utils: add evaluator script
Browse files- evaluator.py +43 -0
evaluator.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import TrainingArguments
|
| 5 |
+
from span_marker import SpanMarkerModel, Trainer
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
|
| 9 |
+
dataset = load_dataset("gwlms/germeval2014")
|
| 10 |
+
labels = dataset["train"].features["ner_tags"].feature.names
|
| 11 |
+
|
| 12 |
+
# Initialize a SpanMarker model using a pretrained BERT-style encoder
|
| 13 |
+
model_name = sys.argv[1]
|
| 14 |
+
model = SpanMarkerModel.from_pretrained(
|
| 15 |
+
model_name,
|
| 16 |
+
labels=labels,
|
| 17 |
+
# SpanMarker hyperparameters:
|
| 18 |
+
model_max_length=256,
|
| 19 |
+
marker_max_length=128,
|
| 20 |
+
entity_max_length=8,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
args = TrainingArguments(
|
| 24 |
+
output_dir="/tmp",
|
| 25 |
+
per_device_eval_batch_size=64,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Initialize the trainer using our model, training args & dataset, and train
|
| 29 |
+
trainer = Trainer(
|
| 30 |
+
model=model,
|
| 31 |
+
args=args,
|
| 32 |
+
train_dataset=dataset["train"],
|
| 33 |
+
eval_dataset=dataset["validation"],
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
print("Evaluating on development set...")
|
| 38 |
+
dev_metrics = trainer.evaluate(dataset["validation"], metric_key_prefix="eval")
|
| 39 |
+
print(dev_metrics)
|
| 40 |
+
|
| 41 |
+
print("Evaluating on test set...")
|
| 42 |
+
test_metrics = trainer.evaluate(dataset["test"], metric_key_prefix="test")
|
| 43 |
+
print(test_metrics)
|