File size: 14,418 Bytes
608eb1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import os
import json
import base64
import argparse
import time
import re
from datetime import datetime
from functools import partial
from openai import AzureOpenAI, OpenAI
from volcenginesdkarkruntime import Ark
from multiprocessing import Pool, Manager, Lock
# New prompt template for multiple-choice questions with reasoning
REASONING_MULTIPLE_CHOICE_TEMPLATE = """
You are an AI assistant evaluating video frames to answer a multiple-choice question.
The user will provide you with a set of video frames and a question with several options (e.g., A, B, C, D).
First, provide a step-by-step reasoning process that analyzes the video frames and leads to your conclusion.
After your reasoning, provide the final answer in a JSON block. The JSON object must contain a single key "answer" with the value being one of 'A', 'B', 'C', or 'D'.
Your output should follow this format exactly:
<Your step-by-step reasoning here>
```json
{"answer": "A"}
```
Do not include any other text after the JSON block.
"""
def parse_arguments():
"""
Parse command line arguments for evaluation configuration.
Returns:
argparse.Namespace: Parsed command line arguments
"""
parser = argparse.ArgumentParser(
description="Video QA Evaluation with Pre-computed Similarity Frame Selection"
)
# Model configuration
parser.add_argument(
"--target-model",
"-tm",
type=str,
required=True,
help="Model to be evaluated (e.g., gpt-4o, gpt-4-vision-preview)",
)
# Data configuration
parser.add_argument(
"--frame-num",
"-fn",
type=int,
default=32,
help="Number of most similar frames to select for each video (default: 32)",
)
parser.add_argument(
"--frames-path",
"-fp",
type=str,
required=True,
help="Absolute path to the base directory containing video frame folders.",
)
parser.add_argument(
"--data-file",
"-df",
type=str,
required=True,
help="Absolute path to the JSON file containing the evaluation dataset.",
)
# --- MODIFIED ARGUMENT ---
parser.add_argument(
"--similarity-file",
"-sf",
type=str,
required=True,
help="Absolute path to the pre-computed similarity JSON file (e.g., lv_bench_similarity.json).",
)
# Processing configuration
parser.add_argument(
"--max-retry-times",
"-mr",
type=int,
default=10,
help="Maximum number of retries for API calls (default: 10)",
)
parser.add_argument(
"--pool-processes",
"-pp",
type=int,
default=20,
help="Number of parallel processes for evaluation (default: 20)",
)
# API configuration
parser.add_argument(
"--base_url", type=str, required=True, help="Azure OpenAI endpoint URL."
)
parser.add_argument(
"--api_key", type=str, required=True, help="Azure OpenAI API key."
)
return parser.parse_args()
def save_json_file(data, output_file):
"""
Save data to a JSON file.
"""
with open(output_file, "w", encoding="utf-8") as f:
json.dump(data, f, indent=4)
def extract_json_from_response(response):
"""
Extracts a JSON object from a string that contains reasoning followed by a tagged JSON block.
"""
if not response:
return None
try:
match = re.search(r"```json\s*(\{.*?\})\s*```", response, re.DOTALL)
if match:
json_str = match.group(1)
return json.loads(json_str)
return None
except (json.JSONDecodeError, IndexError):
return None
def calculate_metrics(results):
"""
Calculate evaluation metrics from the results.
"""
total_samples = len(results)
if total_samples == 0:
return {
"total_samples": 0,
"answered_samples": 0,
"correct_answers": 0,
"accuracy": 0.0,
}
answered_samples = sum(1 for x in results if x.get("model_answer") is not None)
correct_answers = sum(1 for x in results if x.get("is_correct"))
accuracy = correct_answers / answered_samples if answered_samples > 0 else 0.0
return {
"total_samples": total_samples,
"answered_samples": answered_samples,
"correct_answers": correct_answers,
"accuracy": accuracy,
}
def call_single_model(client, messages, model, item_id, max_retry_times):
"""
Make a single API call to the specified model with retry logic.
"""
if "doubao" in model:
max_tokens = 32768
else:
max_tokens = 65535
retry_times = 0
while retry_times < max_retry_times:
try:
completion = client.chat.completions.create(
model=model, messages=messages, max_tokens=max_tokens
)
return completion.choices[0].message.content
except Exception as e:
retry_times += 1
print(
f"Error processing item {item_id} with model {model}: {str(e)}. Retrying ({retry_times}/{max_retry_times})..."
)
if retry_times == max_retry_times:
error_log_file = f"error_log_{model.replace('/', '_')}.txt"
with open(error_log_file, "a") as f:
f.write(
f"Error processing item {item_id} with model {model} after {max_retry_times} retries: {str(e)}\n"
)
return None
time.sleep(5)
def evaluate_single_item(
data_item, frames, target_model, api_key, base_url, max_retry_times
):
"""
Evaluate a single data item using the target model.
"""
if "ark" in base_url:
client = Ark(base_url=base_url, api_key=api_key)
elif "aliyun" in base_url or "127.0.0.1" in base_url:
client = OpenAI(api_key=api_key, base_url=base_url)
else:
client = AzureOpenAI(
api_version="2023-05-15", api_key=api_key, azure_endpoint=base_url
)
messages = [
{"role": "system", "content": REASONING_MULTIPLE_CHOICE_TEMPLATE},
{
"role": "user",
"content": [
{"type": "text", "text": "Here are the video frames:"},
*frames,
{"type": "text", "text": f"Question: {data_item['question']}"},
],
},
]
response = call_single_model(
client, messages, target_model, data_item["key"], max_retry_times
)
is_correct = False
model_answer_cleaned = None
parsed_json = None
if response:
parsed_json = extract_json_from_response(response)
if parsed_json and "answer" in parsed_json:
model_answer_cleaned = str(parsed_json["answer"]).strip().upper()
gold_answer = data_item["answer"].strip().upper()
if model_answer_cleaned == gold_answer:
is_correct = True
return {
**data_item,
"model_reasoning_and_answer": response,
"model_answer_raw": parsed_json.get("answer") if parsed_json else None,
"model_answer": model_answer_cleaned,
"is_correct": is_correct,
}
def encode_image(image_path):
"""
Encode an image file to base64 string.
"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
# --- MODIFIED: New function for selecting frames based on pre-computed similarity file ---
def process_frames_from_similarity_file(
frames_base_path, frame_num, data_item, similarity_data
):
"""
Select and encode the top N frames using a pre-computed similarity file.
"""
item_key = data_item["key"]
question_uid = str(data_item["uid"])
# Retrieve the sorted list of frame filenames for the current question
sorted_filenames = similarity_data.get(question_uid)
if not sorted_filenames:
print(
f"Warning: No similarity data found for question UID '{question_uid}', skipping."
)
return []
try:
# Select the top N filenames
num_frames_to_select = min(frame_num, len(sorted_filenames))
selected_filenames = sorted_filenames[:num_frames_to_select]
selected_ids = [int(f.split(".")[0].split("_")[-1]) for f in selected_filenames]
selected_ids = sorted(selected_ids)
selected_filenames = [f"frame_{i:06d}.jpg" for i in selected_ids]
# Construct full paths for the selected frames
video_frames_path = os.path.join(frames_base_path, item_key)
sampled_paths = [os.path.join(video_frames_path, f) for f in selected_filenames]
# Encode the selected frames
base64_images = [encode_image(path) for path in sampled_paths]
return [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{b64_img}"},
}
for b64_img in base64_images
]
except Exception as e:
print(f"Error during frame processing for key '{item_key}': {e}")
return []
def process_single_data(
data_item,
args,
shared_results,
progress_counter,
total_items,
locks,
similarity_data,
):
"""
Process a single data item in a multiprocessing context.
"""
item_key = data_item["key"]
try:
# --- MODIFIED: Call the new frame selection function ---
frames = process_frames_from_similarity_file(
args.frames_path, args.frame_num, data_item, similarity_data
)
if not frames:
raise ValueError(
f"No frames were processed from similarity file for key '{item_key}'"
)
result = evaluate_single_item(
data_item,
frames,
args.target_model,
args.api_key,
args.base_url,
args.max_retry_times,
)
if result is not None:
with locks["results"]:
shared_results.append(result)
data_filename_base = os.path.splitext(os.path.basename(args.data_file))[
0
]
model_name_safe = args.target_model.replace("/", "_")
output_prefix = f"{model_name_safe}_{data_filename_base}_{args.frame_num}frames_precomputed_similar"
results_output_file = f"{output_prefix}_results.json"
save_json_file(list(shared_results), results_output_file)
except Exception as e:
print(f"Error processing video key {item_key}: {str(e)}")
with locks["file"]:
error_log_file = f"error_log_{args.target_model.replace('/', '_')}.txt"
with open(error_log_file, "a") as f:
f.write(f"Critical error processing video key {item_key}: {str(e)}\n")
finally:
with locks["counter"]:
progress_counter.value += 1
print(
f"\rProcessed: {progress_counter.value}/{total_items} videos...",
end="",
flush=True,
)
def load_test_data(json_file):
"""
Load test data from a JSON file.
"""
try:
with open(json_file, "r", encoding="utf-8") as f:
return json.load(f)
except FileNotFoundError:
print(f"Error: Data file not found at {json_file}")
exit(1)
except json.JSONDecodeError:
print(f"Error: Could not decode JSON from {json_file}")
exit(1)
def main():
"""
Main function to run the video QA evaluation framework.
"""
args = parse_arguments()
print("--- Evaluation Configuration ---")
print(f"Target Model: {args.target_model}")
print(f"Frames to Sample (by pre-computed similarity): {args.frame_num}")
print(f"Frames Base Path: {args.frames_path}")
print(f"Similarity File: {args.similarity_file}") # Print new arg
print(f"Data File: {args.data_file}")
print(f"Parallel Processes: {args.pool_processes}")
print("---------------------------------")
error_log_file = f"error_log_{args.target_model.replace('/', '_')}.txt"
with open(error_log_file, "w") as f:
f.write(
f"=== Error Log Started at {datetime.now()} for model {args.target_model} ===\n"
)
data_filename_base = os.path.splitext(os.path.basename(args.data_file))[0]
model_name_safe = args.target_model.replace("/", "_")
output_prefix = f"{model_name_safe}_{data_filename_base}_{args.frame_num}frames_precomputed_similar"
results_output_file = f"{output_prefix}_results.json"
metrics_output_file = f"{output_prefix}_metrics.json"
# Load test data and similarity data
test_data = load_test_data(args.data_file)
try:
with open(args.similarity_file, "r", encoding="utf-8") as f:
similarity_data = json.load(f)
except FileNotFoundError:
print(f"Error: Similarity file not found at {args.similarity_file}")
exit(1)
total_videos = len(test_data)
print(f"\nLoaded {total_videos} videos to process.")
with Manager() as manager:
shared_results = manager.list()
progress_counter = manager.Value("i", 0)
locks = {
"results": manager.Lock(),
"file": manager.Lock(),
"counter": manager.Lock(),
}
# Create a partial function with fixed arguments for the worker pool
process_func = partial(
process_single_data,
args=args,
shared_results=shared_results,
progress_counter=progress_counter,
total_items=total_videos,
locks=locks,
similarity_data=similarity_data,
)
# Run processing in parallel
with Pool(processes=args.pool_processes) as pool:
pool.map(process_func, test_data)
all_results = list(shared_results)
print(f"\n\nProcessing complete for model: {args.target_model}")
final_metrics = calculate_metrics(all_results)
save_json_file(final_metrics, metrics_output_file)
print(f"\nMetrics saved to: {metrics_output_file}")
print(json.dumps(final_metrics, indent=4))
save_json_file(all_results, results_output_file)
print(f"Detailed results saved to: {results_output_file}")
if __name__ == "__main__":
main()
|