2Gate(config) | 
					
						
						|  | if config.num_shared_experts is not None: | 
					
						
						|  | self.shared_experts = BailingMoeV2MLP( | 
					
						
						|  | config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _setup_experts(self): | 
					
						
						|  | self.experts = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | BailingMoeV2MLP(config=self.config, intermediate_size=self.config.moe_intermediate_size) | 
					
						
						|  | for _ in range(self.config.num_experts) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | identity = hidden_states | 
					
						
						|  | bsz, seq_len, h = hidden_states.shape | 
					
						
						|  | topk_idx, topk_weight, router_logits = self.gate(hidden_states) | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) | 
					
						
						|  | flat_topk_idx = topk_idx.view(-1) | 
					
						
						|  | if self.training: | 
					
						
						|  | hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0) | 
					
						
						|  | y = torch.empty_like(hidden_states) | 
					
						
						|  | for i, expert in enumerate(self.experts): | 
					
						
						|  | y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) | 
					
						
						|  | y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | 
					
						
						|  | y = y.to(hidden_states.dtype).view(bsz, seq_len, h) | 
					
						
						|  | else: | 
					
						
						|  | y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h) | 
					
						
						|  | if self.config.num_shared_experts is not None: | 
					
						
						|  | y = y + self.shared_experts(identity) | 
					
						
						|  | return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1)) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def moe_infer(self, x, topk_ids, topk_weight): | 
					
						
						|  | cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) | 
					
						
						|  | cnts.scatter_(1, topk_ids, 1) | 
					
						
						|  | tokens_per_expert = cnts.sum(dim=0) | 
					
						
						|  | idxs = topk_ids.view(-1).argsort() | 
					
						
						|  | sorted_tokens = x[idxs // topk_ids.shape[1]] | 
					
						
						|  | tokens_per_expert = tokens_per_expert.cpu().numpy() | 
					
						
						|  | outputs = [] | 
					
						
						|  | start_idx = 0 | 
					
						
						|  | for i, num_tokens in enumerate(tokens_per_expert): | 
					
						
						|  | end_idx = start_idx + num_tokens | 
					
						
						|  | if num_tokens == 0: | 
					
						
						|  | continue | 
					
						
						|  | expert = self.experts[i] | 
					
						
						|  | tokens_for_this_expert = sorted_tokens[start_idx:end_idx] | 
					
						
						|  | expert_out = expert(tokens_for_this_expert) | 
					
						
						|  | outputs.append(expert_out.to(x.device)) | 
					
						
						|  | start_idx = end_idx | 
					
						
						|  |  | 
					
						
						|  | outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) | 
					
						
						|  | new_x = torch.empty_like(outs) | 
					
						
						|  | new_x[idxs] = outs | 
					
						
						|  | final_out = ( | 
					
						
						|  | new_x.view(*topk_ids.shape, -1) | 
					
						
						|  | .type(topk_weight.dtype) | 
					
						
						|  | .mul_(topk_weight.unsqueeze(dim=-1)) | 
					
						
						|  | .sum(dim=1) | 
					
						
						|  | .type(new_x.dtype) | 
					
						
						|  | ) | 
					
						
						|  | return final_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
						
						|  | "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = config.head_dim or self.hidden_size // self.num_heads | 
					
						
						|  | partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 | 
					
						
						|  | self.rope_dim = int(self.head_dim * partial_rotary_factor) | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | self.query_key_value = nn.Linear( | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, | 
					
						
						|  | bias=config.use_qkv_bias, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.config.use_qk_norm: | 
					
						
						|  | self.query_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps) | 
					
						
						|  | self.key_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps) | 
					
						
						|  | self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias) | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.query_key_value(hidden_states) | 
					
						
						|  | qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = qkv.split( | 
					
						
						|  | [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 | 
					
						
						|  | ) | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if self.config.use_qk_norm: | 
					
						
						|  | query_states = self.query_layernorm(query_states) | 
					
						
						|  | key_states = self.key_layernorm(key_states) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, -1) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.dense(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2FlashAttention2(BailingMoeV2Attention): | 
					
						
						|  | """ | 
					
						
						|  | BailingMoeV2 flash attention module. This module inherits from `BailingMoeV2Attention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | qkv = self.query_key_value(hidden_states) | 
					
						
						|  | qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = qkv.split( | 
					
						
						|  | [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 | 
					
						
						|  | ) | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if self.config.use_qk_norm: | 
					
						
						|  | query_states = self.query_layernorm(query_states) | 
					
						
						|  | key_states = self.key_layernorm(key_states) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | dropout_rate = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | elif torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.query_key_value.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() | 
					
						
						|  | attn_output = self.dense(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`int`, *optional*): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | query_length (`int`): | 
					
						
						|  | The length of the query sequence in terms of tokens. This represents the number of tokens in the | 
					
						
						|  | `query_states` tensor along the sequence dimension. It is used to determine the effective sequence | 
					
						
						|  | length for attention computations. | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2SdpaAttention(BailingMoeV2Attention): | 
					
						
						|  | """ | 
					
						
						|  | BailingMoeV2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `BailingMoeV2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "BailingMoeV2Model is using BailingMoeV2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.query_key_value(hidden_states) | 
					
						
						|  | qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = qkv.split( | 
					
						
						|  | [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 | 
					
						
						|  | ) | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if self.config.use_qk_norm: | 
					
						
						|  | query_states = self.query_layernorm(query_states) | 
					
						
						|  | key_states = self.key_layernorm(key_states) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  |  | 
					
						
						|  | is_causal=self.is_causal and attention_mask is None and q_len > 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, -1) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.dense(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ATTENTION_CLASSES = { | 
					
						
						|  | "eager": BailingMoeV2Attention, | 
					
						
						|  | "flash_attention_2": BailingMoeV2FlashAttention2, | 
					
						
						|  | "sdpa": BailingMoeV2SdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2MTPLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.enorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False) | 
					
						
						|  | self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) | 
					
						
						|  | self.mlp = BailingMoeV2SparseMoeBlock(config) | 
					
						
						|  |  | 
					
						
						|  | self.hnorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.final_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_embeds, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | output_router_logits: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | input_embeds = self.enorm(input_embeds) | 
					
						
						|  | hidden_states = self.hnorm(hidden_states) | 
					
						
						|  | hidden_states = self.eh_proj(torch.cat([input_embeds, hidden_states], dim=-1)) | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.attention( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | if isinstance(hidden_states, tuple): | 
					
						
						|  | hidden_states, router_logits = hidden_states | 
					
						
						|  | else: | 
					
						
						|  | router_logits = None | 
					
						
						|  | hidden_states = residual + hidden_states.to(residual.device) | 
					
						
						|  | hidden_states = self.final_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | outputs += (router_logits,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2DecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = ( | 
					
						
						|  | BailingMoeV2SparseMoeBlock(config) | 
					
						
						|  | if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace) | 
					
						
						|  | else BailingMoeV2MLP(config=config, intermediate_size=config.intermediate_size) | 
					
						
						|  | ) | 
					
						
						|  | self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | output_router_logits: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): | 
					
						
						|  | attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
						
						|  | query_sequence_length, key_sequence_length)` if default attention is used. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): | 
					
						
						|  | cached past key and value projection states | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_router_logits (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the logits of all the routers. They are useful for computing the router loss, | 
					
						
						|  | and should not be returned during inference. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.attention( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | if isinstance(hidden_states, tuple): | 
					
						
						|  | hidden_states, router_logits = hidden_states | 
					
						
						|  | else: | 
					
						
						|  | router_logits = None | 
					
						
						|  | hidden_states = residual + hidden_states.to(residual.device) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | outputs += (router_logits,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BAILINGMOEV2_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`BailingMoeV2Config`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | BAILINGMOEV2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BailingMoeV2PreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = BailingMoeV2Config | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["BailingMoeV2DecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BAILINGMOEV2_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance; | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | BAILINGMOEV2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BailingMoeV2Model(BailingMoeV2PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeV2DecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: BailingMoeV2Config | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.num_nextn_predict_layers = config.num_nextn_predict_layers | 
					
						
						|  |  | 
					
						
						|  | self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = [] | 
					
						
						|  | for layer_idx in range(config.num_hidden_layers): | 
					
						
						|  | layer_cls = BailingMoeV2DecoderLayer if layer_idx < config.num_hidden_layers - config.num_nextn_predict_layers else BailingMoeV2MTPLayer | 
					
						
						|  | self.layers.append(layer_cls(config, layer_idx)) | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList(self.layers) | 
					
						
						|  |  | 
					
						
						|  | self._use_sdpa = config._attn_implementation == "sdpa" | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  | self.norm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.rotary_emb = BailingMoeV2RotaryEmbedding(config=config) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | output_router_logits: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, MoeV2ModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | output_router_logits = ( | 
					
						
						|  | output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape[:2] | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length = inputs_embeds.shape[:2] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if use_cache and past_key_values is None: | 
					
						
						|  | past_key_values = DynamicCache() | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.word_embeddings(input_ids) | 
					
						
						|  |  | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | elif self._use_sdpa and not output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_seen_tokens, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, (batch_size, seq_length), inputs_embeds, past_seen_tokens | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | all_router_logits = () if output_router_logits else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  | layers = self.layers[: -self.num_nextn_predict_layers] if self.num_nextn_predict_layers > 0 else self.layers | 
					
						
						|  | mtp_layers = self.layers[-self.num_nextn_predict_layers :] if self.num_nextn_predict_layers > 0 else None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | output_router_logits, | 
					
						
						|  | use_cache, | 
					
						
						|  | position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits and layer_outputs[-1] is not None: | 
					
						
						|  | all_router_logits += (layer_outputs[-1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  | main_hidden_states = hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (main_hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | mtp_hidden_states = None | 
					
						
						|  |  | 
					
						
						|  | if mtp_layers: | 
					
						
						|  | for decoder_layer in mtp_layers: | 
					
						
						|  | input_ids, _ = roll_tensor(input_ids, shifts=-1, dims=-1) | 
					
						
						|  | inputs_embeds = self.word_embeddings(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | output_router_logits, | 
					
						
						|  | use_cache, | 
					
						
						|  | position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | if mtp_hidden_states is None: | 
					
						
						|  | mtp_hidden_states = [] | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  | mtp_hidden_states.append(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits and layer_outputs[-1] is not None: | 
					
						
						|  | all_router_logits += (layer_outputs[-1],) | 
					
						
						|  |  | 
					
						
						|  | next_cache = None | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_cache = next_decoder_cache | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [main_hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return MoeV2ModelOutputWithPast( | 
					
						
						|  | last_hidden_state=main_hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | mtp_hidden_states=mtp_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | router_logits=all_router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BailingMoeV2ForCausalLM(BailingMoeV2PreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: BailingMoeV2Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = BailingMoeV2Model(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  | self.num_nextn_predict_layers = config.num_nextn_predict_layers | 
					
						
						|  | self.mtp_loss_scaling_factor = config.mtp_loss_scaling_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=MoEV2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | output_router_logits: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, MoEV2CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | >>> model = BailingMoeV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
						
						|  | ```""" | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | output_router_logits = ( | 
					
						
						|  | output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | all_mtp_loss = None | 
					
						
						|  | aux_loss = None | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits, labels, self.config.vocab_size, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | all_mtp_logits = None | 
					
						
						|  | if self.num_nextn_predict_layers > 0: | 
					
						
						|  | mtp_hidden_states = outputs.mtp_hidden_states | 
					
						
						|  | shift_labels_mtp = None | 
					
						
						|  | for i in range(self.num_nextn_predict_layers): | 
					
						
						|  | mtp_hidden_states = mtp_hidden_states[i] | 
					
						
						|  | mtp_logits = self.lm_head(mtp_hidden_states).float() | 
					
						
						|  | if all_mtp_logits is None: | 
					
						
						|  | all_mtp_logits = [] | 
					
						
						|  | all_mtp_logits.append(mtp_logits) | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if shift_labels_mtp is None: | 
					
						
						|  | shift_labels_mtp = labels.clone() | 
					
						
						|  | shift_labels_mtp, _ = roll_tensor(shift_labels_mtp, shifts=-1, dims=-1, fill_value=-100) | 
					
						
						|  | mtp_logits_ = mtp_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | mtp_loss = self.loss_function(mtp_logits_, shift_labels_mtp.to(mtp_logits_.device).view(-1), self.config.vocab_size, **kwargs) | 
					
						
						|  | if loss is not None: | 
					
						
						|  | loss += self.mtp_loss_scaling_factor * mtp_loss | 
					
						
						|  | else: | 
					
						
						|  | loss = self.mtp_loss_scaling_factor * mtp_loss | 
					
						
						|  |  | 
					
						
						|  | if all_mtp_loss is None: | 
					
						
						|  | all_mtp_loss = [] | 
					
						
						|  | all_mtp_loss.append(mtp_loss) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | output = (aux_loss,) + output | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MoEV2CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | mtp_loss=all_mtp_loss, | 
					
						
						|  | aux_loss=aux_loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | mtp_logits=all_mtp_logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | router_logits=outputs.router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  |