Upload trainer.py
Browse filesadd trainer script
- trainer.py +432 -0
trainer.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# static-embedding-japanese trainer.py
|
| 2 |
+
# base: https://huggingface.co/blog/static-embeddings
|
| 3 |
+
# MIT License
|
| 4 |
+
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
import random
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
from sentence_transformers import (
|
| 11 |
+
SentenceTransformer,
|
| 12 |
+
SentenceTransformerModelCardData,
|
| 13 |
+
SentenceTransformerTrainer,
|
| 14 |
+
SentenceTransformerTrainingArguments,
|
| 15 |
+
)
|
| 16 |
+
from sentence_transformers.evaluation import NanoBEIREvaluator
|
| 17 |
+
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
|
| 18 |
+
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
|
| 19 |
+
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
|
| 20 |
+
from transformers import AutoTokenizer
|
| 21 |
+
|
| 22 |
+
from datasets import Dataset, DatasetDict, load_dataset
|
| 23 |
+
|
| 24 |
+
EXP = "030"
|
| 25 |
+
print("EXP:", EXP)
|
| 26 |
+
|
| 27 |
+
PROJECT_ROOT = Path(__file__).resolve().parents[1]
|
| 28 |
+
print(PROJECT_ROOT)
|
| 29 |
+
|
| 30 |
+
EN_TARGET_DATASETS = [
|
| 31 |
+
# "gooaq", # non-commarical
|
| 32 |
+
"msmarco",
|
| 33 |
+
"squad",
|
| 34 |
+
# "s2orc", # large
|
| 35 |
+
"allnli",
|
| 36 |
+
# "paq", # large
|
| 37 |
+
"trivia_qa",
|
| 38 |
+
# "msmarco_10m",
|
| 39 |
+
"swim_ir",
|
| 40 |
+
# "pubmedqa",
|
| 41 |
+
"miracl",
|
| 42 |
+
# "mldr", # non-commarical
|
| 43 |
+
"mr_tydi",
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
JA_TARGET_DATASETS = [
|
| 47 |
+
"hpprc_emb__auto-wiki-nli-triplet",
|
| 48 |
+
"hpprc_emb__auto-wiki-qa",
|
| 49 |
+
"hpprc_emb__auto-wiki-qa-nemotron",
|
| 50 |
+
"hpprc_emb__auto-wiki-qa-pair",
|
| 51 |
+
"hpprc_emb__baobab-wiki-retrieval",
|
| 52 |
+
# "hpprc_emb__jagovfaqs", JMTEB task のtestに正解が含まれている
|
| 53 |
+
"hpprc_emb__janli-triplet",
|
| 54 |
+
"hpprc_emb__jaquad",
|
| 55 |
+
"hpprc_emb__jqara", # JMTEB task のドメイン
|
| 56 |
+
"hpprc_emb__jsnli-triplet",
|
| 57 |
+
"hpprc_emb__jsquad",
|
| 58 |
+
"hpprc_emb__miracl", # JMTEB task のドメイン
|
| 59 |
+
"hpprc_emb__mkqa",
|
| 60 |
+
"hpprc_emb__mkqa-triplet",
|
| 61 |
+
# "hpprc_emb__mmarco", 文字化け等が含みノイジー
|
| 62 |
+
"hpprc_emb__mr-tydi", # JMTEB task のドメイン
|
| 63 |
+
"hpprc_emb__nu-mnli-triplet",
|
| 64 |
+
"hpprc_emb__nu-snli-triplet",
|
| 65 |
+
# "hpprc_emb__paws-x-triplet", JMTEB task のtestに含まれている?
|
| 66 |
+
"hpprc_emb__quiz-no-mori",
|
| 67 |
+
"hpprc_emb__quiz-works",
|
| 68 |
+
"hpprc_emb__snow-triplet",
|
| 69 |
+
"hpprc_llmjp-kaken",
|
| 70 |
+
"hpprc_llmjp_warp_html",
|
| 71 |
+
"hpprc_mqa_ja",
|
| 72 |
+
"hpprc_msmarco_ja",
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
AUG_FACTOR_DATASETS = {
|
| 76 |
+
"hpprc_emb__miracl": 20,
|
| 77 |
+
"hpprc_emb__mr-tydi": 20,
|
| 78 |
+
"hpprc_emb__jqara": 10,
|
| 79 |
+
"hpprc_emb__baobab-wiki-retrieval": 5,
|
| 80 |
+
"hpprc_emb__mkqa": 5,
|
| 81 |
+
"hpprc_emb__auto-wiki-qa-nemotron": 2,
|
| 82 |
+
"hpprc_msmarco_ja": 2,
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
logging.basicConfig(
|
| 89 |
+
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
|
| 90 |
+
)
|
| 91 |
+
random.seed(12)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def _load_train_eval_datasets_en():
|
| 95 |
+
"""
|
| 96 |
+
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk.
|
| 97 |
+
|
| 98 |
+
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training.
|
| 99 |
+
"""
|
| 100 |
+
en_train_dataset_dir = PROJECT_ROOT / "datasets" / "en_train_dataset"
|
| 101 |
+
en_eval_dataset_dir = PROJECT_ROOT / "datasets" / "en_eval_dataset"
|
| 102 |
+
try:
|
| 103 |
+
train_dataset = DatasetDict.load_from_disk(en_train_dataset_dir)
|
| 104 |
+
eval_dataset = DatasetDict.load_from_disk(en_eval_dataset_dir)
|
| 105 |
+
return train_dataset, eval_dataset
|
| 106 |
+
except FileNotFoundError:
|
| 107 |
+
print("Loading gooaq dataset...")
|
| 108 |
+
gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
|
| 109 |
+
gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
|
| 110 |
+
gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
|
| 111 |
+
gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
|
| 112 |
+
print("Loaded gooaq dataset.")
|
| 113 |
+
|
| 114 |
+
print("Loading msmarco dataset...")
|
| 115 |
+
msmarco_dataset = load_dataset(
|
| 116 |
+
"sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
|
| 117 |
+
"triplet",
|
| 118 |
+
split="train",
|
| 119 |
+
)
|
| 120 |
+
msmarco_dataset_dict = msmarco_dataset.train_test_split(
|
| 121 |
+
test_size=10_000, seed=12
|
| 122 |
+
)
|
| 123 |
+
msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
|
| 124 |
+
msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
|
| 125 |
+
print("Loaded msmarco dataset.")
|
| 126 |
+
|
| 127 |
+
print("Loading squad dataset...")
|
| 128 |
+
squad_dataset = load_dataset("sentence-transformers/squad", split="train")
|
| 129 |
+
squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
|
| 130 |
+
squad_train_dataset: Dataset = squad_dataset_dict["train"]
|
| 131 |
+
squad_eval_dataset: Dataset = squad_dataset_dict["test"]
|
| 132 |
+
print("Loaded squad dataset.")
|
| 133 |
+
|
| 134 |
+
print("Loading s2orc dataset...")
|
| 135 |
+
s2orc_dataset = load_dataset(
|
| 136 |
+
"sentence-transformers/s2orc", "title-abstract-pair", split="train[:100000]"
|
| 137 |
+
)
|
| 138 |
+
s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
|
| 139 |
+
s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
|
| 140 |
+
s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
|
| 141 |
+
print("Loaded s2orc dataset.")
|
| 142 |
+
|
| 143 |
+
print("Loading allnli dataset...")
|
| 144 |
+
allnli_train_dataset = load_dataset(
|
| 145 |
+
"sentence-transformers/all-nli", "triplet", split="train"
|
| 146 |
+
)
|
| 147 |
+
allnli_eval_dataset = load_dataset(
|
| 148 |
+
"sentence-transformers/all-nli", "triplet", split="dev"
|
| 149 |
+
)
|
| 150 |
+
print("Loaded allnli dataset.")
|
| 151 |
+
|
| 152 |
+
print("Loading paq dataset...")
|
| 153 |
+
paq_dataset = load_dataset("sentence-transformers/paq", split="train")
|
| 154 |
+
paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
|
| 155 |
+
paq_train_dataset: Dataset = paq_dataset_dict["train"]
|
| 156 |
+
paq_eval_dataset: Dataset = paq_dataset_dict["test"]
|
| 157 |
+
print("Loaded paq dataset.")
|
| 158 |
+
|
| 159 |
+
print("Loading trivia_qa dataset...")
|
| 160 |
+
trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
|
| 161 |
+
trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
|
| 162 |
+
trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
|
| 163 |
+
trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
|
| 164 |
+
print("Loaded trivia_qa dataset.")
|
| 165 |
+
|
| 166 |
+
print("Loading msmarco_10m dataset...")
|
| 167 |
+
msmarco_10m_dataset = load_dataset(
|
| 168 |
+
"bclavie/msmarco-10m-triplets", split="train"
|
| 169 |
+
)
|
| 170 |
+
msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(
|
| 171 |
+
test_size=10_000, seed=12
|
| 172 |
+
)
|
| 173 |
+
msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
|
| 174 |
+
msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
|
| 175 |
+
print("Loaded msmarco_10m dataset.")
|
| 176 |
+
|
| 177 |
+
print("Loading swim_ir dataset...")
|
| 178 |
+
swim_ir_dataset = load_dataset(
|
| 179 |
+
"nthakur/swim-ir-monolingual", "en", split="train"
|
| 180 |
+
).select_columns(["query", "text"])
|
| 181 |
+
swim_ir_dataset_dict = swim_ir_dataset.train_test_split(
|
| 182 |
+
test_size=10_000, seed=12
|
| 183 |
+
)
|
| 184 |
+
swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
|
| 185 |
+
swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
|
| 186 |
+
print("Loaded swim_ir dataset.")
|
| 187 |
+
|
| 188 |
+
# NOTE: 20 negatives
|
| 189 |
+
print("Loading pubmedqa dataset...")
|
| 190 |
+
pubmedqa_dataset = load_dataset(
|
| 191 |
+
"sentence-transformers/pubmedqa", "triplet-20", split="train"
|
| 192 |
+
)
|
| 193 |
+
pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(
|
| 194 |
+
test_size=100, seed=12
|
| 195 |
+
)
|
| 196 |
+
pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
|
| 197 |
+
pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
|
| 198 |
+
print("Loaded pubmedqa dataset.")
|
| 199 |
+
|
| 200 |
+
# NOTE: A lot of overlap with anchor/positives
|
| 201 |
+
print("Loading miracl dataset...")
|
| 202 |
+
miracl_dataset = load_dataset(
|
| 203 |
+
"sentence-transformers/miracl", "en-triplet-all", split="train"
|
| 204 |
+
)
|
| 205 |
+
miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
|
| 206 |
+
miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
|
| 207 |
+
miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
|
| 208 |
+
print("Loaded miracl dataset.")
|
| 209 |
+
|
| 210 |
+
# NOTE: A lot of overlap with anchor/positives
|
| 211 |
+
print("Loading mldr dataset...")
|
| 212 |
+
mldr_dataset = load_dataset(
|
| 213 |
+
"sentence-transformers/mldr", "en-triplet-all", split="train"
|
| 214 |
+
)
|
| 215 |
+
mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
|
| 216 |
+
mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
|
| 217 |
+
mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
|
| 218 |
+
print("Loaded mldr dataset.")
|
| 219 |
+
|
| 220 |
+
# NOTE: A lot of overlap with anchor/positives
|
| 221 |
+
print("Loading mr_tydi dataset...")
|
| 222 |
+
mr_tydi_dataset = load_dataset(
|
| 223 |
+
"sentence-transformers/mr-tydi", "en-triplet-all", split="train"
|
| 224 |
+
)
|
| 225 |
+
mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(
|
| 226 |
+
test_size=10_000, seed=12
|
| 227 |
+
)
|
| 228 |
+
mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
|
| 229 |
+
mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
|
| 230 |
+
print("Loaded mr_tydi dataset.")
|
| 231 |
+
|
| 232 |
+
train_dataset = DatasetDict(
|
| 233 |
+
{
|
| 234 |
+
"gooaq": gooaq_train_dataset,
|
| 235 |
+
"msmarco": msmarco_train_dataset,
|
| 236 |
+
"squad": squad_train_dataset,
|
| 237 |
+
"s2orc": s2orc_train_dataset,
|
| 238 |
+
"allnli": allnli_train_dataset,
|
| 239 |
+
"paq": paq_train_dataset,
|
| 240 |
+
"trivia_qa": trivia_qa_train_dataset,
|
| 241 |
+
"msmarco_10m": msmarco_10m_train_dataset,
|
| 242 |
+
"swim_ir": swim_ir_train_dataset,
|
| 243 |
+
"pubmedqa": pubmedqa_train_dataset,
|
| 244 |
+
"miracl": miracl_train_dataset,
|
| 245 |
+
"mldr": mldr_train_dataset,
|
| 246 |
+
"mr_tydi": mr_tydi_train_dataset,
|
| 247 |
+
}
|
| 248 |
+
)
|
| 249 |
+
eval_dataset = DatasetDict(
|
| 250 |
+
{
|
| 251 |
+
"gooaq": gooaq_eval_dataset,
|
| 252 |
+
"msmarco": msmarco_eval_dataset,
|
| 253 |
+
"squad": squad_eval_dataset,
|
| 254 |
+
"s2orc": s2orc_eval_dataset,
|
| 255 |
+
"allnli": allnli_eval_dataset,
|
| 256 |
+
"paq": paq_eval_dataset,
|
| 257 |
+
"trivia_qa": trivia_qa_eval_dataset,
|
| 258 |
+
"msmarco_10m": msmarco_10m_eval_dataset,
|
| 259 |
+
"swim_ir": swim_ir_eval_dataset,
|
| 260 |
+
"pubmedqa": pubmedqa_eval_dataset,
|
| 261 |
+
"miracl": miracl_eval_dataset,
|
| 262 |
+
"mldr": mldr_eval_dataset,
|
| 263 |
+
"mr_tydi": mr_tydi_eval_dataset,
|
| 264 |
+
}
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
train_dataset.save_to_disk(str(en_train_dataset_dir))
|
| 268 |
+
eval_dataset.save_to_disk(str(en_eval_dataset_dir))
|
| 269 |
+
return train_dataset, eval_dataset
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def load_train_eval_datasets_en(target_dataset_names: list[str] = []):
|
| 273 |
+
print("Loading train and eval datasets...")
|
| 274 |
+
if len(target_dataset_names) == 0:
|
| 275 |
+
return DatasetDict(), DatasetDict()
|
| 276 |
+
train_dataset, eval_dataset = _load_train_eval_datasets_en()
|
| 277 |
+
ds_names = list(train_dataset.keys())
|
| 278 |
+
for ds_name in ds_names:
|
| 279 |
+
if ds_name not in target_dataset_names:
|
| 280 |
+
del train_dataset[ds_name]
|
| 281 |
+
del eval_dataset[ds_name]
|
| 282 |
+
else:
|
| 283 |
+
print(
|
| 284 |
+
"target en ds",
|
| 285 |
+
ds_name,
|
| 286 |
+
len(train_dataset[ds_name]),
|
| 287 |
+
len(eval_dataset[ds_name]),
|
| 288 |
+
)
|
| 289 |
+
return train_dataset, eval_dataset
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def load_train_eval_datasets_jp(target_dataset_names: list[str] = []):
|
| 293 |
+
print("Loading train and eval datasets...")
|
| 294 |
+
jp_train_dataset_dir = PROJECT_ROOT / "datasets" / "jp_train_dataset"
|
| 295 |
+
jp_eval_dataset_dir = PROJECT_ROOT / "datasets" / "jp_eval_dataset"
|
| 296 |
+
|
| 297 |
+
train_dataset_dict = {}
|
| 298 |
+
eval_dataset_dict = {}
|
| 299 |
+
|
| 300 |
+
for ds_name in target_dataset_names:
|
| 301 |
+
print("loading jp ds", ds_name)
|
| 302 |
+
try:
|
| 303 |
+
train_ds = Dataset.load_from_disk(f"{jp_train_dataset_dir}/{ds_name}")
|
| 304 |
+
eval_ds = Dataset.load_from_disk(f"{jp_eval_dataset_dir}/{ds_name}")
|
| 305 |
+
|
| 306 |
+
except FileNotFoundError:
|
| 307 |
+
print(f"{ds_name} not found, loading from datasets library...")
|
| 308 |
+
ds = load_dataset(
|
| 309 |
+
"hotchpotch/sentence_transformer_japanese", ds_name, split="train"
|
| 310 |
+
)
|
| 311 |
+
ds_size = len(ds)
|
| 312 |
+
test_size = min(3000, ds_size // 100)
|
| 313 |
+
splitted = ds.train_test_split(test_size=test_size, seed=12)
|
| 314 |
+
train_ds = splitted["train"]
|
| 315 |
+
eval_ds = splitted["test"]
|
| 316 |
+
# save
|
| 317 |
+
train_ds.save_to_disk(f"{jp_train_dataset_dir}/{ds_name}")
|
| 318 |
+
eval_ds.save_to_disk(f"{jp_eval_dataset_dir}/{ds_name}")
|
| 319 |
+
train_dataset_dict[ds_name] = train_ds
|
| 320 |
+
eval_dataset_dict[ds_name] = eval_ds
|
| 321 |
+
return DatasetDict(train_dataset_dict), DatasetDict(eval_dataset_dict)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def main():
|
| 325 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
| 326 |
+
print("Loading model...")
|
| 327 |
+
static_embedding = StaticEmbedding(
|
| 328 |
+
AutoTokenizer.from_pretrained("hotchpotch/xlm-roberta-japanese-tokenizer"),
|
| 329 |
+
embedding_dim=1024,
|
| 330 |
+
)
|
| 331 |
+
model = SentenceTransformer(
|
| 332 |
+
modules=[static_embedding],
|
| 333 |
+
model_card_data=SentenceTransformerModelCardData(
|
| 334 |
+
language="ja",
|
| 335 |
+
license="mit",
|
| 336 |
+
model_name="Static Embeddings with japanese tokenizer finetuned on various datasets",
|
| 337 |
+
),
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
|
| 341 |
+
print("Loading datasets...")
|
| 342 |
+
train_dataset_en, eval_dataset_en = load_train_eval_datasets_en(EN_TARGET_DATASETS)
|
| 343 |
+
train_dataset_jp, eval_dataset_jp = load_train_eval_datasets_jp(JA_TARGET_DATASETS)
|
| 344 |
+
# merge
|
| 345 |
+
print("Merging datasets...")
|
| 346 |
+
train_dataset = DatasetDict({**train_dataset_en, **train_dataset_jp})
|
| 347 |
+
eval_dataset = DatasetDict({**eval_dataset_en, **eval_dataset_jp})
|
| 348 |
+
for ds_name, aug_factor in AUG_FACTOR_DATASETS.items():
|
| 349 |
+
columns = train_dataset[ds_name].column_names
|
| 350 |
+
|
| 351 |
+
def data_aug(example):
|
| 352 |
+
result = {}
|
| 353 |
+
for col in columns:
|
| 354 |
+
result[col] = example[col] * aug_factor
|
| 355 |
+
return result
|
| 356 |
+
|
| 357 |
+
before_len = len(train_dataset[ds_name])
|
| 358 |
+
train_dataset[ds_name] = train_dataset[ds_name].map(
|
| 359 |
+
data_aug, batched=True, num_proc=11
|
| 360 |
+
)
|
| 361 |
+
print("data augmented", ds_name, before_len, len(train_dataset[ds_name]))
|
| 362 |
+
for train_ds_name in train_dataset.keys():
|
| 363 |
+
print(
|
| 364 |
+
"train ds",
|
| 365 |
+
train_ds_name,
|
| 366 |
+
len(train_dataset[train_ds_name]),
|
| 367 |
+
len(eval_dataset[train_ds_name]),
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
# 4. Define a loss function
|
| 371 |
+
loss = MultipleNegativesRankingLoss(model)
|
| 372 |
+
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
|
| 373 |
+
|
| 374 |
+
# 5. (Optional) Specify training arguments
|
| 375 |
+
run_name = f"static-retrieval-mrl-jp-v1_{EXP}"
|
| 376 |
+
args = SentenceTransformerTrainingArguments(
|
| 377 |
+
# Required parameter:
|
| 378 |
+
output_dir=f"models/{run_name}",
|
| 379 |
+
# Optional training parameters:
|
| 380 |
+
num_train_epochs=2,
|
| 381 |
+
per_device_train_batch_size=2048 * 3,
|
| 382 |
+
# gradient_accumulation_steps=4,
|
| 383 |
+
per_device_eval_batch_size=2048,
|
| 384 |
+
learning_rate=2e-1,
|
| 385 |
+
lr_scheduler_type="cosine",
|
| 386 |
+
# optim="adafactor",
|
| 387 |
+
warmup_ratio=0.1,
|
| 388 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
| 389 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
| 390 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
| 391 |
+
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
|
| 392 |
+
# Optional tracking/debugging parameters:
|
| 393 |
+
eval_strategy="steps",
|
| 394 |
+
eval_steps=200,
|
| 395 |
+
save_strategy="steps",
|
| 396 |
+
save_steps=200,
|
| 397 |
+
save_total_limit=20,
|
| 398 |
+
logging_steps=20,
|
| 399 |
+
logging_first_step=True,
|
| 400 |
+
dataloader_prefetch_factor=4,
|
| 401 |
+
dataloader_num_workers=15,
|
| 402 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
# 6. (Optional) Create an evaluator & evaluate the base model
|
| 406 |
+
evaluator = NanoBEIREvaluator()
|
| 407 |
+
evaluator(model)
|
| 408 |
+
|
| 409 |
+
# 7. Create a trainer & train
|
| 410 |
+
trainer = SentenceTransformerTrainer(
|
| 411 |
+
model=model,
|
| 412 |
+
args=args,
|
| 413 |
+
train_dataset=train_dataset,
|
| 414 |
+
eval_dataset=eval_dataset,
|
| 415 |
+
loss=loss,
|
| 416 |
+
evaluator=evaluator,
|
| 417 |
+
)
|
| 418 |
+
trainer.train()
|
| 419 |
+
|
| 420 |
+
# (Optional) Evaluate the trained model on the evaluator after training
|
| 421 |
+
evaluator(model)
|
| 422 |
+
|
| 423 |
+
# 8. Save the trained model
|
| 424 |
+
model.save_pretrained(f"{PROJECT_ROOT}/models/{run_name}/final")
|
| 425 |
+
|
| 426 |
+
# 9. (Optional) Push it to the Hugging Face Hub
|
| 427 |
+
# model.push_to_hub(run_name, private=True)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
if __name__ == "__main__":
|
| 431 |
+
main()
|
| 432 |
+
|