first commit
Browse files- README.md +198 -0
- config.json +64 -0
- configuration_lladamoe.py +97 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_lladamoe.py +1186 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,198 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            cense: apache-2.0
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - diffusion
         | 
| 4 | 
            +
            - dllm
         | 
| 5 | 
            +
            ---
         | 
| 6 | 
            +
            # LLaDA-MoE
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            **LLaDA-MoE** is a new and upgraded series of the LLaDA diffusion language model. This pre-release includes two cutting-edge models:
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            - `LLaDA-MoE-7B-A1B-Base`: A base pre-trained model designed for research and secondary development.
         | 
| 11 | 
            +
            - `LLaDA-MoE-7B-A1B-Instruct`: An instruction-tuned model optimized for practical applications.
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            ---
         | 
| 14 | 
            +
            <div align="center">
         | 
| 15 | 
            +
              <img src="https://raw.githubusercontent.com/Ulov888/LLaDA_Assets/main/benchmarks_grouped_bar.png" width="800" />
         | 
| 16 | 
            +
              <img src="https://raw.githubusercontent.com/Ulov888/LLaDA_Assets/main/benchmarks_details_table.png" width="800" />
         | 
| 17 | 
            +
            </div>
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            ## 🚀 Performance Highlights
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            - **Leading MoE Architecture**:  
         | 
| 25 | 
            +
              The first open-source **Mixture-of-Experts (MoE) diffusion large language model**, pre-trained from scratch on approximately **20 trillion tokens**.
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            - **Efficient Inference**:  
         | 
| 28 | 
            +
              With **7 billion total parameters**, only **1.4 billion** are activated during inference. LLaDA-MoE significantly reduces computational costs while outperforming open-source dense models of similar scale.
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            - **Impressive Performance on Code & Complex Reasoning**:  
         | 
| 31 | 
            +
              Excels in tasks such as **code generation** and **advanced mathematical reasoning**, demonstrating strong reasoning capabilities.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            - **Tool Use**:  
         | 
| 34 | 
            +
              Supports **tool calling** and achieves excellent performance in complex agent-based tasks.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            - **Open & Extensible**:  
         | 
| 37 | 
            +
              Fully open-source with commitment to transparency. We plan to release a **leading inference framework** in the future and continue investing in cutting-edge areas like **diffusion LLMs (dLLM)** to drive disruptive innovation.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            ---
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ## 📦 Model Variants
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            | Model ID | Description | Hugging Face Link |
         | 
| 44 | 
            +
            |--------|-------------|-------------------|
         | 
| 45 | 
            +
            | [`inclusionAI/LLaDA-MoE-7B-A1B-Base`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) | Base pre-trained model for research and fine-tuning. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) |
         | 
| 46 | 
            +
            | [`inclusionAI/LLaDA-MoE-7B-A1B-Instruct`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct) | Instruction-tuned model, ready for downstream applications. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct) |
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            ---
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            ## 🔍 Model Overview
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            **LLaDA-MoE-7B-A1B** has the following specifications:
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            - **Type**: Mixture-of-Experts (MoE) Diffusion Language Model
         | 
| 55 | 
            +
            - **Total Parameters (Non-Embedding)**: 7.03B
         | 
| 56 | 
            +
            - **Number of Layers**: 16
         | 
| 57 | 
            +
            - **Attention Heads**: 16
         | 
| 58 | 
            +
            - **Context Length**: 4,096 tokens
         | 
| 59 | 
            +
            - **Position Embedding**: Rotary (RoPE)
         | 
| 60 | 
            +
            - **Vocabulary Size**: 157,184
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            ---
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ## ⚡ Quickstart
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            Make sure you have `transformers` and its dependencies installed:
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            ```bash
         | 
| 69 | 
            +
            pip install transformers torch
         | 
| 70 | 
            +
            ```
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            You can then load the model using the AutoModelForCausalLM and AutoTokenizer classes:
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            ```python
         | 
| 75 | 
            +
            import torch
         | 
| 76 | 
            +
            import numpy as np
         | 
| 77 | 
            +
            import torch.nn.functional as F
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            def add_gumbel_noise(logits, temperature):
         | 
| 83 | 
            +
                if temperature == 0:
         | 
| 84 | 
            +
                    return logits
         | 
| 85 | 
            +
                logits = logits.to(torch.float64)
         | 
| 86 | 
            +
                noise = torch.rand_like(logits, dtype=torch.float64)
         | 
| 87 | 
            +
                gumbel_noise = (- torch.log(noise)) ** temperature
         | 
| 88 | 
            +
                return logits.exp() / gumbel_noise
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def get_num_transfer_tokens(mask_index, steps):
         | 
| 92 | 
            +
                mask_num = mask_index.sum(dim=1, keepdim=True)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                base = mask_num // steps
         | 
| 95 | 
            +
                remainder = mask_num % steps
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                for i in range(mask_num.size(0)):
         | 
| 100 | 
            +
                    num_transfer_tokens[i, :remainder[i]] += 1
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                return num_transfer_tokens
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            @ torch.no_grad()
         | 
| 106 | 
            +
            def generate(model, prompt, steps=128, gen_length=128, block_length=128, temperature=0.,
         | 
| 107 | 
            +
                         cfg_scale=0., remasking='low_confidence', mask_id=156895):
         | 
| 108 | 
            +
                x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
         | 
| 109 | 
            +
                x[:, :prompt.shape[1]] = prompt.clone()
         | 
| 110 | 
            +
                prompt_index = (x != mask_id)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                assert gen_length % block_length == 0
         | 
| 113 | 
            +
                num_blocks = gen_length // block_length
         | 
| 114 | 
            +
                assert steps % num_blocks == 0
         | 
| 115 | 
            +
                steps = steps // num_blocks
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                for num_block in range(num_blocks):
         | 
| 118 | 
            +
                    block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
         | 
| 119 | 
            +
                    num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
         | 
| 120 | 
            +
                    for i in range(steps):
         | 
| 121 | 
            +
                        mask_index = (x == mask_id)
         | 
| 122 | 
            +
                        if cfg_scale > 0.:
         | 
| 123 | 
            +
                            un_x = x.clone()
         | 
| 124 | 
            +
                            un_x[prompt_index] = mask_id
         | 
| 125 | 
            +
                            x_ = torch.cat([x, un_x], dim=0)
         | 
| 126 | 
            +
                            logits = model(x_).logits
         | 
| 127 | 
            +
                            logits, un_logits = torch.chunk(logits, 2, dim=0)
         | 
| 128 | 
            +
                            logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
         | 
| 129 | 
            +
                        else:
         | 
| 130 | 
            +
                            logits = model(x).logits
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                        logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
         | 
| 133 | 
            +
                        x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                        if remasking == 'low_confidence':
         | 
| 136 | 
            +
                            p = F.softmax(logits, dim=-1)
         | 
| 137 | 
            +
                            x0_p = torch.squeeze(
         | 
| 138 | 
            +
                                torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
         | 
| 139 | 
            +
                        elif remasking == 'random':
         | 
| 140 | 
            +
                            x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
         | 
| 141 | 
            +
                        else:
         | 
| 142 | 
            +
                            raise NotImplementedError(remasking)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                        x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                        x0 = torch.where(mask_index, x0, x)
         | 
| 147 | 
            +
                        confidence = torch.where(mask_index, x0_p, -np.inf)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                        transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
         | 
| 150 | 
            +
                        for j in range(confidence.shape[0]):
         | 
| 151 | 
            +
                            _, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
         | 
| 152 | 
            +
                            transfer_index[j, select_index] = True
         | 
| 153 | 
            +
                        x[transfer_index] = x0[transfer_index]
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                return x
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            device = 'cuda'
         | 
| 159 | 
            +
            model = AutoModel.from_pretrained('inclusionAI/LLaDA-MoE-7B-A1B-Instruct', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval()
         | 
| 160 | 
            +
            tokenizer = AutoTokenizer.from_pretrained('inclusionAI/LLaDA-MoE-7B-A1B-Instruct', trust_remote_code=True)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
         | 
| 163 | 
            +
            m = [
         | 
| 164 | 
            +
                {"role": "system", "content": "You are a helpful AI assistant."},
         | 
| 165 | 
            +
                {"role": "user", "content": prompt}
         | 
| 166 | 
            +
            ]
         | 
| 167 | 
            +
            prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            input_ids = tokenizer(prompt)['input_ids']
         | 
| 170 | 
            +
            input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            text = generate(model, input_ids, steps=128, gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence')
         | 
| 173 | 
            +
            print(tokenizer.batch_decode(text[:, input_ids.shape[1]:], skip_special_tokens=False)[0])
         | 
| 174 | 
            +
             | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
             | 
| 178 | 
            +
            ```
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            ## 📚 Citation (Coming Soon)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            We are preparing the technical report and citation information.  
         | 
| 184 | 
            +
            Stay tuned — citation details will be available soon.
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            ---
         | 
| 187 | 
            +
             | 
| 188 | 
            +
            ## 🌐 License
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            This project is licensed under the terms of the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
         | 
| 191 | 
            +
             | 
| 192 | 
            +
            ---
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            ## 🤝 Contact & Collaboration
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            For questions, collaborations, or feedback, please reach out via [Hugging Face](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) or open an issue in the [repository](https://github.com/inclusionAI).
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            👉 Join us in advancing open, efficient, and intelligent language models!
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,64 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "LLaDAMoEModel"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "attention_bias": false,
         | 
| 6 | 
            +
              "attention_dropout": 0.0,
         | 
| 7 | 
            +
              "clip_qkv": null,
         | 
| 8 | 
            +
              "dense_intermediate_size": 8192,
         | 
| 9 | 
            +
              "eos_token_id": 156892,
         | 
| 10 | 
            +
              "expert_intermediate_size": 1024,
         | 
| 11 | 
            +
              "hidden_act": "silu",
         | 
| 12 | 
            +
              "hidden_size": 2048,
         | 
| 13 | 
            +
              "initializer_range": 0.02,
         | 
| 14 | 
            +
              "max_position_embeddings": 8192,
         | 
| 15 | 
            +
              "model_type": "llada",
         | 
| 16 | 
            +
              "moe_layer_freq": [
         | 
| 17 | 
            +
                1,
         | 
| 18 | 
            +
                1,
         | 
| 19 | 
            +
                1,
         | 
| 20 | 
            +
                1,
         | 
| 21 | 
            +
                1,
         | 
| 22 | 
            +
                1,
         | 
| 23 | 
            +
                1,
         | 
| 24 | 
            +
                1,
         | 
| 25 | 
            +
                1,
         | 
| 26 | 
            +
                1,
         | 
| 27 | 
            +
                1,
         | 
| 28 | 
            +
                1,
         | 
| 29 | 
            +
                1,
         | 
| 30 | 
            +
                1,
         | 
| 31 | 
            +
                1,
         | 
| 32 | 
            +
                1
         | 
| 33 | 
            +
              ],
         | 
| 34 | 
            +
              "moe_router_enable_expert_bias": false,
         | 
| 35 | 
            +
              "moe_router_score_function": "softmax",
         | 
| 36 | 
            +
              "norm_topk_prob": null,
         | 
| 37 | 
            +
              "num_attention_heads": 16,
         | 
| 38 | 
            +
              "num_experts": 64,
         | 
| 39 | 
            +
              "num_experts_per_tok": 8,
         | 
| 40 | 
            +
              "num_hidden_layers": 16,
         | 
| 41 | 
            +
              "num_key_value_heads": 16,
         | 
| 42 | 
            +
              "output_router_logits": false,
         | 
| 43 | 
            +
              "pad_token_id": 156892,
         | 
| 44 | 
            +
              "partial_rotary_factor": 1,
         | 
| 45 | 
            +
              "qk_layernorm": true,
         | 
| 46 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 47 | 
            +
              "rope_scaling": null,
         | 
| 48 | 
            +
              "rope_theta": 50000,
         | 
| 49 | 
            +
              "routed_scaling_factor": 1,
         | 
| 50 | 
            +
              "router_aux_loss_coef": 0.01,
         | 
| 51 | 
            +
              "router_num_group": null,
         | 
| 52 | 
            +
              "router_topk_group": null,
         | 
| 53 | 
            +
              "shared_expert_intermediate_size": null,
         | 
| 54 | 
            +
              "tie_word_embeddings": false,
         | 
| 55 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 56 | 
            +
              "transformers_version": "4.53.2",
         | 
| 57 | 
            +
              "use_cache": false,
         | 
| 58 | 
            +
              "vocab_size": 157184,
         | 
| 59 | 
            +
              "auto_map": {
         | 
| 60 | 
            +
                "AutoConfig": "configuration_lladamoe.LLaDAConfig",
         | 
| 61 | 
            +
                "AutoModel": "modeling_lladamoe.LLaDAMoEModelLM",
         | 
| 62 | 
            +
                "AutoModelForCausalLM": "modeling_lladamoe.LLaDAMoEModelLM"
         | 
| 63 | 
            +
              }
         | 
| 64 | 
            +
            }
         | 
    	
        configuration_lladamoe.py
    ADDED
    
    | @@ -0,0 +1,97 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            LLaDA MoE configuration
         | 
| 3 | 
            +
            """
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 6 | 
            +
            from transformers.modeling_rope_utils import rope_config_validation
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            class LLaDAConfig(PretrainedConfig):
         | 
| 10 | 
            +
                model_type = "llada"
         | 
| 11 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                def __init__(
         | 
| 14 | 
            +
                    self,
         | 
| 15 | 
            +
                    vocab_size=-1,
         | 
| 16 | 
            +
                    hidden_size=-1,
         | 
| 17 | 
            +
                    dense_intermediate_size=-1,
         | 
| 18 | 
            +
                    expert_intermediate_size=-1,
         | 
| 19 | 
            +
                    shared_expert_intermediate_size=-1,
         | 
| 20 | 
            +
                    num_hidden_layers=-1,
         | 
| 21 | 
            +
                    num_attention_heads=-1,
         | 
| 22 | 
            +
                    num_key_value_heads=None,
         | 
| 23 | 
            +
                    hidden_act="silu",
         | 
| 24 | 
            +
                    max_position_embeddings=4096,
         | 
| 25 | 
            +
                    initializer_range=0.02,
         | 
| 26 | 
            +
                    rms_norm_eps=1e-05,
         | 
| 27 | 
            +
                    use_cache=False,
         | 
| 28 | 
            +
                    pad_token_id=1,
         | 
| 29 | 
            +
                    bos_token_id=None,
         | 
| 30 | 
            +
                    eos_token_id=50279,
         | 
| 31 | 
            +
                    tie_word_embeddings=False,
         | 
| 32 | 
            +
                    rope_theta=-1,
         | 
| 33 | 
            +
                    partial_rotary_factor=-1,
         | 
| 34 | 
            +
                    rope_scaling=None,
         | 
| 35 | 
            +
                    attention_bias=False,
         | 
| 36 | 
            +
                    attention_dropout=0.0,
         | 
| 37 | 
            +
                    clip_qkv=None,
         | 
| 38 | 
            +
                    num_experts_per_tok=-1,
         | 
| 39 | 
            +
                    num_experts=-1,
         | 
| 40 | 
            +
                    output_router_logits=False,
         | 
| 41 | 
            +
                    router_aux_loss_coef=0.01,
         | 
| 42 | 
            +
                    norm_topk_prob=None,        
         | 
| 43 | 
            +
                    qk_layernorm=None,
         | 
| 44 | 
            +
                    moe_layer_freq=[],
         | 
| 45 | 
            +
                    moe_router_enable_expert_bias=None,
         | 
| 46 | 
            +
                    moe_router_score_function=None,
         | 
| 47 | 
            +
                    routed_scaling_factor=1,
         | 
| 48 | 
            +
                    router_num_group=-2,
         | 
| 49 | 
            +
                    router_topk_group=-2,
         | 
| 50 | 
            +
                    **kwargs,
         | 
| 51 | 
            +
                ):
         | 
| 52 | 
            +
                    self.vocab_size = vocab_size
         | 
| 53 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 54 | 
            +
                    self.hidden_size = hidden_size
         | 
| 55 | 
            +
                    self.expert_intermediate_size = expert_intermediate_size
         | 
| 56 | 
            +
                    self.dense_intermediate_size = dense_intermediate_size
         | 
| 57 | 
            +
                    self.shared_expert_intermediate_size = shared_expert_intermediate_size
         | 
| 58 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 59 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 60 | 
            +
                    if num_key_value_heads is None:
         | 
| 61 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 62 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    self.hidden_act = hidden_act
         | 
| 65 | 
            +
                    self.initializer_range = initializer_range
         | 
| 66 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 67 | 
            +
                    self.use_cache = use_cache
         | 
| 68 | 
            +
                    self.rope_theta = rope_theta
         | 
| 69 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 70 | 
            +
                    self.attention_bias = attention_bias
         | 
| 71 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 72 | 
            +
                    self.clip_qkv = clip_qkv
         | 
| 73 | 
            +
                    self.num_experts_per_tok = num_experts_per_tok
         | 
| 74 | 
            +
                    self.num_experts = num_experts
         | 
| 75 | 
            +
                    self.output_router_logits = output_router_logits
         | 
| 76 | 
            +
                    self.router_aux_loss_coef = router_aux_loss_coef
         | 
| 77 | 
            +
                    self.norm_topk_prob = norm_topk_prob
         | 
| 78 | 
            +
                    self.qk_layernorm = qk_layernorm
         | 
| 79 | 
            +
                    self.moe_layer_freq = moe_layer_freq
         | 
| 80 | 
            +
                    self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
         | 
| 81 | 
            +
                    self.moe_router_score_function = moe_router_score_function
         | 
| 82 | 
            +
                    self.partial_rotary_factor = partial_rotary_factor
         | 
| 83 | 
            +
                    self.routed_scaling_factor = routed_scaling_factor
         | 
| 84 | 
            +
                    self.router_num_group = router_num_group
         | 
| 85 | 
            +
                    self.router_topk_group = router_topk_group
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    if self.rope_scaling is not None and "type" in self.rope_scaling:
         | 
| 88 | 
            +
                        self.rope_scaling["rope_type"] = self.rope_scaling["type"]
         | 
| 89 | 
            +
                    rope_config_validation(self)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    super().__init__(
         | 
| 92 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 93 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 94 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 95 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 96 | 
            +
                        **kwargs,
         | 
| 97 | 
            +
                    )
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "eos_token_id": 156892,
         | 
| 4 | 
            +
              "pad_token_id": 156892,
         | 
| 5 | 
            +
              "transformers_version": "4.46.3",
         | 
| 6 | 
            +
              "use_cache": false
         | 
| 7 | 
            +
            }
         | 
    	
        model-00001-of-00003.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:84a7f34af2f3f14d767b0106b8fa7f0d7f9b95a0eeac74f2ab3f21bd69a03908
         | 
| 3 | 
            +
            size 4999258928
         | 
    	
        model-00002-of-00003.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2ddb9174a03003263250c789942372382e2ce97f115377e28cb749c082f0b2d7
         | 
| 3 | 
            +
            size 4997188984
         | 
    	
        model-00003-of-00003.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b1998424a021938681487ece097838f7131324eb4f776b8b0ce0c515526b31f4
         | 
| 3 | 
            +
            size 4717712520
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        modeling_lladamoe.py
    ADDED
    
    | @@ -0,0 +1,1186 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """LLaDA MoE model pytorch implementation"""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import torch.nn.functional as F
         | 
| 8 | 
            +
            import torch.utils.checkpoint
         | 
| 9 | 
            +
            from torch import nn
         | 
| 10 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from transformers.activations import ACT2FN
         | 
| 13 | 
            +
            from transformers.cache_utils import Cache, DynamicCache, StaticCache
         | 
| 14 | 
            +
            from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 15 | 
            +
            from transformers.modeling_outputs import (
         | 
| 16 | 
            +
                MoeCausalLMOutputWithPast,
         | 
| 17 | 
            +
                MoeModelOutputWithPast,
         | 
| 18 | 
            +
            )
         | 
| 19 | 
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
         | 
| 20 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 21 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 22 | 
            +
            from transformers.utils import (
         | 
| 23 | 
            +
                add_start_docstrings,
         | 
| 24 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 25 | 
            +
                is_flash_attn_2_available,
         | 
| 26 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 27 | 
            +
                logging,
         | 
| 28 | 
            +
                replace_return_docstrings,
         | 
| 29 | 
            +
            )
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from .configuration_lladamoe import LLaDAConfig
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            if is_flash_attn_2_available():
         | 
| 35 | 
            +
                from transformers.modeling_flash_attention_utils import _flash_attention_forward
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            _CONFIG_FOR_DOC = "LLaDAConfig"
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            # Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
         | 
| 44 | 
            +
            def load_balancing_loss_func(
         | 
| 45 | 
            +
                gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
         | 
| 46 | 
            +
            ) -> float:
         | 
| 47 | 
            +
                r"""
         | 
| 48 | 
            +
                Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
         | 
| 51 | 
            +
                function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
         | 
| 52 | 
            +
                experts is too unbalanced.
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                Args:
         | 
| 55 | 
            +
                    gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
         | 
| 56 | 
            +
                        Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
         | 
| 57 | 
            +
                        shape [batch_size X sequence_length, num_experts].
         | 
| 58 | 
            +
                    attention_mask (`torch.Tensor`, *optional*):
         | 
| 59 | 
            +
                        For diffusion language model, attention_mask is set to None by default.
         | 
| 60 | 
            +
                        If you pass an attention mask and expect the model to use it for computing other attention mechanisms,
         | 
| 61 | 
            +
                        it may lead to logits and aux_loss returned by the model being inconsistent with your expectations.
         | 
| 62 | 
            +
                    num_experts (`int`, *optional*):
         | 
| 63 | 
            +
                        Number of experts
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                Returns:
         | 
| 66 | 
            +
                    The auxiliary loss.
         | 
| 67 | 
            +
                """
         | 
| 68 | 
            +
                if gate_logits is None or not isinstance(gate_logits, tuple):
         | 
| 69 | 
            +
                    return 0
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                if isinstance(gate_logits, tuple):
         | 
| 72 | 
            +
                    compute_device = gate_logits[0].device
         | 
| 73 | 
            +
                    concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                if attention_mask is None:
         | 
| 82 | 
            +
                    # Compute the percentage of tokens routed to each experts
         | 
| 83 | 
            +
                    tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    # Compute the average probability of routing to these experts
         | 
| 86 | 
            +
                    router_prob_per_expert = torch.mean(routing_weights, dim=0)
         | 
| 87 | 
            +
                else:
         | 
| 88 | 
            +
                    batch_size, sequence_length = attention_mask.shape
         | 
| 89 | 
            +
                    num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
         | 
| 92 | 
            +
                    expert_attention_mask = (
         | 
| 93 | 
            +
                        attention_mask[None, :, :, None, None]
         | 
| 94 | 
            +
                        .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
         | 
| 95 | 
            +
                        .reshape(-1, top_k, num_experts)
         | 
| 96 | 
            +
                        .to(compute_device)
         | 
| 97 | 
            +
                    )
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    # Compute the percentage of tokens routed to each experts
         | 
| 100 | 
            +
                    tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
         | 
| 101 | 
            +
                        expert_attention_mask, dim=0
         | 
| 102 | 
            +
                    )
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
         | 
| 105 | 
            +
                    router_per_expert_attention_mask = (
         | 
| 106 | 
            +
                        attention_mask[None, :, :, None]
         | 
| 107 | 
            +
                        .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
         | 
| 108 | 
            +
                        .reshape(-1, num_experts)
         | 
| 109 | 
            +
                        .to(compute_device)
         | 
| 110 | 
            +
                    )
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    # Compute the average probability of routing to these experts
         | 
| 113 | 
            +
                    router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
         | 
| 114 | 
            +
                        router_per_expert_attention_mask, dim=0
         | 
| 115 | 
            +
                    )
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
         | 
| 118 | 
            +
                return overall_loss * num_experts
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeRMSNorm -> LLaDAMoERMSNorm
         | 
| 121 | 
            +
            class LLaDAMoERMSNorm(nn.Module):
         | 
| 122 | 
            +
                def __init__(self, hidden_size, eps=1e-5):
         | 
| 123 | 
            +
                    """
         | 
| 124 | 
            +
                    LLaDAMoERMSNorm is equivalent to T5LayerNorm
         | 
| 125 | 
            +
                    """
         | 
| 126 | 
            +
                    super().__init__()
         | 
| 127 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 128 | 
            +
                    self.variance_epsilon = eps
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                def forward(self, hidden_states):
         | 
| 131 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 132 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 133 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 134 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 135 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                def extra_repr(self):
         | 
| 138 | 
            +
                    return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
         | 
| 139 | 
            +
             | 
| 140 | 
            +
             | 
| 141 | 
            +
            ALL_LAYERNORM_LAYERS.append(LLaDAMoERMSNorm)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeRotaryEmbedding -> LLaDAMoERotaryEmbedding
         | 
| 144 | 
            +
            class LLaDAMoERotaryEmbedding(nn.Module):
         | 
| 145 | 
            +
                def __init__(
         | 
| 146 | 
            +
                    self,
         | 
| 147 | 
            +
                    dim=None,
         | 
| 148 | 
            +
                    max_position_embeddings=2048,
         | 
| 149 | 
            +
                    base=10000,
         | 
| 150 | 
            +
                    device=None,
         | 
| 151 | 
            +
                    scaling_factor=1.0,
         | 
| 152 | 
            +
                    rope_type="default",
         | 
| 153 | 
            +
                    config: Optional[LLaDAConfig] = None,
         | 
| 154 | 
            +
                ):
         | 
| 155 | 
            +
                    super().__init__()
         | 
| 156 | 
            +
                    # TODO (joao): remove the `if` below, only used for BC
         | 
| 157 | 
            +
                    self.rope_kwargs = {}
         | 
| 158 | 
            +
                    if config is None:
         | 
| 159 | 
            +
                        logger.warning_once(
         | 
| 160 | 
            +
                            "`LLaDAMoERotaryEmbedding` can now be fully parameterized by passing the model config through the "
         | 
| 161 | 
            +
                            "`config` argument. All other arguments will be removed in v4.46"
         | 
| 162 | 
            +
                        )
         | 
| 163 | 
            +
                        self.rope_kwargs = {
         | 
| 164 | 
            +
                            "rope_type": rope_type,
         | 
| 165 | 
            +
                            "factor": scaling_factor,
         | 
| 166 | 
            +
                            "dim": dim,
         | 
| 167 | 
            +
                            "base": base,
         | 
| 168 | 
            +
                            "max_position_embeddings": max_position_embeddings,
         | 
| 169 | 
            +
                        }
         | 
| 170 | 
            +
                        self.rope_type = rope_type
         | 
| 171 | 
            +
                        self.max_seq_len_cached = max_position_embeddings
         | 
| 172 | 
            +
                        self.original_max_seq_len = max_position_embeddings
         | 
| 173 | 
            +
                    else:
         | 
| 174 | 
            +
                        # BC: "rope_type" was originally "type"
         | 
| 175 | 
            +
                        if config.rope_scaling is not None:
         | 
| 176 | 
            +
                            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         | 
| 177 | 
            +
                        else:
         | 
| 178 | 
            +
                            self.rope_type = "default"
         | 
| 179 | 
            +
                        self.max_seq_len_cached = config.max_position_embeddings
         | 
| 180 | 
            +
                        self.original_max_seq_len = config.max_position_embeddings
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    self.config = config
         | 
| 183 | 
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
         | 
| 186 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 187 | 
            +
                    self.original_inv_freq = self.inv_freq
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                def _dynamic_frequency_update(self, position_ids, device):
         | 
| 190 | 
            +
                    """
         | 
| 191 | 
            +
                    dynamic RoPE layers should recompute `inv_freq` in the following situations:
         | 
| 192 | 
            +
                    1 - growing beyond the cached sequence length (allow scaling)
         | 
| 193 | 
            +
                    2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
         | 
| 194 | 
            +
                    """
         | 
| 195 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 196 | 
            +
                    if seq_len > self.max_seq_len_cached:  # growth
         | 
| 197 | 
            +
                        inv_freq, self.attention_scaling = self.rope_init_fn(
         | 
| 198 | 
            +
                            self.config, device, seq_len=seq_len, **self.rope_kwargs
         | 
| 199 | 
            +
                        )
         | 
| 200 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
         | 
| 201 | 
            +
                        self.max_seq_len_cached = seq_len
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
         | 
| 204 | 
            +
                        self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
         | 
| 205 | 
            +
                        self.max_seq_len_cached = self.original_max_seq_len
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                @torch.no_grad()
         | 
| 208 | 
            +
                def forward(self, x, position_ids):
         | 
| 209 | 
            +
                    if "dynamic" in self.rope_type:
         | 
| 210 | 
            +
                        self._dynamic_frequency_update(position_ids, device=x.device)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    # Core RoPE block
         | 
| 213 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 214 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 215 | 
            +
                    # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
         | 
| 216 | 
            +
                    device_type = x.device.type
         | 
| 217 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
         | 
| 218 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 219 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 220 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 221 | 
            +
                        cos = emb.cos()
         | 
| 222 | 
            +
                        sin = emb.sin()
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
         | 
| 225 | 
            +
                    cos = cos * self.attention_scaling
         | 
| 226 | 
            +
                    sin = sin * self.attention_scaling
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.rotate_half
         | 
| 232 | 
            +
            def rotate_half(x):
         | 
| 233 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 234 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 235 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 236 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
             | 
| 239 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.apply_rotary_pos_emb
         | 
| 240 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
         | 
| 241 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                Args:
         | 
| 244 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 245 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 246 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 247 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 248 | 
            +
                    position_ids (`torch.Tensor`, *optional*):
         | 
| 249 | 
            +
                        Deprecated and unused.
         | 
| 250 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 251 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 252 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 253 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 254 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 255 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 256 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 257 | 
            +
                Returns:
         | 
| 258 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 259 | 
            +
                """
         | 
| 260 | 
            +
                rotary_dim = cos.shape[-1]
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 263 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                q_rot = q[..., :rotary_dim]
         | 
| 266 | 
            +
                q_pass = q[..., rotary_dim:]
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                k_rot = k[..., :rotary_dim]
         | 
| 269 | 
            +
                k_pass = k[..., rotary_dim:]
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                q_rotated = (q_rot * cos) + (rotate_half(q_rot) * sin)
         | 
| 272 | 
            +
                k_rotated = (k_rot * cos) + (rotate_half(k_rot) * sin)
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                q_final = torch.cat((q_rotated, q_pass), dim=-1)
         | 
| 275 | 
            +
                k_final = torch.cat((k_rotated, k_pass), dim=-1)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                return q_final, k_final
         | 
| 278 | 
            +
             | 
| 279 | 
            +
             | 
| 280 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeMLP with OlmoeMLP->LLaDAMoEMLP
         | 
| 281 | 
            +
            class LLaDAMoEMLP(nn.Module):
         | 
| 282 | 
            +
                def __init__(self, config, mlp_type):
         | 
| 283 | 
            +
                    super().__init__()
         | 
| 284 | 
            +
                    self.config = config
         | 
| 285 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 286 | 
            +
                    if mlp_type == 'dense':
         | 
| 287 | 
            +
                        self.intermediate_size = config.dense_intermediate_size
         | 
| 288 | 
            +
                    elif mlp_type == 'expert':
         | 
| 289 | 
            +
                        self.intermediate_size = config.expert_intermediate_size
         | 
| 290 | 
            +
                    elif mlp_type == 'shared_expert':
         | 
| 291 | 
            +
                        self.intermediate_size = config.shared_expert_intermediate_size
         | 
| 292 | 
            +
                    else:
         | 
| 293 | 
            +
                        assert False, "unknown mlp type"
         | 
| 294 | 
            +
                    
         | 
| 295 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 296 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 297 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 298 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                def forward(self, x):
         | 
| 301 | 
            +
                    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 302 | 
            +
             | 
| 303 | 
            +
             | 
| 304 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.repeat_kv
         | 
| 305 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 306 | 
            +
                """
         | 
| 307 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 308 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 309 | 
            +
                """
         | 
| 310 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 311 | 
            +
                if n_rep == 1:
         | 
| 312 | 
            +
                    return hidden_states
         | 
| 313 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 314 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
             | 
| 317 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeAttention with OlmoeAttention->LLaDAMoEAttention
         | 
| 318 | 
            +
            class LLaDAMoEAttention(nn.Module):
         | 
| 319 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                def __init__(self, config: LLaDAConfig, layer_idx: Optional[int] = None):
         | 
| 322 | 
            +
                    super().__init__()
         | 
| 323 | 
            +
                    self.config = config
         | 
| 324 | 
            +
                    self.layer_idx = layer_idx
         | 
| 325 | 
            +
                    if layer_idx is None:
         | 
| 326 | 
            +
                        logger.warning_once(
         | 
| 327 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 328 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 329 | 
            +
                            "when creating this class."
         | 
| 330 | 
            +
                        )
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 333 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 334 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 335 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 336 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 337 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 338 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 339 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    # **For diffusion language model, we set is_causal to False by default.**
         | 
| 342 | 
            +
                    self.is_causal = False
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 345 | 
            +
                        raise ValueError(
         | 
| 346 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 347 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 348 | 
            +
                        )
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
         | 
| 351 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 352 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 353 | 
            +
                    self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
         | 
| 354 | 
            +
                    if config.qk_layernorm:
         | 
| 355 | 
            +
                        self.q_norm = LLaDAMoERMSNorm(self.head_dim, eps=config.rms_norm_eps)
         | 
| 356 | 
            +
                        self.k_norm = LLaDAMoERMSNorm(
         | 
| 357 | 
            +
                            self.head_dim, eps=config.rms_norm_eps
         | 
| 358 | 
            +
                        )
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                def forward(
         | 
| 361 | 
            +
                    self,
         | 
| 362 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 363 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 364 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 365 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 366 | 
            +
                    output_attentions: bool = False,
         | 
| 367 | 
            +
                    use_cache: bool = False,
         | 
| 368 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 369 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 370 | 
            +
                    **kwargs,
         | 
| 371 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 372 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 375 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 376 | 
            +
                    if 'q_norm' in dir(self):
         | 
| 377 | 
            +
                        query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
         | 
| 378 | 
            +
                        key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
         | 
| 379 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    if self.config.clip_qkv is not None:
         | 
| 382 | 
            +
                        query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 383 | 
            +
                        key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 384 | 
            +
                        value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 387 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 388 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    cos, sin = position_embeddings
         | 
| 391 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    if past_key_value is not None:
         | 
| 394 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 395 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 396 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 399 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    # **For diffusion language model, attention_mask is set to None(full attention) by default.**
         | 
| 404 | 
            +
                    attention_mask = None
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                    if attention_mask is not None:  # no matter the length, we just slice it
         | 
| 407 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 408 | 
            +
                        attn_weights = attn_weights + causal_mask
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    # upcast attention to fp32
         | 
| 411 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 412 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 413 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 416 | 
            +
                        raise ValueError(
         | 
| 417 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 418 | 
            +
                            f" {attn_output.size()}"
         | 
| 419 | 
            +
                        )
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    if not output_attentions:
         | 
| 428 | 
            +
                        attn_weights = None
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 431 | 
            +
             | 
| 432 | 
            +
             | 
| 433 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.FlashAttention2 with OlmoeFlashAttention2->LLaDAMoEFlashAttention2
         | 
| 434 | 
            +
            class LLaDAMoEFlashAttention2(LLaDAMoEAttention):
         | 
| 435 | 
            +
                """
         | 
| 436 | 
            +
                LLaDAMoE flash attention module. This module inherits from `LLaDAMoEAttention` as the weights of the module stays
         | 
| 437 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 438 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 439 | 
            +
                """
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                # copied from transformers.models.olmoe.modeling_olmoe.OlmoeFlashAttention2.__init__
         | 
| 442 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 443 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 446 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 447 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 448 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                def forward(
         | 
| 451 | 
            +
                    self,
         | 
| 452 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 453 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 454 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 455 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 456 | 
            +
                    output_attentions: bool = False,
         | 
| 457 | 
            +
                    use_cache: bool = False,
         | 
| 458 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 459 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 460 | 
            +
                    **kwargs,
         | 
| 461 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 462 | 
            +
                    output_attentions = False
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 467 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 468 | 
            +
                    if 'q_norm' in dir(self):
         | 
| 469 | 
            +
                        query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
         | 
| 470 | 
            +
                        key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
         | 
| 471 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 472 | 
            +
                    if self.config.clip_qkv is not None:
         | 
| 473 | 
            +
                        query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 474 | 
            +
                        key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 475 | 
            +
                        value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 478 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 479 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 480 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 481 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 482 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    cos, sin = position_embeddings
         | 
| 485 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    if past_key_value is not None:
         | 
| 488 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 489 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 490 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 493 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 494 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 495 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 496 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 501 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 502 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 503 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 504 | 
            +
                    # in fp32. (LLaDAMoERMSNorm handles it correctly)
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    input_dtype = query_states.dtype
         | 
| 507 | 
            +
                    if input_dtype == torch.float32:
         | 
| 508 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 509 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 510 | 
            +
                        # Handle the case where the model is quantized
         | 
| 511 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 512 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 513 | 
            +
                        else:
         | 
| 514 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                        logger.warning_once(
         | 
| 517 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 518 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 519 | 
            +
                            f" {target_dtype}."
         | 
| 520 | 
            +
                        )
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 523 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 524 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                    # **For diffusion language model, attention_mask is set to None(full attention) by default.**
         | 
| 527 | 
            +
                    attention_mask = None
         | 
| 528 | 
            +
                    self.is_causal = False
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                    attn_output = _flash_attention_forward(
         | 
| 531 | 
            +
                        query_states,
         | 
| 532 | 
            +
                        key_states,
         | 
| 533 | 
            +
                        value_states,
         | 
| 534 | 
            +
                        attention_mask,
         | 
| 535 | 
            +
                        q_len,
         | 
| 536 | 
            +
                        dropout=dropout_rate,
         | 
| 537 | 
            +
                        use_top_left_mask=self._flash_attn_uses_top_left_mask,
         | 
| 538 | 
            +
                        is_causal=self.is_causal,
         | 
| 539 | 
            +
                    )
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 542 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    if not output_attentions:
         | 
| 545 | 
            +
                        attn_weights = None
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 548 | 
            +
             | 
| 549 | 
            +
             | 
| 550 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeSdpaAttention with OlmoeSdpaAttention->LLaDAMoESdpaAttention
         | 
| 551 | 
            +
            class LLaDAMoESdpaAttention(LLaDAMoEAttention):
         | 
| 552 | 
            +
                """
         | 
| 553 | 
            +
                LLaDAMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 554 | 
            +
                `LLaDAMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 555 | 
            +
                SDPA API.
         | 
| 556 | 
            +
                """
         | 
| 557 | 
            +
                def forward(
         | 
| 558 | 
            +
                    self,
         | 
| 559 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 560 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 561 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 562 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 563 | 
            +
                    output_attentions: bool = False,
         | 
| 564 | 
            +
                    use_cache: bool = False,
         | 
| 565 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 566 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 567 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 568 | 
            +
                    if output_attentions:
         | 
| 569 | 
            +
                        logger.warning_once(
         | 
| 570 | 
            +
                            "LLaDAModel is using LLaDAMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 571 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 572 | 
            +
                        )
         | 
| 573 | 
            +
                        return super().forward(
         | 
| 574 | 
            +
                            hidden_states=hidden_states,
         | 
| 575 | 
            +
                            attention_mask=attention_mask,
         | 
| 576 | 
            +
                            position_ids=position_ids,
         | 
| 577 | 
            +
                            past_key_value=past_key_value,
         | 
| 578 | 
            +
                            output_attentions=output_attentions,
         | 
| 579 | 
            +
                            use_cache=use_cache,
         | 
| 580 | 
            +
                            cache_position=cache_position,
         | 
| 581 | 
            +
                            position_embeddings=position_embeddings,
         | 
| 582 | 
            +
                        )
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 587 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 588 | 
            +
                    if 'q_norm' in dir(self):
         | 
| 589 | 
            +
                        query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
         | 
| 590 | 
            +
                        key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
         | 
| 591 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                    if self.config.clip_qkv is not None:
         | 
| 594 | 
            +
                        query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 595 | 
            +
                        key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 596 | 
            +
                        value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 599 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 600 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    cos, sin = position_embeddings
         | 
| 603 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    if past_key_value is not None:
         | 
| 606 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 607 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 608 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 611 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                    causal_mask = attention_mask
         | 
| 614 | 
            +
                    # if attention_mask is not None and cache_position is not None:
         | 
| 615 | 
            +
                    if attention_mask is not None:
         | 
| 616 | 
            +
                        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 619 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 620 | 
            +
                    if query_states.device.type == "cuda" and causal_mask is not None:
         | 
| 621 | 
            +
                        query_states = query_states.contiguous()
         | 
| 622 | 
            +
                        key_states = key_states.contiguous()
         | 
| 623 | 
            +
                        value_states = value_states.contiguous()
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
         | 
| 626 | 
            +
                    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
         | 
| 627 | 
            +
                    is_causal = True if causal_mask is None and q_len > 1 else False
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                    # **For diffusion language model, attention_mask is set to None(full attention) by default.**
         | 
| 630 | 
            +
                    is_causal = False
         | 
| 631 | 
            +
                    causal_mask = None
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 634 | 
            +
                        query_states,
         | 
| 635 | 
            +
                        key_states,
         | 
| 636 | 
            +
                        value_states,
         | 
| 637 | 
            +
                        attn_mask=causal_mask,
         | 
| 638 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 639 | 
            +
                        is_causal=is_causal,
         | 
| 640 | 
            +
                    )
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 643 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                    return attn_output, None, past_key_value
         | 
| 648 | 
            +
             | 
| 649 | 
            +
             | 
| 650 | 
            +
            LLADAMOE_ATTENTION_CLASSES = {
         | 
| 651 | 
            +
                "eager": LLaDAMoEAttention,
         | 
| 652 | 
            +
                "flash_attention_2": LLaDAMoEFlashAttention2,
         | 
| 653 | 
            +
                "sdpa": LLaDAMoESdpaAttention,
         | 
| 654 | 
            +
            }
         | 
| 655 | 
            +
             | 
| 656 | 
            +
             | 
| 657 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeSparseMoeBlock with OlmoeSparseMoeBlock->LLaDAMoESparseMoeBlock
         | 
| 658 | 
            +
            class LLaDAMoESparseMoeBlock(nn.Module):
         | 
| 659 | 
            +
                def __init__(self, config):
         | 
| 660 | 
            +
                    super().__init__()
         | 
| 661 | 
            +
                    self.num_experts = config.num_experts
         | 
| 662 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 663 | 
            +
                    self.norm_topk_prob = False
         | 
| 664 | 
            +
                    self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
         | 
| 665 | 
            +
                    self.experts = nn.ModuleList([LLaDAMoEMLP(config, 'expert') for _ in range(self.num_experts)])
         | 
| 666 | 
            +
                    self.score_func = config.moe_router_score_function
         | 
| 667 | 
            +
                    if config.moe_router_enable_expert_bias:
         | 
| 668 | 
            +
                        self.register_buffer("expert_bias", torch.zeros(self.num_experts))
         | 
| 669 | 
            +
                    else:
         | 
| 670 | 
            +
                        self.expert_bias = None
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 673 | 
            +
                    batch_size, sequence_length, hidden_dim = hidden_states.shape
         | 
| 674 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_dim)
         | 
| 675 | 
            +
                    # router_logits: (batch * sequence_length, n_experts)
         | 
| 676 | 
            +
                    router_logits = self.gate(hidden_states)
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    if self.expert_bias is not None:
         | 
| 681 | 
            +
                        routing_weights += self.expert_bias
         | 
| 682 | 
            +
                    
         | 
| 683 | 
            +
                    routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
         | 
| 684 | 
            +
                    if self.norm_topk_prob:
         | 
| 685 | 
            +
                        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
         | 
| 686 | 
            +
                    # we cast back to the input dtype
         | 
| 687 | 
            +
                    routing_weights = routing_weights.to(hidden_states.dtype)
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                    final_hidden_states = torch.zeros(
         | 
| 690 | 
            +
                        (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
         | 
| 691 | 
            +
                    )
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                    # One hot encode the selected experts to create an expert mask
         | 
| 694 | 
            +
                    # this will be used to easily index which expert is going to be selected
         | 
| 695 | 
            +
                    expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    # Loop over all available experts in the model and perform the computation on each expert
         | 
| 698 | 
            +
                    for expert_idx in range(self.num_experts):
         | 
| 699 | 
            +
                        expert_layer = self.experts[expert_idx]
         | 
| 700 | 
            +
                        idx, top_x = torch.where(expert_mask[expert_idx])
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                        # Index the correct hidden states and compute the expert hidden state for
         | 
| 703 | 
            +
                        # the current expert. We need to make sure to multiply the output hidden
         | 
| 704 | 
            +
                        # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
         | 
| 705 | 
            +
                        current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
         | 
| 706 | 
            +
                        current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
         | 
| 707 | 
            +
             | 
| 708 | 
            +
                        # However `index_add_` only support torch tensors for indexing so we'll use
         | 
| 709 | 
            +
                        # the `top_x` tensor here.
         | 
| 710 | 
            +
                        final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
         | 
| 711 | 
            +
                    final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
         | 
| 712 | 
            +
                    return final_hidden_states
         | 
| 713 | 
            +
             | 
| 714 | 
            +
             | 
| 715 | 
            +
            class LLaDAMoEDecoderLayer(nn.Module):
         | 
| 716 | 
            +
                def __init__(self, config: LLaDAConfig, layer_idx: int):
         | 
| 717 | 
            +
                    super().__init__()
         | 
| 718 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 719 | 
            +
                    self.mlp_type = 'dense' if config.moe_layer_freq[layer_idx] == 0 else 'moe'
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    self.self_attn = LLADAMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    self.mlp = LLaDAMoESparseMoeBlock(config) if self.mlp_type == 'moe' else LLaDAMoEMLP(config, 'dense')
         | 
| 724 | 
            +
                    self.input_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 725 | 
            +
                    self.post_attention_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 726 | 
            +
                    if config.shared_expert_intermediate_size is not None and self.mlp_type == 'moe':
         | 
| 727 | 
            +
                        self.shared_expert = LLaDAMoEMLP(config, 'shared_expert')
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                def forward(
         | 
| 730 | 
            +
                    self,
         | 
| 731 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 732 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 733 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 734 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 735 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 736 | 
            +
                    output_router_logits: Optional[bool] = False,
         | 
| 737 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 738 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 739 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 740 | 
            +
                    **kwargs,
         | 
| 741 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 742 | 
            +
                    """
         | 
| 743 | 
            +
                    Args:
         | 
| 744 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 745 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 746 | 
            +
                            For diffusion language model, attention_mask is set to None(full attention).
         | 
| 747 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 748 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 749 | 
            +
                            returned tensors for more detail.
         | 
| 750 | 
            +
                        output_router_logits (`bool`, *optional*):
         | 
| 751 | 
            +
                            Whether or not to return the logits of all the routers. They are useful for computing the router loss,
         | 
| 752 | 
            +
                            and should not be returned during inference.
         | 
| 753 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 754 | 
            +
                            For diffusion language model, use_cache is set to False by default.
         | 
| 755 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
         | 
| 756 | 
            +
                            For diffusion language model, past_key_value is set to None by default.
         | 
| 757 | 
            +
                        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 758 | 
            +
                            For diffusion language model, cache_position is set to None by default.
         | 
| 759 | 
            +
                        position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
         | 
| 760 | 
            +
                            Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
         | 
| 761 | 
            +
                            with `head_dim` being the embedding dimension of each attention head.
         | 
| 762 | 
            +
                        kwargs (`dict`, *optional*):
         | 
| 763 | 
            +
                            Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
         | 
| 764 | 
            +
                            into the model
         | 
| 765 | 
            +
                    """
         | 
| 766 | 
            +
                    residual = hidden_states
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                    # **For diffusion language model, attention_mask is set to None(full attention) by default.**
         | 
| 771 | 
            +
                    use_cache = False
         | 
| 772 | 
            +
                    attention_mask = None
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                    # Self Attention
         | 
| 775 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 776 | 
            +
                        hidden_states=hidden_states,
         | 
| 777 | 
            +
                        attention_mask=attention_mask,
         | 
| 778 | 
            +
                        position_ids=position_ids,
         | 
| 779 | 
            +
                        past_key_value=past_key_value,
         | 
| 780 | 
            +
                        output_attentions=output_attentions,
         | 
| 781 | 
            +
                        use_cache=use_cache,
         | 
| 782 | 
            +
                        cache_position=cache_position,
         | 
| 783 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 784 | 
            +
                        **kwargs,
         | 
| 785 | 
            +
                    )
         | 
| 786 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                    # Fully Connected
         | 
| 789 | 
            +
                    residual = hidden_states
         | 
| 790 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 791 | 
            +
                    shared_expert_states = hidden_states
         | 
| 792 | 
            +
                    
         | 
| 793 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                    if hasattr(self, "shared_expert"):
         | 
| 796 | 
            +
                        hidden_states = hidden_states + self.shared_expert(shared_expert_states)
         | 
| 797 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                    outputs = (hidden_states,)
         | 
| 800 | 
            +
             | 
| 801 | 
            +
                    if output_attentions:
         | 
| 802 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                    if use_cache:
         | 
| 805 | 
            +
                        outputs += (present_key_value,)
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                    return outputs
         | 
| 808 | 
            +
             | 
| 809 | 
            +
             | 
| 810 | 
            +
            LLADAMOE_START_DOCSTRING = r"""
         | 
| 811 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 812 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 813 | 
            +
                etc.)
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 816 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 817 | 
            +
                and behavior.
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                Parameters:
         | 
| 820 | 
            +
                    config ([`LLaDAConfig`]):
         | 
| 821 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 822 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 823 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 824 | 
            +
            """
         | 
| 825 | 
            +
             | 
| 826 | 
            +
             | 
| 827 | 
            +
            @add_start_docstrings(
         | 
| 828 | 
            +
                "The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
         | 
| 829 | 
            +
                LLADAMOE_START_DOCSTRING,
         | 
| 830 | 
            +
            )
         | 
| 831 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoePreTrainedModel->LLaDAMoEPreTrainedModel
         | 
| 832 | 
            +
            class LLaDAMoEPreTrainedModel(PreTrainedModel):
         | 
| 833 | 
            +
                config_class = LLaDAConfig
         | 
| 834 | 
            +
                base_model_prefix = "model"
         | 
| 835 | 
            +
                supports_gradient_checkpointing = True
         | 
| 836 | 
            +
                _no_split_modules = ["LLaDAMoEDecoderLayer"]
         | 
| 837 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 838 | 
            +
                _supports_flash_attn_2 = True
         | 
| 839 | 
            +
                _supports_sdpa = True
         | 
| 840 | 
            +
                _supports_cache_class = True
         | 
| 841 | 
            +
                _supports_quantized_cache = True
         | 
| 842 | 
            +
                _supports_static_cache = True
         | 
| 843 | 
            +
             | 
| 844 | 
            +
                def _init_weights(self, module):
         | 
| 845 | 
            +
                    std = self.config.initializer_range
         | 
| 846 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 847 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 848 | 
            +
                        if module.bias is not None:
         | 
| 849 | 
            +
                            module.bias.data.zero_()
         | 
| 850 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 851 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 852 | 
            +
                        if module.padding_idx is not None:
         | 
| 853 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 854 | 
            +
             | 
| 855 | 
            +
             | 
| 856 | 
            +
            LLADAMOE_INPUTS_DOCSTRING = r"""
         | 
| 857 | 
            +
                Args:
         | 
| 858 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 859 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 860 | 
            +
                        it.
         | 
| 861 | 
            +
             | 
| 862 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 863 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 866 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 867 | 
            +
                        Mask to avoid performing attention on padding token indices.
         | 
| 868 | 
            +
                        **For diffusion language model, attention_mask is set to None(full attention) by default.**
         | 
| 869 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 870 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 871 | 
            +
                        config.n_positions - 1]`.
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 874 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 875 | 
            +
                        **For diffusion language model, past_key_values can not be applied by default.**
         | 
| 876 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 877 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 878 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 879 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 880 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 881 | 
            +
                        For diffusion languagem model, the use_cache and past_key_values can not be enabled for default setting.
         | 
| 882 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 883 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 884 | 
            +
                        tensors for more detail.
         | 
| 885 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 886 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 887 | 
            +
                        more detail.
         | 
| 888 | 
            +
                    output_router_logits (`bool`, *optional*):
         | 
| 889 | 
            +
                        Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
         | 
| 890 | 
            +
                        should not be returned during inference.
         | 
| 891 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 892 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 893 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 894 | 
            +
                        **For diffusion language model, cache_position can not be applied by default.**
         | 
| 895 | 
            +
            """
         | 
| 896 | 
            +
             | 
| 897 | 
            +
             | 
| 898 | 
            +
            @add_start_docstrings(
         | 
| 899 | 
            +
                "The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
         | 
| 900 | 
            +
                LLADAMOE_START_DOCSTRING,
         | 
| 901 | 
            +
            )
         | 
| 902 | 
            +
            # copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoeModel->LLaDAMoEModel
         | 
| 903 | 
            +
            class LLaDAMoEModel(LLaDAMoEPreTrainedModel):
         | 
| 904 | 
            +
                """
         | 
| 905 | 
            +
                Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDAMoEDecoderLayer`]
         | 
| 906 | 
            +
             | 
| 907 | 
            +
                Args:
         | 
| 908 | 
            +
                    config: LLaDAConfig
         | 
| 909 | 
            +
                """
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                def __init__(self, config: LLaDAConfig):
         | 
| 912 | 
            +
                    super().__init__(config)
         | 
| 913 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 914 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 917 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 918 | 
            +
                        [LLaDAMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 919 | 
            +
                    )
         | 
| 920 | 
            +
                    self.norm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 921 | 
            +
                    self.rotary_emb = LLaDAMoERotaryEmbedding(config=config)
         | 
| 922 | 
            +
                    self.gradient_checkpointing = False
         | 
| 923 | 
            +
             | 
| 924 | 
            +
                    # Initialize weights and apply final processing
         | 
| 925 | 
            +
                    self.post_init()
         | 
| 926 | 
            +
             | 
| 927 | 
            +
                def get_input_embeddings(self):
         | 
| 928 | 
            +
                    return self.embed_tokens
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                def set_input_embeddings(self, value):
         | 
| 931 | 
            +
                    self.embed_tokens = value
         | 
| 932 | 
            +
             | 
| 933 | 
            +
                @add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
         | 
| 934 | 
            +
                def forward(
         | 
| 935 | 
            +
                    self,
         | 
| 936 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 937 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 938 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 939 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 940 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 941 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 942 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 943 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 944 | 
            +
                    output_router_logits: Optional[bool] = None,
         | 
| 945 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 946 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 947 | 
            +
                ) -> Union[Tuple, MoeModelOutputWithPast]:
         | 
| 948 | 
            +
                    assert (not use_cache and past_key_values is None and cache_position is None), "The cache mechanism is not suppotred for LLaDA MoE by default."
         | 
| 949 | 
            +
             | 
| 950 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 951 | 
            +
                    output_router_logits = (
         | 
| 952 | 
            +
                        output_router_logits if output_router_logits is not None else self.config.output_router_logits
         | 
| 953 | 
            +
                    )
         | 
| 954 | 
            +
                    output_hidden_states = (
         | 
| 955 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 956 | 
            +
                    )
         | 
| 957 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 958 | 
            +
             | 
| 959 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 960 | 
            +
                        raise ValueError(
         | 
| 961 | 
            +
                            "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
         | 
| 962 | 
            +
                        )
         | 
| 963 | 
            +
             | 
| 964 | 
            +
                    if inputs_embeds is None:
         | 
| 965 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                    return_legacy_cache = False
         | 
| 968 | 
            +
                    if cache_position is None:
         | 
| 969 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 970 | 
            +
                        cache_position = torch.arange(
         | 
| 971 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 972 | 
            +
                        )
         | 
| 973 | 
            +
                    if position_ids is None:
         | 
| 974 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 975 | 
            +
             | 
| 976 | 
            +
                    causal_mask = None
         | 
| 977 | 
            +
                    logger.warning_once(
         | 
| 978 | 
            +
                        f"Please note that, unlike autoregressive models, LLaDA MoE employs a bidirectional attention mechanism. "
         | 
| 979 | 
            +
                        f"In the forward code in modeling_lladamoe.py, we set both attention_mask and causal_mask to None, "
         | 
| 980 | 
            +
                        f"which affects the default causal attention and causes the input attention_mask parameter to become ineffective. "
         | 
| 981 | 
            +
                        f"If you pass an attention mask and expect the model to use it for computing other attention mechanisms, "
         | 
| 982 | 
            +
                        f"it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. "
         | 
| 983 | 
            +
                    )
         | 
| 984 | 
            +
             | 
| 985 | 
            +
                    # embed positions
         | 
| 986 | 
            +
                    hidden_states = inputs_embeds
         | 
| 987 | 
            +
             | 
| 988 | 
            +
                    # create position embeddings to be shared across the decoder layers
         | 
| 989 | 
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                    # decoder layers
         | 
| 992 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 993 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 994 | 
            +
                    all_router_logits = () if output_router_logits else None
         | 
| 995 | 
            +
                    next_decoder_cache = None
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                    for decoder_layer in self.layers:
         | 
| 998 | 
            +
                        if output_hidden_states:
         | 
| 999 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1000 | 
            +
             | 
| 1001 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1002 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1003 | 
            +
                                decoder_layer.__call__,
         | 
| 1004 | 
            +
                                hidden_states,
         | 
| 1005 | 
            +
                                causal_mask,
         | 
| 1006 | 
            +
                                position_ids,
         | 
| 1007 | 
            +
                                past_key_values,
         | 
| 1008 | 
            +
                                output_attentions,
         | 
| 1009 | 
            +
                                output_router_logits,
         | 
| 1010 | 
            +
                                use_cache,
         | 
| 1011 | 
            +
                                cache_position,
         | 
| 1012 | 
            +
                                position_embeddings,
         | 
| 1013 | 
            +
                            )
         | 
| 1014 | 
            +
                        else:
         | 
| 1015 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1016 | 
            +
                                hidden_states,
         | 
| 1017 | 
            +
                                attention_mask=causal_mask,
         | 
| 1018 | 
            +
                                position_ids=position_ids,
         | 
| 1019 | 
            +
                                past_key_value=past_key_values,
         | 
| 1020 | 
            +
                                output_attentions=output_attentions,
         | 
| 1021 | 
            +
                                output_router_logits=output_router_logits,
         | 
| 1022 | 
            +
                                use_cache=use_cache,
         | 
| 1023 | 
            +
                                cache_position=cache_position,
         | 
| 1024 | 
            +
                                position_embeddings=position_embeddings,
         | 
| 1025 | 
            +
                            )
         | 
| 1026 | 
            +
             | 
| 1027 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1028 | 
            +
             | 
| 1029 | 
            +
                        if use_cache:
         | 
| 1030 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                        if output_attentions:
         | 
| 1033 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                        if output_router_logits and layer_outputs[-1] is not None:
         | 
| 1036 | 
            +
                            all_router_logits += (layer_outputs[-1],)
         | 
| 1037 | 
            +
             | 
| 1038 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1039 | 
            +
             | 
| 1040 | 
            +
                    # add hidden states from the last layer
         | 
| 1041 | 
            +
                    if output_hidden_states:
         | 
| 1042 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 1045 | 
            +
                    if return_legacy_cache:
         | 
| 1046 | 
            +
                        next_cache = next_cache.to_legacy_cache()
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
                    if not return_dict:
         | 
| 1049 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1050 | 
            +
                    return MoeModelOutputWithPast(
         | 
| 1051 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1052 | 
            +
                        past_key_values=next_cache,
         | 
| 1053 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1054 | 
            +
                        attentions=all_self_attns,
         | 
| 1055 | 
            +
                        router_logits=all_router_logits,
         | 
| 1056 | 
            +
                    )
         | 
| 1057 | 
            +
             | 
| 1058 | 
            +
             | 
| 1059 | 
            +
            class LLaDAMoEModelLM(LLaDAMoEPreTrainedModel):
         | 
| 1060 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                def __init__(self, config):
         | 
| 1063 | 
            +
                    super().__init__(config)
         | 
| 1064 | 
            +
                    self.model = LLaDAMoEModel(config)
         | 
| 1065 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1066 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1067 | 
            +
             | 
| 1068 | 
            +
                    self.router_aux_loss_coef = config.router_aux_loss_coef
         | 
| 1069 | 
            +
                    self.num_experts = config.num_experts
         | 
| 1070 | 
            +
                    self.num_experts_per_tok = config.num_experts_per_tok
         | 
| 1071 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1072 | 
            +
                    self.post_init()
         | 
| 1073 | 
            +
             | 
| 1074 | 
            +
                def get_input_embeddings(self):
         | 
| 1075 | 
            +
                    return self.model.embed_tokens
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1078 | 
            +
                    self.model.embed_tokens = value
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
                def get_output_embeddings(self):
         | 
| 1081 | 
            +
                    return self.lm_head
         | 
| 1082 | 
            +
             | 
| 1083 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1084 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1085 | 
            +
             | 
| 1086 | 
            +
                def set_decoder(self, decoder):
         | 
| 1087 | 
            +
                    self.model = decoder
         | 
| 1088 | 
            +
             | 
| 1089 | 
            +
                def get_decoder(self):
         | 
| 1090 | 
            +
                    return self.model
         | 
| 1091 | 
            +
             | 
| 1092 | 
            +
                @add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
         | 
| 1093 | 
            +
                @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1094 | 
            +
                def forward(
         | 
| 1095 | 
            +
                    self,
         | 
| 1096 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1097 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1098 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1099 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1100 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1101 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1102 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1103 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1104 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1105 | 
            +
                    output_router_logits: Optional[bool] = None,
         | 
| 1106 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1107 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1108 | 
            +
                    num_logits_to_keep: int = 0,
         | 
| 1109 | 
            +
                ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
         | 
| 1110 | 
            +
                    r"""
         | 
| 1111 | 
            +
                    For the current inference code of the diffusion language model, passing the parameters `labels` and `num_logits_to_keep` to compute loss is not supported.
         | 
| 1112 | 
            +
                    Please note that for the diffusion language model, you cannot use model.generate() to generate responses. Please use the provided sampling code to generate model outputs.
         | 
| 1113 | 
            +
                    
         | 
| 1114 | 
            +
                    Returns:
         | 
| 1115 | 
            +
             | 
| 1116 | 
            +
                    Example:
         | 
| 1117 | 
            +
             | 
| 1118 | 
            +
                    ```python
         | 
| 1119 | 
            +
                    >>> from transformers import AutoTokenizer, AutoModel
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
                    >>> model = AutoModel.from_pretrained("path/to/LLaDAMoE")
         | 
| 1122 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("path/to/LLaDAMoE")
         | 
| 1123 | 
            +
             | 
| 1124 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1125 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
                    >>> # Generate
         | 
| 1128 | 
            +
                    >>> generate_ids = generate() # Please use the customized generate method instead of model.generate().
         | 
| 1129 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1130 | 
            +
                    'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
         | 
| 1131 | 
            +
                    ```
         | 
| 1132 | 
            +
                    """
         | 
| 1133 | 
            +
                    assert (labels is None and num_logits_to_keep == 0), "LLaDAMoE model does not support calculate loss in the forward pass."
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1136 | 
            +
                    output_router_logits = (
         | 
| 1137 | 
            +
                        output_router_logits if output_router_logits is not None else self.config.output_router_logits
         | 
| 1138 | 
            +
                    )
         | 
| 1139 | 
            +
                    output_hidden_states = (
         | 
| 1140 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1141 | 
            +
                    )
         | 
| 1142 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
                    outputs = self.model(
         | 
| 1145 | 
            +
                        input_ids=input_ids,
         | 
| 1146 | 
            +
                        attention_mask=attention_mask,
         | 
| 1147 | 
            +
                        position_ids=position_ids,
         | 
| 1148 | 
            +
                        past_key_values=past_key_values,
         | 
| 1149 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1150 | 
            +
                        use_cache=use_cache,
         | 
| 1151 | 
            +
                        output_attentions=output_attentions,
         | 
| 1152 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1153 | 
            +
                        output_router_logits=output_router_logits,
         | 
| 1154 | 
            +
                        return_dict=return_dict,
         | 
| 1155 | 
            +
                        cache_position=cache_position,
         | 
| 1156 | 
            +
                    )
         | 
| 1157 | 
            +
             | 
| 1158 | 
            +
                    hidden_states = outputs[0]
         | 
| 1159 | 
            +
                    logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
         | 
| 1160 | 
            +
             | 
| 1161 | 
            +
                    loss = None
         | 
| 1162 | 
            +
             | 
| 1163 | 
            +
                    aux_loss = None
         | 
| 1164 | 
            +
                    if output_router_logits:
         | 
| 1165 | 
            +
                        aux_loss = load_balancing_loss_func(
         | 
| 1166 | 
            +
                            outputs.router_logits if return_dict else outputs[-1],
         | 
| 1167 | 
            +
                            self.num_experts,
         | 
| 1168 | 
            +
                            self.num_experts_per_tok,
         | 
| 1169 | 
            +
                            attention_mask,
         | 
| 1170 | 
            +
                        )
         | 
| 1171 | 
            +
             | 
| 1172 | 
            +
                    if not return_dict:
         | 
| 1173 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1174 | 
            +
                        if output_router_logits:
         | 
| 1175 | 
            +
                            output = (aux_loss,) + output
         | 
| 1176 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1177 | 
            +
             | 
| 1178 | 
            +
                    return MoeCausalLMOutputWithPast(
         | 
| 1179 | 
            +
                        loss=loss,
         | 
| 1180 | 
            +
                        aux_loss=aux_loss,
         | 
| 1181 | 
            +
                        logits=logits,
         | 
| 1182 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1183 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1184 | 
            +
                        attentions=outputs.attentions,
         | 
| 1185 | 
            +
                        router_logits=outputs.router_logits,
         | 
| 1186 | 
            +
                    )
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": "<|startoftext|>",
         | 
| 3 | 
            +
              "cls_token": "[CLS]",
         | 
| 4 | 
            +
              "eos_token": "<|endoftext|>",
         | 
| 5 | 
            +
              "gmask_token": "[gMASK]",
         | 
| 6 | 
            +
              "pad_token": "<|endoftext|>"
         | 
| 7 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,17 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": false,
         | 
| 3 | 
            +
              "add_eos_token": false,
         | 
| 4 | 
            +
              "bos_token": "<|startoftext|>",
         | 
| 5 | 
            +
              "chat_template": "{% set thinking_option = 'off' %}\n{{- '<role>SYSTEM</role>' }}\n{%- if messages[0].role == 'system' %}\n    {{- messages[0].content + '\\n' }}\n{%- endif %}\n{%- if tools %}\n    {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n    {%- for tool in tools %}\n        {{- \"\\n\" }}\n        {{- tool | tojson }}\n    {%- endfor %}\n    {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call>\\n\" }}\n{%- endif %}\n{{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n    {%- set index = (messages|length - 1) - loop.index0 %}\n    {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n        {%- set ns.multi_step_tool = false %}\n        {%- set ns.last_query_index = index %}\n    {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n    {%- if message.content is string %}\n        {%- set content = message.content %}\n    {%- else %}\n        {%- set content = '' %}\n    {%- endif %}\n    {%- if message.role == \"user\" %}\n        {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}\n    {%- elif message.role == \"system\" and not loop.first %}\n        {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}\n    {%- elif message.role == \"assistant\" %}\n        {%- set reasoning_content = '' %}\n        {%- if message.reasoning_content is string %}\n            {%- set reasoning_content = message.reasoning_content %}\n        {%- else %}\n            {%- if '</think>' in content %}\n                {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n                {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n            {%- endif %}\n        {%- endif %}\n        {%- if loop.index0 > ns.last_query_index %}\n            {%- if reasoning_content %}\n                {{- '<role>ASSISTANT</role>' + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n            {%- else %}\n                {{- '<role>ASSISTANT</role>' + content }}\n            {%- endif %}\n        {%- else %}\n            {{- '<role>ASSISTANT</role>' + content }}\n        {%- endif %}\n        {%- if message.tool_calls %}\n            {%- for tool_call in message.tool_calls %}\n                {%- if (loop.first and content) or (not loop.first) %}\n                    {{- '\\n' }}\n                {%- endif %}\n                {%- if tool_call.function %}\n                    {%- set tool_call = tool_call.function %}\n                {%- endif %}\n                {{- '<tool_call>\\n{\"name\": \"' }}\n                {{- tool_call.name }}\n                {{- '\", \"arguments\": ' }}\n                {%- if tool_call.arguments is string %}\n                    {{- tool_call.arguments }}\n                {%- else %}\n                    {{- tool_call.arguments | tojson }}\n                {%- endif %}\n                {{- '}\\n</tool_call>' }}\n            {%- endfor %}\n        {%- endif %}\n        {{- '<|role_end|>' }}\n    {%- elif message.role == \"tool\" %}\n        {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n            {{- '<role>OBSERVATION</role>' }}\n        {%- endif %}\n        {{- '\\n<tool_response>\\n' }}\n        {{- content }}\n        {{- '\\n</tool_response>' }}\n        {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n            {{- '<|role_end|>' }}\n        {%- endif %}\n    {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n    {{- '<role>ASSISTANT</role>' }}\n{%- endif %}",
         | 
| 6 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 7 | 
            +
              "cls_token": "[CLS]",
         | 
| 8 | 
            +
              "eos_token": "<|endoftext|>",
         | 
| 9 | 
            +
              "fast_tokenizer": true,
         | 
| 10 | 
            +
              "gmask_token": "[gMASK]",
         | 
| 11 | 
            +
              "merges_file": null,
         | 
| 12 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 13 | 
            +
              "pad_token": "<|endoftext|>",
         | 
| 14 | 
            +
              "tokenizer_class": "PreTrainedTokenizerFast",
         | 
| 15 | 
            +
              "trust_remote_code": true,
         | 
| 16 | 
            +
              "vocab_file": null
         | 
| 17 | 
            +
            }
         | 
