Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,250 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- unsloth/gpt-oss-120b-BF16
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
library_name: transformers
|
| 7 |
+
tags:
|
| 8 |
+
- vllm
|
| 9 |
+
- unsloth
|
| 10 |
+
- abliterated
|
| 11 |
+
- uncensored
|
| 12 |
+
extra_gated_prompt: >-
|
| 13 |
+
**Usage Warnings**
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
“**Risk of Sensitive or Controversial Outputs**“: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs.
|
| 17 |
+
|
| 18 |
+
“**Not Suitable for All Audiences**:“ Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security.
|
| 19 |
+
|
| 20 |
+
“**Legal and Ethical Responsibilities**“: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences.
|
| 21 |
+
|
| 22 |
+
“**Research and Experimental Use**“: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications.
|
| 23 |
+
|
| 24 |
+
“**Monitoring and Review Recommendations**“: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content.
|
| 25 |
+
|
| 26 |
+
“**No Default Safety Guarantees**“: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use.
|
| 27 |
+
|
| 28 |
+
extra_gated_fields:
|
| 29 |
+
X Account(@username): text
|
| 30 |
+
extra_gated_description: >-
|
| 31 |
+
Enter your X account **username** (e.g., @**username** in the form, https://x.com/username.)
|
| 32 |
+
After submitting, follow https://x.com/support_huihui
|
| 33 |
+
on X to expedite your approval. We'll review your request within 24-48 hours.
|
| 34 |
+
extra_gated_button_content: Submit
|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
# huihui-ai/Huihui-gpt-oss-120b-BF16-abliterated
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
This is an uncensored version of [unsloth/gpt-oss-120b-BF16](https://huggingface.co/unsloth/gpt-oss-120b-BF16) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
| 51 |
+
import torch
|
| 52 |
+
import os
|
| 53 |
+
import signal
|
| 54 |
+
import random
|
| 55 |
+
import numpy as np
|
| 56 |
+
import time
|
| 57 |
+
from collections import Counter
|
| 58 |
+
|
| 59 |
+
cpu_count = os.cpu_count()
|
| 60 |
+
print(f"Number of CPU cores in the system: {cpu_count}")
|
| 61 |
+
half_cpu_count = cpu_count // 2
|
| 62 |
+
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
|
| 63 |
+
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
|
| 64 |
+
torch.set_num_threads(half_cpu_count)
|
| 65 |
+
|
| 66 |
+
print(f"PyTorch threads: {torch.get_num_threads()}")
|
| 67 |
+
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
|
| 68 |
+
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
|
| 69 |
+
|
| 70 |
+
# Load the model and tokenizer
|
| 71 |
+
NEW_MODEL_ID = "huihui-ai/Huihui-gpt-oss-120b-BF16-abliterated"
|
| 72 |
+
print(f"Load Model {NEW_MODEL_ID} ... ")
|
| 73 |
+
|
| 74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 75 |
+
NEW_MODEL_ID,
|
| 76 |
+
device_map="auto",
|
| 77 |
+
trust_remote_code=True,
|
| 78 |
+
torch_dtype=torch.bfloat16,
|
| 79 |
+
low_cpu_mem_usage=True,
|
| 80 |
+
)
|
| 81 |
+
#print(model)
|
| 82 |
+
#print(model.config)
|
| 83 |
+
|
| 84 |
+
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
|
| 85 |
+
|
| 86 |
+
messages = []
|
| 87 |
+
skip_prompt=False
|
| 88 |
+
skip_special_tokens=False
|
| 89 |
+
do_sample = True
|
| 90 |
+
|
| 91 |
+
class CustomTextStreamer(TextStreamer):
|
| 92 |
+
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
|
| 93 |
+
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
|
| 94 |
+
self.generated_text = ""
|
| 95 |
+
self.stop_flag = False
|
| 96 |
+
self.init_time = time.time() # Record initialization time
|
| 97 |
+
self.end_time = None # To store end time
|
| 98 |
+
self.first_token_time = None # To store first token generation time
|
| 99 |
+
self.token_count = 0 # To track total tokens
|
| 100 |
+
|
| 101 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
| 102 |
+
if self.first_token_time is None and text.strip(): # Set first token time on first non-empty text
|
| 103 |
+
self.first_token_time = time.time()
|
| 104 |
+
self.generated_text += text
|
| 105 |
+
# Count tokens in the generated text
|
| 106 |
+
tokens = self.tokenizer.encode(text, add_special_tokens=False)
|
| 107 |
+
self.token_count += len(tokens)
|
| 108 |
+
print(text, end="", flush=True)
|
| 109 |
+
if stream_end:
|
| 110 |
+
self.end_time = time.time() # Record end time when streaming ends
|
| 111 |
+
if self.stop_flag:
|
| 112 |
+
raise StopIteration
|
| 113 |
+
|
| 114 |
+
def stop_generation(self):
|
| 115 |
+
self.stop_flag = True
|
| 116 |
+
self.end_time = time.time() # Record end time when generation is stopped
|
| 117 |
+
|
| 118 |
+
def get_metrics(self):
|
| 119 |
+
"""Returns initialization time, first token time, first token latency, end time, total time, total tokens, and tokens per second."""
|
| 120 |
+
if self.end_time is None:
|
| 121 |
+
self.end_time = time.time() # Set end time if not already set
|
| 122 |
+
total_time = self.end_time - self.init_time # Total time from init to end
|
| 123 |
+
tokens_per_second = self.token_count / total_time if total_time > 0 else 0
|
| 124 |
+
first_token_latency = (self.first_token_time - self.init_time) if self.first_token_time is not None else None
|
| 125 |
+
metrics = {
|
| 126 |
+
"init_time": self.init_time,
|
| 127 |
+
"first_token_time": self.first_token_time,
|
| 128 |
+
"first_token_latency": first_token_latency,
|
| 129 |
+
"end_time": self.end_time,
|
| 130 |
+
"total_time": total_time, # Total time in seconds
|
| 131 |
+
"total_tokens": self.token_count,
|
| 132 |
+
"tokens_per_second": tokens_per_second
|
| 133 |
+
}
|
| 134 |
+
return metrics
|
| 135 |
+
|
| 136 |
+
def generate_stream(model, tokenizer, messages, skip_prompt, skip_special_tokens, do_sample, max_new_tokens):
|
| 137 |
+
input_ids = tokenizer.apply_chat_template(
|
| 138 |
+
messages,
|
| 139 |
+
add_generation_prompt=True,
|
| 140 |
+
return_tensors="pt",
|
| 141 |
+
return_dict=True,
|
| 142 |
+
).to(model.device)
|
| 143 |
+
|
| 144 |
+
streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
|
| 145 |
+
|
| 146 |
+
def signal_handler(sig, frame):
|
| 147 |
+
streamer.stop_generation()
|
| 148 |
+
print("\n[Generation stopped by user with Ctrl+C]")
|
| 149 |
+
|
| 150 |
+
signal.signal(signal.SIGINT, signal_handler)
|
| 151 |
+
|
| 152 |
+
generate_kwargs = {}
|
| 153 |
+
if do_sample:
|
| 154 |
+
generate_kwargs = {
|
| 155 |
+
"do_sample": do_sample,
|
| 156 |
+
"max_length": max_new_tokens,
|
| 157 |
+
"temperature": 0.7,
|
| 158 |
+
"top_k": 20,
|
| 159 |
+
"top_p": 0.8,
|
| 160 |
+
"repetition_penalty": 1.2,
|
| 161 |
+
"no_repeat_ngram_size": 2
|
| 162 |
+
}
|
| 163 |
+
else:
|
| 164 |
+
generate_kwargs = {
|
| 165 |
+
"do_sample": do_sample,
|
| 166 |
+
"max_length": max_new_tokens,
|
| 167 |
+
"repetition_penalty": 1.2,
|
| 168 |
+
"no_repeat_ngram_size": 2
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
print("Response: ", end="", flush=True)
|
| 173 |
+
try:
|
| 174 |
+
generated_ids = model.generate(
|
| 175 |
+
**input_ids,
|
| 176 |
+
streamer=streamer,
|
| 177 |
+
**generate_kwargs
|
| 178 |
+
)
|
| 179 |
+
del generated_ids
|
| 180 |
+
except StopIteration:
|
| 181 |
+
print("\n[Stopped by user]")
|
| 182 |
+
|
| 183 |
+
del input_ids
|
| 184 |
+
torch.cuda.empty_cache()
|
| 185 |
+
signal.signal(signal.SIGINT, signal.SIG_DFL)
|
| 186 |
+
|
| 187 |
+
return streamer.generated_text, streamer.stop_flag, streamer.get_metrics()
|
| 188 |
+
|
| 189 |
+
while True:
|
| 190 |
+
print(f"skip_prompt: {skip_prompt}")
|
| 191 |
+
print(f"skip_special_tokens: {skip_special_tokens}")
|
| 192 |
+
print(f"do_sample: {do_sample}")
|
| 193 |
+
|
| 194 |
+
user_input = input("User: ").strip()
|
| 195 |
+
if user_input.lower() == "/exit":
|
| 196 |
+
print("Exiting chat.")
|
| 197 |
+
break
|
| 198 |
+
if user_input.lower() == "/clear":
|
| 199 |
+
messages = []
|
| 200 |
+
print("Chat history cleared. Starting a new conversation.")
|
| 201 |
+
continue
|
| 202 |
+
if user_input.lower() == "/skip_prompt":
|
| 203 |
+
skip_prompt = not skip_prompt
|
| 204 |
+
continue
|
| 205 |
+
if user_input.lower() == "/skip_special_tokens":
|
| 206 |
+
skip_special_tokens = not skip_special_tokens
|
| 207 |
+
continue
|
| 208 |
+
if user_input.lower() == "/do_sample":
|
| 209 |
+
do_sample = not do_sample
|
| 210 |
+
continue
|
| 211 |
+
if not user_input:
|
| 212 |
+
print("Input cannot be empty. Please enter something.")
|
| 213 |
+
continue
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
messages.append({"role": "user", "content": user_input})
|
| 217 |
+
response, stop_flag, metrics = generate_stream(model, tokenizer, messages, skip_prompt, skip_special_tokens, do_sample, 40960)
|
| 218 |
+
print("\n\nMetrics:")
|
| 219 |
+
for key, value in metrics.items():
|
| 220 |
+
print(f" {key}: {value}")
|
| 221 |
+
|
| 222 |
+
print("", flush=True)
|
| 223 |
+
if stop_flag:
|
| 224 |
+
continue
|
| 225 |
+
messages.append({"role": "assistant", "content": response})
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
## Usage Warnings
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
- **Risk of Sensitive or Controversial Outputs**: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs.
|
| 232 |
+
|
| 233 |
+
- **Not Suitable for All Audiences**: Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security.
|
| 234 |
+
|
| 235 |
+
- **Legal and Ethical Responsibilities**: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences.
|
| 236 |
+
|
| 237 |
+
- **Research and Experimental Use**: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications.
|
| 238 |
+
|
| 239 |
+
- **Monitoring and Review Recommendations**: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content.
|
| 240 |
+
|
| 241 |
+
- **No Default Safety Guarantees**: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use.
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
### Donation
|
| 245 |
+
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
|
| 246 |
+
- bitcoin:
|
| 247 |
+
```
|
| 248 |
+
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
|
| 249 |
+
```
|
| 250 |
+
- Support our work on Ko-fi (https://ko-fi.com/huihuiai)!
|