from datasets import load_dataset from transformers import T5ForConditionalGeneration, T5TokenizerFast, Trainer, TrainingArguments import evaluate import numpy as np # Load dataset dataset = load_dataset("cnn_dailymail", "3.0.0") # Load tokenizer and model tokenizer = T5TokenizerFast.from_pretrained("t5-small") model = T5ForConditionalGeneration.from_pretrained("t5-small") # Preprocess function def preprocess_function(examples): inputs = ["summarize: " + doc for doc in examples["article"]] model_inputs = tokenizer(inputs, max_length=512, truncation=True) labels = tokenizer(text_target=examples["highlights"], max_length=128, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs tokenized_datasets = dataset.map(preprocess_function, batched=True, remove_columns=["article", "highlights", "id"]) # Metrics rouge = evaluate.load("rouge") def compute_metrics(eval_pred): predictions, labels = eval_pred decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) result = rouge.compute(predictions=decoded_preds, references=decoded_labels) return {k: v * 100 for k, v in result.items()} # Training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=3e-4, per_device_train_batch_size=2, per_device_eval_batch_size=2, num_train_epochs=1, save_strategy="epoch", predict_with_generate=True, push_to_hub=False ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"].select(range(2000)), eval_dataset=tokenized_datasets["validation"].select(range(500)), tokenizer=tokenizer, compute_metrics=compute_metrics ) trainer.train() trainer.save_model("./t5-news-summarizer") tokenizer.save_pretrained("./t5-news-summarizer")