Commit
·
b25e454
1
Parent(s):
7263f32
Upload train_mt5_qa_en+cs.py
Browse files- train_mt5_qa_en+cs.py +80 -0
train_mt5_qa_en+cs.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
from adaptor.adapter import Adapter
|
| 4 |
+
from adaptor.evaluators.generative import BLEU
|
| 5 |
+
from adaptor.lang_module import LangModule
|
| 6 |
+
from adaptor.objectives.seq2seq import Sequence2Sequence
|
| 7 |
+
from adaptor.schedules import ParallelSchedule
|
| 8 |
+
from adaptor.utils import AdaptationArguments, StoppingStrategy
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
|
| 11 |
+
training_arguments = AdaptationArguments(output_dir="train_dir",
|
| 12 |
+
learning_rate=5e-5, # we set LR=2e-4 for pre-training experiments
|
| 13 |
+
# stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
| 14 |
+
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
| 15 |
+
do_train=True,
|
| 16 |
+
do_eval=True,
|
| 17 |
+
warmup_steps=1000,
|
| 18 |
+
max_steps=100000,
|
| 19 |
+
gradient_accumulation_steps=4,
|
| 20 |
+
eval_steps=100,
|
| 21 |
+
logging_steps=10,
|
| 22 |
+
save_steps=1000,
|
| 23 |
+
num_train_epochs=50,
|
| 24 |
+
evaluation_strategy="steps",
|
| 25 |
+
remove_unused_columns=False)
|
| 26 |
+
|
| 27 |
+
# lang_module = LangModule("google/mt5-small")
|
| 28 |
+
lang_module = LangModule("Helsinki-NLP/opus-mt-en-cs")
|
| 29 |
+
|
| 30 |
+
metrics_args = {"additional_sep_char": "▁"}
|
| 31 |
+
|
| 32 |
+
val_metrics = [BLEU(**metrics_args, decides_convergence=True)]
|
| 33 |
+
|
| 34 |
+
squad_en = load_dataset("squad")
|
| 35 |
+
squad_train = squad_en["train"].filter(lambda entry: len(entry["context"]) < 2000)
|
| 36 |
+
|
| 37 |
+
train_contexts_questions_en = ["question: %s context: %s" % (q, c) for q, c in zip(squad_train["question"],
|
| 38 |
+
squad_train["context"])]
|
| 39 |
+
val_contexts_questions_en = ["question: %s context: %s" % (q, c) for q, c in zip(squad_en["validation"]["question"],
|
| 40 |
+
squad_en["validation"]["context"])]
|
| 41 |
+
train_answers_en = [a["text"][0] for a in squad_train["answers"]]
|
| 42 |
+
val_answers_en = [a["text"][0] for a in squad_en["validation"]["answers"]]
|
| 43 |
+
|
| 44 |
+
generative_qa_en = Sequence2Sequence(lang_module,
|
| 45 |
+
texts_or_path=train_contexts_questions_en,
|
| 46 |
+
val_texts_or_path=val_contexts_questions_en[:200],
|
| 47 |
+
labels_or_path=train_answers_en,
|
| 48 |
+
val_labels_or_path=val_answers_en[:200],
|
| 49 |
+
batch_size=8,
|
| 50 |
+
val_evaluators=val_metrics,
|
| 51 |
+
objective_id="SQUAD-en")
|
| 52 |
+
|
| 53 |
+
squad_dataset = json.load(open("data/czech_squad.json"))
|
| 54 |
+
|
| 55 |
+
contexts_questions = []
|
| 56 |
+
answers = []
|
| 57 |
+
|
| 58 |
+
for i, entry in squad_dataset.items():
|
| 59 |
+
contexts_questions.append("question: %s context: %s" % (entry["question"], entry["context"]))
|
| 60 |
+
answers.append(entry["answers"]["text"][0])
|
| 61 |
+
|
| 62 |
+
train_contexts_questions = contexts_questions[:-200]
|
| 63 |
+
val_contexts_questions = contexts_questions[-200:]
|
| 64 |
+
train_answers = answers[:-200]
|
| 65 |
+
val_answers = answers[-200:]
|
| 66 |
+
|
| 67 |
+
generative_qa_cs = Sequence2Sequence(lang_module,
|
| 68 |
+
texts_or_path=train_contexts_questions,
|
| 69 |
+
val_texts_or_path=val_contexts_questions[:200],
|
| 70 |
+
labels_or_path=train_answers,
|
| 71 |
+
val_labels_or_path=val_answers[:200],
|
| 72 |
+
batch_size=8,
|
| 73 |
+
val_evaluators=val_metrics,
|
| 74 |
+
objective_id="SQUAD-cs")
|
| 75 |
+
|
| 76 |
+
schedule = ParallelSchedule(objectives=[generative_qa_en, generative_qa_cs],
|
| 77 |
+
args=training_arguments)
|
| 78 |
+
|
| 79 |
+
adapter = Adapter(lang_module, schedule, args=training_arguments)
|
| 80 |
+
adapter.train()
|