Upload folder using huggingface_hub
Browse files- README.md +146 -3
- config.json +11 -0
- generation_config.json +1 -0
- pytorch_model.bin +3 -0
- vocab.json +0 -0
README.md
CHANGED
|
@@ -1,3 +1,146 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# hackergeek/RADIOCAP13
|
| 3 |
+
|
| 4 |
+
**ROCO Radiology Image Captioning Model**
|
| 5 |
+
|
| 6 |
+
This model is a medical image captioning system designed for radiology reports. It utilizes a frozen ViT encoder for image feature extraction and a custom decoder trained to generate captions. The model was trained on the full ROCO-radiology dataset.
|
| 7 |
+
|
| 8 |
+
- **Encoder**: `google/vit-base-patch16-224-in21k` (frozen, features cached)
|
| 9 |
+
- **Decoder**: Trained on **full ROCO dataset** (~81k samples) for **3 epochs**
|
| 10 |
+
- **Trainable parameters**: Only decoder + ViT biases
|
| 11 |
+
- **Vocab size**: 75460
|
| 12 |
+
- **Sequence Length**: 32
|
| 13 |
+
- **Generation**: Beam search (size=3)
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## Usage
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import ViTModel
|
| 21 |
+
import torch
|
| 22 |
+
from PIL import Image
|
| 23 |
+
from torchvision import transforms
|
| 24 |
+
import json
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
# Assuming SimpleTokenizer and BiasDecoder classes are available from your training script.
|
| 28 |
+
# For a full runnable example, their definitions are included below.
|
| 29 |
+
|
| 30 |
+
# Re-define necessary components and classes for a self-contained example
|
| 31 |
+
IMG_SIZE = 224
|
| 32 |
+
SEQ_LEN = 32
|
| 33 |
+
VOCAB_SIZE = 75460
|
| 34 |
+
|
| 35 |
+
transform = transforms.Compose([
|
| 36 |
+
transforms.Resize((IMG_SIZE, IMG_SIZE)),
|
| 37 |
+
transforms.ToTensor(),
|
| 38 |
+
])
|
| 39 |
+
|
| 40 |
+
def preprocess_image(img):
|
| 41 |
+
if img is None: raise ValueError("Image is None")
|
| 42 |
+
if not isinstance(img, Image.Image): img = Image.fromarray(img)
|
| 43 |
+
if img.mode != "RGB": img = img.convert("RGB")
|
| 44 |
+
return transform(img)
|
| 45 |
+
|
| 46 |
+
# SimpleTokenizer class (copy-pasted from notebook for self-contained example)
|
| 47 |
+
class SimpleTokenizer:
|
| 48 |
+
def __init__(self, word2idx=None):
|
| 49 |
+
if word2idx is None:
|
| 50 |
+
# Placeholder for actual vocab loading or creation if not loaded from file
|
| 51 |
+
self.word2idx = {} # Escaped
|
| 52 |
+
else:
|
| 53 |
+
self.word2idx = word2idx
|
| 54 |
+
self.idx2word = {v: k for k, v in self.word2idx.items()} # Escaped
|
| 55 |
+
|
| 56 |
+
def encode(self, text, max_len=SEQ_LEN):
|
| 57 |
+
tokens = [self.word2idx.get(w, self.word2idx["<PAD>"]) for w in text.lower().split()]
|
| 58 |
+
tokens = [self.word2idx["<SOS>"]] + tokens[:max_len-2] + [self.word2idx["<EOS>"]]
|
| 59 |
+
tokens += [self.word2idx["<PAD>"]] * (max_len - len(tokens))
|
| 60 |
+
return torch.tensor(tokens, dtype=torch.long)
|
| 61 |
+
|
| 62 |
+
def decode(self, tokens):
|
| 63 |
+
return " ".join(self.idx2word.get(t.item(), "<UNK>") for t in tokens if t not in [self.word2idx["<PAD>"], self.word2idx["<SOS>"], self.word2idx["<EOS>"]])
|
| 64 |
+
|
| 65 |
+
@classmethod
|
| 66 |
+
def load(cls, path):
|
| 67 |
+
with open(f"{path}/vocab.json", "r") as f: # Correctly escaped
|
| 68 |
+
word2idx = json.load(f)
|
| 69 |
+
tokenizer = cls(word2idx)
|
| 70 |
+
return tokenizer
|
| 71 |
+
|
| 72 |
+
# BiasDecoder class (copy-pasted from notebook for self-contained example)
|
| 73 |
+
class BiasDecoder(torch.nn.Module):
|
| 74 |
+
def __init__(self, feature_dim=768, vocab_size=VOCAB_SIZE):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.token_emb = torch.nn.Embedding(vocab_size, feature_dim)
|
| 77 |
+
self.pos_emb = torch.nn.Embedding(SEQ_LEN-1, feature_dim)
|
| 78 |
+
self.final_layer = torch.nn.Linear(feature_dim, vocab_size)
|
| 79 |
+
|
| 80 |
+
def forward(self, img_feat, target_seq):
|
| 81 |
+
x = self.token_emb(target_seq)
|
| 82 |
+
pos = torch.arange(x.size(1), device=x.device).clamp(max=self.pos_emb.num_embeddings-1)
|
| 83 |
+
x = x + self.pos_emb(pos)
|
| 84 |
+
x = x + img_feat.unsqueeze(1)
|
| 85 |
+
return self.final_layer(x)
|
| 86 |
+
|
| 87 |
+
# Setup device
|
| 88 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 89 |
+
|
| 90 |
+
# Load ViT (frozen)
|
| 91 |
+
vit = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
|
| 92 |
+
vit.eval()
|
| 93 |
+
vit.to(device)
|
| 94 |
+
|
| 95 |
+
# Load decoder
|
| 96 |
+
decoder = BiasDecoder().to(device)
|
| 97 |
+
# Assuming 'pytorch_model.bin' is in the current directory or specified path
|
| 98 |
+
decoder.load_state_dict(torch.load("pytorch_model.bin", map_location=device))
|
| 99 |
+
decoder.eval()
|
| 100 |
+
|
| 101 |
+
# Load tokenizer
|
| 102 |
+
# Assuming 'vocab.json' is in the current directory or specified path
|
| 103 |
+
tokenizer = SimpleTokenizer.load("./")
|
| 104 |
+
pad_idx = tokenizer.word2idx["<PAD>"]
|
| 105 |
+
|
| 106 |
+
# Generation function
|
| 107 |
+
@torch.no_grad()
|
| 108 |
+
def generate_caption(model, img_feat, max_len=SEQ_LEN, beam_size=3):
|
| 109 |
+
model.eval()
|
| 110 |
+
img_feat = img_feat.to(device)
|
| 111 |
+
beams = [([tokenizer.word2idx["<SOS>"]], 0.0)]
|
| 112 |
+
for _ in range(max_len - 1):
|
| 113 |
+
candidates = []
|
| 114 |
+
for seq, score in beams:
|
| 115 |
+
inp = torch.tensor(seq + [pad_idx] * (SEQ_LEN - len(seq)), device=device).unsqueeze(0)
|
| 116 |
+
logits = model(img_feat, inp)
|
| 117 |
+
probs = torch.nn.functional.log_softmax(logits[0, len(seq)-1], dim=-1)
|
| 118 |
+
top_p, top_i = torch.topk(probs, beam_size)
|
| 119 |
+
for i in range(beam_size):
|
| 120 |
+
candidates.append((seq + [top_i[i].item()], score + top_p[i].item()))
|
| 121 |
+
beams = sorted(candidates, key=lambda x: x[1], reverse=True)[:beam_size]
|
| 122 |
+
if all(s[-1] == tokenizer.word2idx["<EOS>"] for s, _ in beams): break
|
| 123 |
+
words = [tokenizer.idx2word.get(i, "<UNK>") for i in beams[0][0][1:] if i != pad_idx]
|
| 124 |
+
return " ".join(words)
|
| 125 |
+
|
| 126 |
+
# Example: Generate a caption for an image
|
| 127 |
+
# For a real example, you would load an actual image and process it.
|
| 128 |
+
# img_path = "path/to/your/image.jpg"
|
| 129 |
+
# image = Image.open(img_path).convert("RGB")
|
| 130 |
+
# img_tensor = preprocess_image(image).unsqueeze(0).to(device)
|
| 131 |
+
# img_feat = vit(pixel_values=img_tensor).pooler_output
|
| 132 |
+
# generated_caption = generate_caption(decoder, img_feat)
|
| 133 |
+
# print(f"Generated caption: {generated_caption}")
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
---
|
| 137 |
+
|
| 138 |
+
## Evaluation (on ROCO Test Set)
|
| 139 |
+
|
| 140 |
+
- **BLEU-1**: N/A
|
| 141 |
+
- **BLEU-2**: N/A
|
| 142 |
+
- **BLEU-3**: N/A
|
| 143 |
+
- **BLEU-4**: N/A
|
| 144 |
+
- **Overall BLEU Score**: N/A
|
| 145 |
+
|
| 146 |
+
*Note: BLEU scores were interrupted during computation. Please re-run the evaluation cell (`eXra19D_oqcs`) after pushing to get accurate scores.*
|
config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "vit-captioner-bias-decoder",
|
| 3 |
+
"feature_extractor": "google/vit-base-patch16-224-in21k",
|
| 4 |
+
"vocab_size": 75460,
|
| 5 |
+
"seq_len": 32,
|
| 6 |
+
"feature_dim": 768,
|
| 7 |
+
"training_epochs": 3,
|
| 8 |
+
"dataset": "ROCO-radiology (train + val + test)",
|
| 9 |
+
"trainable": "Decoder + ViT biases only",
|
| 10 |
+
"description": "ROCO radiology captioner trained for 3 epochs on full dataset using cached ViT features."
|
| 11 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"max_length": 32, "beam_size": 3}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e9147eef4c764eb8c960f0b62ed15368d1e5b4f1cddead75885dad44b1595bc
|
| 3 |
+
size 464025945
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|