t5-news-summarizer / train_summarizer.py
hmnshudhmn24's picture
Upload 8 files
3664047 verified
from datasets import load_dataset
from transformers import T5ForConditionalGeneration, T5TokenizerFast, Trainer, TrainingArguments
import evaluate
import numpy as np
# Load dataset
dataset = load_dataset("cnn_dailymail", "3.0.0")
# Load tokenizer and model
tokenizer = T5TokenizerFast.from_pretrained("t5-small")
model = T5ForConditionalGeneration.from_pretrained("t5-small")
# Preprocess function
def preprocess_function(examples):
inputs = ["summarize: " + doc for doc in examples["article"]]
model_inputs = tokenizer(inputs, max_length=512, truncation=True)
labels = tokenizer(text_target=examples["highlights"], max_length=128, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_datasets = dataset.map(preprocess_function, batched=True, remove_columns=["article", "highlights", "id"])
# Metrics
rouge = evaluate.load("rouge")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
result = rouge.compute(predictions=decoded_preds, references=decoded_labels)
return {k: v * 100 for k, v in result.items()}
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=3e-4,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=1,
save_strategy="epoch",
predict_with_generate=True,
push_to_hub=False
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"].select(range(2000)),
eval_dataset=tokenized_datasets["validation"].select(range(500)),
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
trainer.save_model("./t5-news-summarizer")
tokenizer.save_pretrained("./t5-news-summarizer")