Upload folder using huggingface_hub
Browse files- README.md +59 -0
- config.json +30 -0
README.md
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
{}
|
| 3 |
+
---
|
| 4 |
+
---
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
tags:
|
| 7 |
+
- moe
|
| 8 |
+
- mergekit
|
| 9 |
+
- merge
|
| 10 |
+
- gagan3012/MetaModel
|
| 11 |
+
- jeonsworld/CarbonVillain-en-10.7B-v2
|
| 12 |
+
- jeonsworld/CarbonVillain-en-10.7B-v4
|
| 13 |
+
- TomGrc/FusionNet_linear
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# MetaModel_moe_multilingualv1
|
| 17 |
+
|
| 18 |
+
This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models:
|
| 19 |
+
* [gagan3012/MetaModel](https://huggingface.co/gagan3012/MetaModel)
|
| 20 |
+
* [jeonsworld/CarbonVillain-en-10.7B-v2](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v2)
|
| 21 |
+
* [jeonsworld/CarbonVillain-en-10.7B-v4](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v4)
|
| 22 |
+
* [TomGrc/FusionNet_linear](https://huggingface.co/TomGrc/FusionNet_linear)
|
| 23 |
+
|
| 24 |
+
## 🧩 Configuration
|
| 25 |
+
|
| 26 |
+
```yaml
|
| 27 |
+
base_model: gagan3012/MetaModel
|
| 28 |
+
gate_mode: hidden
|
| 29 |
+
dtype: bfloat16
|
| 30 |
+
experts:
|
| 31 |
+
- source_model: gagan3012/MetaModel
|
| 32 |
+
- source_model: jeonsworld/CarbonVillain-en-10.7B-v2
|
| 33 |
+
- source_model: jeonsworld/CarbonVillain-en-10.7B-v4
|
| 34 |
+
- source_model: TomGrc/FusionNet_linear
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
## 💻 Usage
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
!pip install -qU transformers bitsandbytes accelerate
|
| 41 |
+
|
| 42 |
+
from transformers import AutoTokenizer
|
| 43 |
+
import transformers
|
| 44 |
+
import torch
|
| 45 |
+
|
| 46 |
+
model = "gagan3012/MetaModel_moe_multilingualv1"
|
| 47 |
+
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
| 49 |
+
pipeline = transformers.pipeline(
|
| 50 |
+
"text-generation",
|
| 51 |
+
model=model,
|
| 52 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
|
| 56 |
+
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 57 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 58 |
+
print(outputs[0]["generated_text"])
|
| 59 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "mlabonne/Marcoro14-7B-slerp",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MixtralForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 1,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"model_type": "mixtral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_experts_per_tok": 2,
|
| 17 |
+
"num_hidden_layers": 32,
|
| 18 |
+
"num_key_value_heads": 8,
|
| 19 |
+
"num_local_experts": 8,
|
| 20 |
+
"output_router_logits": false,
|
| 21 |
+
"rms_norm_eps": 1e-05,
|
| 22 |
+
"rope_theta": 10000.0,
|
| 23 |
+
"router_aux_loss_coef": 0.001,
|
| 24 |
+
"sliding_window": null,
|
| 25 |
+
"tie_word_embeddings": false,
|
| 26 |
+
"torch_dtype": "bfloat16",
|
| 27 |
+
"transformers_version": "4.36.2",
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 32000
|
| 30 |
+
}
|