move the text encoder
Browse files- model_index.json +1 -1
- pipeline_glide.py +911 -0
model_index.json
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"_diffusers_version": "0.0.3",
|
| 4 |
"_module": "pipeline_glide",
|
| 5 |
"text_encoder": [
|
| 6 |
-
"
|
| 7 |
"CLIPTextModel"
|
| 8 |
],
|
| 9 |
"text_noise_scheduler": [
|
|
|
|
| 3 |
"_diffusers_version": "0.0.3",
|
| 4 |
"_module": "pipeline_glide",
|
| 5 |
"text_encoder": [
|
| 6 |
+
"pipeline_glide",
|
| 7 |
"CLIPTextModel"
|
| 8 |
],
|
| 9 |
"text_noise_scheduler": [
|
pipeline_glide.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch CLIP model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import Any, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
import torch
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
|
| 26 |
+
import tqdm
|
| 27 |
+
from transformers import CLIPConfig, CLIPModel, CLIPTextConfig, CLIPVisionConfig, GPT2Tokenizer
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
| 30 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 31 |
+
from transformers.utils import (
|
| 32 |
+
ModelOutput,
|
| 33 |
+
add_start_docstrings,
|
| 34 |
+
add_start_docstrings_to_model_forward,
|
| 35 |
+
logging,
|
| 36 |
+
replace_return_docstrings,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
from ..models import GLIDESuperResUNetModel, GLIDETextToImageUNetModel
|
| 40 |
+
from ..pipeline_utils import DiffusionPipeline
|
| 41 |
+
from ..schedulers import ClassifierFreeGuidanceScheduler, DDIMScheduler
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
#####################
|
| 45 |
+
# START OF THE CLIP MODEL COPY-PASTE (with a modified attention module)
|
| 46 |
+
#####################
|
| 47 |
+
|
| 48 |
+
logger = logging.get_logger(__name__)
|
| 49 |
+
|
| 50 |
+
_CHECKPOINT_FOR_DOC = "fusing/glide-base"
|
| 51 |
+
|
| 52 |
+
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 53 |
+
"fusing/glide-base",
|
| 54 |
+
# See all CLIP models at https://huggingface.co/models?filter=clip
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 59 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 60 |
+
"""
|
| 61 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 62 |
+
"""
|
| 63 |
+
bsz, src_len = mask.size()
|
| 64 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 65 |
+
|
| 66 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 67 |
+
|
| 68 |
+
inverted_mask = 1.0 - expanded_mask
|
| 69 |
+
|
| 70 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# contrastive loss function, adapted from
|
| 74 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
| 75 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
| 76 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
| 80 |
+
caption_loss = contrastive_loss(similarity)
|
| 81 |
+
image_loss = contrastive_loss(similarity.T)
|
| 82 |
+
return (caption_loss + image_loss) / 2.0
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@dataclass
|
| 86 |
+
class CLIPOutput(ModelOutput):
|
| 87 |
+
"""
|
| 88 |
+
Args:
|
| 89 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
| 90 |
+
Contrastive loss for image-text similarity.
|
| 91 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
| 92 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
| 93 |
+
similarity scores.
|
| 94 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
| 95 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
| 96 |
+
similarity scores.
|
| 97 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 98 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
| 99 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 100 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
| 101 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
| 102 |
+
The output of the [`CLIPTextModel`].
|
| 103 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
| 104 |
+
The output of the [`CLIPVisionModel`].
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
loss: Optional[torch.FloatTensor] = None
|
| 108 |
+
logits_per_image: torch.FloatTensor = None
|
| 109 |
+
logits_per_text: torch.FloatTensor = None
|
| 110 |
+
text_embeds: torch.FloatTensor = None
|
| 111 |
+
image_embeds: torch.FloatTensor = None
|
| 112 |
+
text_model_output: BaseModelOutputWithPooling = None
|
| 113 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
| 114 |
+
|
| 115 |
+
def to_tuple(self) -> Tuple[Any]:
|
| 116 |
+
return tuple(
|
| 117 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
| 118 |
+
for k in self.keys()
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class CLIPVisionEmbeddings(nn.Module):
|
| 123 |
+
def __init__(self, config: CLIPVisionConfig):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.config = config
|
| 126 |
+
self.embed_dim = config.hidden_size
|
| 127 |
+
self.image_size = config.image_size
|
| 128 |
+
self.patch_size = config.patch_size
|
| 129 |
+
|
| 130 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
| 131 |
+
|
| 132 |
+
self.patch_embedding = nn.Conv2d(
|
| 133 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 137 |
+
self.num_positions = self.num_patches + 1
|
| 138 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 139 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
| 140 |
+
|
| 141 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 142 |
+
batch_size = pixel_values.shape[0]
|
| 143 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
| 144 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 145 |
+
|
| 146 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
| 147 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 148 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 149 |
+
return embeddings
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class CLIPTextEmbeddings(nn.Module):
|
| 153 |
+
def __init__(self, config: CLIPTextConfig):
|
| 154 |
+
super().__init__()
|
| 155 |
+
embed_dim = config.hidden_size
|
| 156 |
+
|
| 157 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
| 158 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 159 |
+
self.use_padding_embeddings = config.use_padding_embeddings
|
| 160 |
+
if self.use_padding_embeddings:
|
| 161 |
+
self.padding_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 162 |
+
|
| 163 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 164 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 165 |
+
|
| 166 |
+
def forward(
|
| 167 |
+
self,
|
| 168 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 169 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 170 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 172 |
+
) -> torch.Tensor:
|
| 173 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
| 174 |
+
|
| 175 |
+
if position_ids is None:
|
| 176 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 177 |
+
|
| 178 |
+
if inputs_embeds is None:
|
| 179 |
+
inputs_embeds = self.token_embedding(input_ids)
|
| 180 |
+
|
| 181 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 182 |
+
embeddings = inputs_embeds + position_embeddings
|
| 183 |
+
|
| 184 |
+
if self.use_padding_embeddings and attention_mask is not None:
|
| 185 |
+
padding_embeddings = self.padding_embedding(position_ids)
|
| 186 |
+
embeddings = torch.where(attention_mask.bool().unsqueeze(-1), embeddings, padding_embeddings)
|
| 187 |
+
|
| 188 |
+
return embeddings
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class CLIPAttention(nn.Module):
|
| 192 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 193 |
+
|
| 194 |
+
def __init__(self, config):
|
| 195 |
+
super().__init__()
|
| 196 |
+
self.config = config
|
| 197 |
+
self.embed_dim = config.hidden_size
|
| 198 |
+
self.num_heads = config.num_attention_heads
|
| 199 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 200 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 201 |
+
raise ValueError(
|
| 202 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 203 |
+
f" {self.num_heads})."
|
| 204 |
+
)
|
| 205 |
+
self.scale = 1 / math.sqrt(math.sqrt(self.head_dim))
|
| 206 |
+
|
| 207 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3)
|
| 208 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 209 |
+
|
| 210 |
+
def forward(
|
| 211 |
+
self,
|
| 212 |
+
hidden_states: torch.Tensor,
|
| 213 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 214 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 215 |
+
output_attentions: Optional[bool] = False,
|
| 216 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 217 |
+
"""Input shape: Batch x Time x Channel"""
|
| 218 |
+
|
| 219 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
| 220 |
+
|
| 221 |
+
qkv_states = self.qkv_proj(hidden_states)
|
| 222 |
+
qkv_states = qkv_states.view(bsz, tgt_len, self.num_heads, -1)
|
| 223 |
+
query_states, key_states, value_states = torch.split(qkv_states, self.head_dim, dim=-1)
|
| 224 |
+
|
| 225 |
+
attn_weights = torch.einsum("bthc,bshc->bhts", query_states * self.scale, key_states * self.scale)
|
| 226 |
+
|
| 227 |
+
wdtype = attn_weights.dtype
|
| 228 |
+
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1).type(wdtype)
|
| 229 |
+
|
| 230 |
+
attn_output = torch.einsum("bhts,bshc->bthc", attn_weights, value_states)
|
| 231 |
+
attn_output = attn_output.reshape(bsz, tgt_len, -1)
|
| 232 |
+
|
| 233 |
+
attn_output = self.out_proj(attn_output)
|
| 234 |
+
|
| 235 |
+
return attn_output, attn_weights
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class CLIPMLP(nn.Module):
|
| 239 |
+
def __init__(self, config):
|
| 240 |
+
super().__init__()
|
| 241 |
+
self.config = config
|
| 242 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 243 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 244 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 245 |
+
|
| 246 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 247 |
+
hidden_states = self.fc1(hidden_states)
|
| 248 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 249 |
+
hidden_states = self.fc2(hidden_states)
|
| 250 |
+
return hidden_states
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class CLIPEncoderLayer(nn.Module):
|
| 254 |
+
def __init__(self, config: CLIPConfig):
|
| 255 |
+
super().__init__()
|
| 256 |
+
self.embed_dim = config.hidden_size
|
| 257 |
+
self.self_attn = CLIPAttention(config)
|
| 258 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
|
| 259 |
+
self.mlp = CLIPMLP(config)
|
| 260 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
|
| 261 |
+
|
| 262 |
+
def forward(
|
| 263 |
+
self,
|
| 264 |
+
hidden_states: torch.Tensor,
|
| 265 |
+
attention_mask: torch.Tensor,
|
| 266 |
+
causal_attention_mask: torch.Tensor,
|
| 267 |
+
output_attentions: Optional[bool] = False,
|
| 268 |
+
) -> Tuple[torch.FloatTensor]:
|
| 269 |
+
"""
|
| 270 |
+
Args:
|
| 271 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 272 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 273 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 274 |
+
`(config.encoder_attention_heads,)`.
|
| 275 |
+
output_attentions (`bool`, *optional*):
|
| 276 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 277 |
+
returned tensors for more detail.
|
| 278 |
+
"""
|
| 279 |
+
residual = hidden_states
|
| 280 |
+
|
| 281 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 282 |
+
hidden_states, attn_weights = self.self_attn(
|
| 283 |
+
hidden_states=hidden_states,
|
| 284 |
+
attention_mask=attention_mask,
|
| 285 |
+
causal_attention_mask=causal_attention_mask,
|
| 286 |
+
output_attentions=output_attentions,
|
| 287 |
+
)
|
| 288 |
+
hidden_states = residual + hidden_states
|
| 289 |
+
|
| 290 |
+
residual = hidden_states
|
| 291 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 292 |
+
hidden_states = self.mlp(hidden_states)
|
| 293 |
+
hidden_states = residual + hidden_states
|
| 294 |
+
|
| 295 |
+
outputs = (hidden_states,)
|
| 296 |
+
|
| 297 |
+
if output_attentions:
|
| 298 |
+
outputs += (attn_weights,)
|
| 299 |
+
|
| 300 |
+
return outputs
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class CLIPPreTrainedModel(PreTrainedModel):
|
| 304 |
+
"""
|
| 305 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 306 |
+
models.
|
| 307 |
+
"""
|
| 308 |
+
|
| 309 |
+
config_class = CLIPConfig
|
| 310 |
+
base_model_prefix = "clip"
|
| 311 |
+
supports_gradient_checkpointing = True
|
| 312 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 313 |
+
|
| 314 |
+
def _init_weights(self, module):
|
| 315 |
+
"""Initialize the weights"""
|
| 316 |
+
factor = self.config.initializer_factor
|
| 317 |
+
if isinstance(module, CLIPTextEmbeddings):
|
| 318 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
| 319 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
| 320 |
+
if hasattr(module, "padding_embedding"):
|
| 321 |
+
module.padding_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
| 322 |
+
elif isinstance(module, CLIPVisionEmbeddings):
|
| 323 |
+
factor = self.config.initializer_factor
|
| 324 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
| 325 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
| 326 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
| 327 |
+
elif isinstance(module, CLIPAttention):
|
| 328 |
+
factor = self.config.initializer_factor
|
| 329 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 330 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
| 331 |
+
nn.init.normal_(module.qkv_proj.weight, std=in_proj_std)
|
| 332 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
| 333 |
+
elif isinstance(module, CLIPMLP):
|
| 334 |
+
factor = self.config.initializer_factor
|
| 335 |
+
in_proj_std = (
|
| 336 |
+
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 337 |
+
)
|
| 338 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
| 339 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
| 340 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
| 341 |
+
elif isinstance(module, CLIPModel):
|
| 342 |
+
nn.init.normal_(
|
| 343 |
+
module.text_projection.weight,
|
| 344 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
| 345 |
+
)
|
| 346 |
+
nn.init.normal_(
|
| 347 |
+
module.visual_projection.weight,
|
| 348 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
if isinstance(module, nn.LayerNorm):
|
| 352 |
+
module.bias.data.zero_()
|
| 353 |
+
module.weight.data.fill_(1.0)
|
| 354 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 355 |
+
module.bias.data.zero_()
|
| 356 |
+
|
| 357 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 358 |
+
if isinstance(module, CLIPEncoder):
|
| 359 |
+
module.gradient_checkpointing = value
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
CLIP_START_DOCSTRING = r"""
|
| 363 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
| 364 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 365 |
+
behavior.
|
| 366 |
+
|
| 367 |
+
Parameters:
|
| 368 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
| 369 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 370 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 371 |
+
"""
|
| 372 |
+
|
| 373 |
+
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
| 374 |
+
Args:
|
| 375 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 376 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 377 |
+
it.
|
| 378 |
+
|
| 379 |
+
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 380 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 381 |
+
|
| 382 |
+
[What are input IDs?](../glossary#input-ids)
|
| 383 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 384 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 385 |
+
|
| 386 |
+
- 1 for tokens that are **not masked**,
|
| 387 |
+
- 0 for tokens that are **masked**.
|
| 388 |
+
|
| 389 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 390 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 391 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 392 |
+
config.max_position_embeddings - 1]`.
|
| 393 |
+
|
| 394 |
+
[What are position IDs?](../glossary#position-ids)
|
| 395 |
+
output_attentions (`bool`, *optional*):
|
| 396 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 397 |
+
tensors for more detail.
|
| 398 |
+
output_hidden_states (`bool`, *optional*):
|
| 399 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 400 |
+
more detail.
|
| 401 |
+
return_dict (`bool`, *optional*):
|
| 402 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 403 |
+
"""
|
| 404 |
+
|
| 405 |
+
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
| 406 |
+
Args:
|
| 407 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 408 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 409 |
+
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
|
| 410 |
+
output_attentions (`bool`, *optional*):
|
| 411 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 412 |
+
tensors for more detail.
|
| 413 |
+
output_hidden_states (`bool`, *optional*):
|
| 414 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 415 |
+
more detail.
|
| 416 |
+
return_dict (`bool`, *optional*):
|
| 417 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 418 |
+
"""
|
| 419 |
+
|
| 420 |
+
CLIP_INPUTS_DOCSTRING = r"""
|
| 421 |
+
Args:
|
| 422 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 423 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 424 |
+
it.
|
| 425 |
+
|
| 426 |
+
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 427 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 428 |
+
|
| 429 |
+
[What are input IDs?](../glossary#input-ids)
|
| 430 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 431 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 432 |
+
|
| 433 |
+
- 1 for tokens that are **not masked**,
|
| 434 |
+
- 0 for tokens that are **masked**.
|
| 435 |
+
|
| 436 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 437 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 438 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 439 |
+
config.max_position_embeddings - 1]`.
|
| 440 |
+
|
| 441 |
+
[What are position IDs?](../glossary#position-ids)
|
| 442 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 443 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 444 |
+
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
|
| 445 |
+
return_loss (`bool`, *optional*):
|
| 446 |
+
Whether or not to return the contrastive loss.
|
| 447 |
+
output_attentions (`bool`, *optional*):
|
| 448 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 449 |
+
tensors for more detail.
|
| 450 |
+
output_hidden_states (`bool`, *optional*):
|
| 451 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 452 |
+
more detail.
|
| 453 |
+
return_dict (`bool`, *optional*):
|
| 454 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 455 |
+
"""
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
class CLIPEncoder(nn.Module):
|
| 459 |
+
"""
|
| 460 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 461 |
+
[`CLIPEncoderLayer`].
|
| 462 |
+
|
| 463 |
+
Args:
|
| 464 |
+
config: CLIPConfig
|
| 465 |
+
"""
|
| 466 |
+
|
| 467 |
+
def __init__(self, config: CLIPConfig):
|
| 468 |
+
super().__init__()
|
| 469 |
+
self.config = config
|
| 470 |
+
self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 471 |
+
self.gradient_checkpointing = False
|
| 472 |
+
|
| 473 |
+
def forward(
|
| 474 |
+
self,
|
| 475 |
+
inputs_embeds,
|
| 476 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 477 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 478 |
+
output_attentions: Optional[bool] = None,
|
| 479 |
+
output_hidden_states: Optional[bool] = None,
|
| 480 |
+
return_dict: Optional[bool] = None,
|
| 481 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 482 |
+
r"""
|
| 483 |
+
Args:
|
| 484 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 485 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 486 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 487 |
+
than the model's internal embedding lookup matrix.
|
| 488 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 489 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 490 |
+
|
| 491 |
+
- 1 for tokens that are **not masked**,
|
| 492 |
+
- 0 for tokens that are **masked**.
|
| 493 |
+
|
| 494 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 495 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 496 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
| 497 |
+
|
| 498 |
+
- 1 for tokens that are **not masked**,
|
| 499 |
+
- 0 for tokens that are **masked**.
|
| 500 |
+
|
| 501 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 502 |
+
output_attentions (`bool`, *optional*):
|
| 503 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 504 |
+
returned tensors for more detail.
|
| 505 |
+
output_hidden_states (`bool`, *optional*):
|
| 506 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 507 |
+
for more detail.
|
| 508 |
+
return_dict (`bool`, *optional*):
|
| 509 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 510 |
+
"""
|
| 511 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 512 |
+
output_hidden_states = (
|
| 513 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 514 |
+
)
|
| 515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 516 |
+
|
| 517 |
+
encoder_states = () if output_hidden_states else None
|
| 518 |
+
all_attentions = () if output_attentions else None
|
| 519 |
+
|
| 520 |
+
hidden_states = inputs_embeds
|
| 521 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 522 |
+
if output_hidden_states:
|
| 523 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 524 |
+
if self.gradient_checkpointing and self.training:
|
| 525 |
+
|
| 526 |
+
def create_custom_forward(module):
|
| 527 |
+
def custom_forward(*inputs):
|
| 528 |
+
return module(*inputs, output_attentions)
|
| 529 |
+
|
| 530 |
+
return custom_forward
|
| 531 |
+
|
| 532 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 533 |
+
create_custom_forward(encoder_layer),
|
| 534 |
+
hidden_states,
|
| 535 |
+
attention_mask,
|
| 536 |
+
causal_attention_mask,
|
| 537 |
+
)
|
| 538 |
+
else:
|
| 539 |
+
layer_outputs = encoder_layer(
|
| 540 |
+
hidden_states,
|
| 541 |
+
attention_mask,
|
| 542 |
+
causal_attention_mask,
|
| 543 |
+
output_attentions=output_attentions,
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
hidden_states = layer_outputs[0]
|
| 547 |
+
|
| 548 |
+
if output_attentions:
|
| 549 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 550 |
+
|
| 551 |
+
if output_hidden_states:
|
| 552 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 553 |
+
|
| 554 |
+
if not return_dict:
|
| 555 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 556 |
+
return BaseModelOutput(
|
| 557 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
class CLIPTextTransformer(nn.Module):
|
| 562 |
+
def __init__(self, config: CLIPTextConfig):
|
| 563 |
+
super().__init__()
|
| 564 |
+
self.config = config
|
| 565 |
+
embed_dim = config.hidden_size
|
| 566 |
+
self.embeddings = CLIPTextEmbeddings(config)
|
| 567 |
+
self.encoder = CLIPEncoder(config)
|
| 568 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim)
|
| 569 |
+
|
| 570 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
| 571 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
| 572 |
+
def forward(
|
| 573 |
+
self,
|
| 574 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 575 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 576 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 577 |
+
output_attentions: Optional[bool] = None,
|
| 578 |
+
output_hidden_states: Optional[bool] = None,
|
| 579 |
+
return_dict: Optional[bool] = None,
|
| 580 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 581 |
+
r"""
|
| 582 |
+
Returns:
|
| 583 |
+
|
| 584 |
+
"""
|
| 585 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 586 |
+
output_hidden_states = (
|
| 587 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 588 |
+
)
|
| 589 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 590 |
+
|
| 591 |
+
if input_ids is None:
|
| 592 |
+
raise ValueError("You have to specify either input_ids")
|
| 593 |
+
|
| 594 |
+
input_shape = input_ids.size()
|
| 595 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 596 |
+
|
| 597 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask)
|
| 598 |
+
|
| 599 |
+
bsz, seq_len = input_shape
|
| 600 |
+
# CLIP's text model uses causal mask, prepare it here.
|
| 601 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
| 602 |
+
causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len).to(hidden_states.device)
|
| 603 |
+
|
| 604 |
+
# expand attention_mask
|
| 605 |
+
if attention_mask is not None:
|
| 606 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 607 |
+
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
| 608 |
+
|
| 609 |
+
encoder_outputs = self.encoder(
|
| 610 |
+
inputs_embeds=hidden_states,
|
| 611 |
+
attention_mask=None,
|
| 612 |
+
causal_attention_mask=None,
|
| 613 |
+
output_attentions=output_attentions,
|
| 614 |
+
output_hidden_states=output_hidden_states,
|
| 615 |
+
return_dict=return_dict,
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
last_hidden_state = encoder_outputs[0]
|
| 619 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
| 620 |
+
|
| 621 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
| 622 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 623 |
+
pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
|
| 624 |
+
|
| 625 |
+
if not return_dict:
|
| 626 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 627 |
+
|
| 628 |
+
return BaseModelOutputWithPooling(
|
| 629 |
+
last_hidden_state=last_hidden_state,
|
| 630 |
+
pooler_output=pooled_output,
|
| 631 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 632 |
+
attentions=encoder_outputs.attentions,
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
def _build_causal_attention_mask(self, bsz, seq_len):
|
| 636 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 637 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 638 |
+
mask = torch.empty(bsz, seq_len, seq_len)
|
| 639 |
+
mask.fill_(torch.tensor(float("-inf")))
|
| 640 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 641 |
+
mask = mask.unsqueeze(1) # expand mask
|
| 642 |
+
return mask
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
class CLIPTextModel(CLIPPreTrainedModel):
|
| 646 |
+
config_class = CLIPTextConfig
|
| 647 |
+
|
| 648 |
+
def __init__(self, config: CLIPTextConfig):
|
| 649 |
+
super().__init__(config)
|
| 650 |
+
self.text_model = CLIPTextTransformer(config)
|
| 651 |
+
# Initialize weights and apply final processing
|
| 652 |
+
self.post_init()
|
| 653 |
+
|
| 654 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 655 |
+
return self.text_model.embeddings.token_embedding
|
| 656 |
+
|
| 657 |
+
def set_input_embeddings(self, value):
|
| 658 |
+
self.text_model.embeddings.token_embedding = value
|
| 659 |
+
|
| 660 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
| 661 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
| 662 |
+
def forward(
|
| 663 |
+
self,
|
| 664 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 665 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 666 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 667 |
+
output_attentions: Optional[bool] = None,
|
| 668 |
+
output_hidden_states: Optional[bool] = None,
|
| 669 |
+
return_dict: Optional[bool] = None,
|
| 670 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 671 |
+
r"""
|
| 672 |
+
Returns:
|
| 673 |
+
|
| 674 |
+
Examples:
|
| 675 |
+
|
| 676 |
+
```python
|
| 677 |
+
>>> from transformers import CLIPTokenizer, CLIPTextModel
|
| 678 |
+
|
| 679 |
+
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 680 |
+
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 681 |
+
|
| 682 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 683 |
+
|
| 684 |
+
>>> outputs = model(**inputs)
|
| 685 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 686 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
| 687 |
+
```"""
|
| 688 |
+
return self.text_model(
|
| 689 |
+
input_ids=input_ids,
|
| 690 |
+
attention_mask=attention_mask,
|
| 691 |
+
position_ids=position_ids,
|
| 692 |
+
output_attentions=output_attentions,
|
| 693 |
+
output_hidden_states=output_hidden_states,
|
| 694 |
+
return_dict=return_dict,
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
#####################
|
| 699 |
+
# END OF THE CLIP MODEL COPY-PASTE
|
| 700 |
+
#####################
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
| 704 |
+
"""
|
| 705 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
| 706 |
+
|
| 707 |
+
:param arr: the 1-D numpy array.
|
| 708 |
+
:param timesteps: a tensor of indices into the array to extract.
|
| 709 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
| 710 |
+
dimension equal to the length of timesteps.
|
| 711 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
| 712 |
+
"""
|
| 713 |
+
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
| 714 |
+
while len(res.shape) < len(broadcast_shape):
|
| 715 |
+
res = res[..., None]
|
| 716 |
+
return res + torch.zeros(broadcast_shape, device=timesteps.device)
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
class GLIDE(DiffusionPipeline):
|
| 720 |
+
def __init__(
|
| 721 |
+
self,
|
| 722 |
+
text_unet: GLIDETextToImageUNetModel,
|
| 723 |
+
text_noise_scheduler: ClassifierFreeGuidanceScheduler,
|
| 724 |
+
text_encoder: CLIPTextModel,
|
| 725 |
+
tokenizer: GPT2Tokenizer,
|
| 726 |
+
upscale_unet: GLIDESuperResUNetModel,
|
| 727 |
+
upscale_noise_scheduler: DDIMScheduler,
|
| 728 |
+
):
|
| 729 |
+
super().__init__()
|
| 730 |
+
self.register_modules(
|
| 731 |
+
text_unet=text_unet,
|
| 732 |
+
text_noise_scheduler=text_noise_scheduler,
|
| 733 |
+
text_encoder=text_encoder,
|
| 734 |
+
tokenizer=tokenizer,
|
| 735 |
+
upscale_unet=upscale_unet,
|
| 736 |
+
upscale_noise_scheduler=upscale_noise_scheduler,
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
def q_posterior_mean_variance(self, scheduler, x_start, x_t, t):
|
| 740 |
+
"""
|
| 741 |
+
Compute the mean and variance of the diffusion posterior:
|
| 742 |
+
|
| 743 |
+
q(x_{t-1} | x_t, x_0)
|
| 744 |
+
|
| 745 |
+
"""
|
| 746 |
+
assert x_start.shape == x_t.shape
|
| 747 |
+
posterior_mean = (
|
| 748 |
+
_extract_into_tensor(scheduler.posterior_mean_coef1, t, x_t.shape) * x_start
|
| 749 |
+
+ _extract_into_tensor(scheduler.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 750 |
+
)
|
| 751 |
+
posterior_variance = _extract_into_tensor(scheduler.posterior_variance, t, x_t.shape)
|
| 752 |
+
posterior_log_variance_clipped = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x_t.shape)
|
| 753 |
+
assert (
|
| 754 |
+
posterior_mean.shape[0]
|
| 755 |
+
== posterior_variance.shape[0]
|
| 756 |
+
== posterior_log_variance_clipped.shape[0]
|
| 757 |
+
== x_start.shape[0]
|
| 758 |
+
)
|
| 759 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 760 |
+
|
| 761 |
+
def p_mean_variance(self, model, scheduler, x, t, transformer_out=None, low_res=None, clip_denoised=True):
|
| 762 |
+
"""
|
| 763 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
| 764 |
+
the initial x, x_0.
|
| 765 |
+
|
| 766 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
| 767 |
+
as input.
|
| 768 |
+
:param x: the [N x C x ...] tensor at time t.
|
| 769 |
+
:param t: a 1-D Tensor of timesteps.
|
| 770 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
| 771 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
| 772 |
+
pass to the model. This can be used for conditioning.
|
| 773 |
+
:return: a dict with the following keys:
|
| 774 |
+
- 'mean': the model mean output.
|
| 775 |
+
- 'variance': the model variance output.
|
| 776 |
+
- 'log_variance': the log of 'variance'.
|
| 777 |
+
- 'pred_xstart': the prediction for x_0.
|
| 778 |
+
"""
|
| 779 |
+
|
| 780 |
+
B, C = x.shape[:2]
|
| 781 |
+
assert t.shape == (B,)
|
| 782 |
+
if transformer_out is None:
|
| 783 |
+
# super-res model
|
| 784 |
+
model_output = model(x, t, low_res)
|
| 785 |
+
else:
|
| 786 |
+
# text2image model
|
| 787 |
+
model_output = model(x, t, transformer_out)
|
| 788 |
+
|
| 789 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
| 790 |
+
model_output, model_var_values = torch.split(model_output, C, dim=1)
|
| 791 |
+
min_log = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x.shape)
|
| 792 |
+
max_log = _extract_into_tensor(np.log(scheduler.betas), t, x.shape)
|
| 793 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
| 794 |
+
frac = (model_var_values + 1) / 2
|
| 795 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
| 796 |
+
model_variance = torch.exp(model_log_variance)
|
| 797 |
+
|
| 798 |
+
pred_xstart = self._predict_xstart_from_eps(scheduler, x_t=x, t=t, eps=model_output)
|
| 799 |
+
if clip_denoised:
|
| 800 |
+
pred_xstart = pred_xstart.clamp(-1, 1)
|
| 801 |
+
model_mean, _, _ = self.q_posterior_mean_variance(scheduler, x_start=pred_xstart, x_t=x, t=t)
|
| 802 |
+
|
| 803 |
+
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
| 804 |
+
return model_mean, model_variance, model_log_variance, pred_xstart
|
| 805 |
+
|
| 806 |
+
def _predict_xstart_from_eps(self, scheduler, x_t, t, eps):
|
| 807 |
+
assert x_t.shape == eps.shape
|
| 808 |
+
return (
|
| 809 |
+
_extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
| 810 |
+
- _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
def _predict_eps_from_xstart(self, scheduler, x_t, t, pred_xstart):
|
| 814 |
+
return (
|
| 815 |
+
_extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
|
| 816 |
+
) / _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 817 |
+
|
| 818 |
+
@torch.no_grad()
|
| 819 |
+
def __call__(self, prompt, generator=None, torch_device=None, num_inference_steps_upscale=50):
|
| 820 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 821 |
+
|
| 822 |
+
self.text_unet.to(torch_device)
|
| 823 |
+
self.text_encoder.to(torch_device)
|
| 824 |
+
self.upscale_unet.to(torch_device)
|
| 825 |
+
|
| 826 |
+
# Create a classifier-free guidance sampling function
|
| 827 |
+
guidance_scale = 3.0
|
| 828 |
+
|
| 829 |
+
def text_model_fn(x_t, ts, transformer_out, **kwargs):
|
| 830 |
+
half = x_t[: len(x_t) // 2]
|
| 831 |
+
combined = torch.cat([half, half], dim=0)
|
| 832 |
+
model_out = self.text_unet(combined, ts, transformer_out, **kwargs)
|
| 833 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 834 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 835 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 836 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
| 837 |
+
return torch.cat([eps, rest], dim=1)
|
| 838 |
+
|
| 839 |
+
# 1. Sample gaussian noise
|
| 840 |
+
batch_size = 2 # second image is empty for classifier-free guidance
|
| 841 |
+
image = self.text_noise_scheduler.sample_noise(
|
| 842 |
+
(batch_size, self.text_unet.in_channels, 64, 64), device=torch_device, generator=generator
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
# 2. Encode tokens
|
| 846 |
+
# an empty input is needed to guide the model away from (
|
| 847 |
+
inputs = self.tokenizer([prompt, ""], padding="max_length", max_length=128, return_tensors="pt")
|
| 848 |
+
input_ids = inputs["input_ids"].to(torch_device)
|
| 849 |
+
attention_mask = inputs["attention_mask"].to(torch_device)
|
| 850 |
+
transformer_out = self.text_encoder(input_ids, attention_mask).last_hidden_state
|
| 851 |
+
|
| 852 |
+
# 3. Run the text2image generation step
|
| 853 |
+
num_timesteps = len(self.text_noise_scheduler)
|
| 854 |
+
for i in tqdm.tqdm(reversed(range(num_timesteps)), total=num_timesteps):
|
| 855 |
+
t = torch.tensor([i] * image.shape[0], device=torch_device)
|
| 856 |
+
mean, variance, log_variance, pred_xstart = self.p_mean_variance(
|
| 857 |
+
text_model_fn, self.text_noise_scheduler, image, t, transformer_out=transformer_out
|
| 858 |
+
)
|
| 859 |
+
noise = self.text_noise_scheduler.sample_noise(image.shape, device=torch_device, generator=generator)
|
| 860 |
+
nonzero_mask = (t != 0).float().view(-1, *([1] * (len(image.shape) - 1))) # no noise when t == 0
|
| 861 |
+
image = mean + nonzero_mask * torch.exp(0.5 * log_variance) * noise
|
| 862 |
+
|
| 863 |
+
# 4. Run the upscaling step
|
| 864 |
+
batch_size = 1
|
| 865 |
+
image = image[:1]
|
| 866 |
+
low_res = ((image + 1) * 127.5).round() / 127.5 - 1
|
| 867 |
+
eta = 0.0
|
| 868 |
+
|
| 869 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
| 870 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 871 |
+
upsample_temp = 0.997
|
| 872 |
+
|
| 873 |
+
# Sample gaussian noise to begin loop
|
| 874 |
+
image = torch.randn(
|
| 875 |
+
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
|
| 876 |
+
generator=generator,
|
| 877 |
+
)
|
| 878 |
+
image = image.to(torch_device)
|
| 879 |
+
|
| 880 |
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
| 881 |
+
# Ideally, read DDIM paper in-detail understanding
|
| 882 |
+
|
| 883 |
+
# Notation (<variable name> -> <name in paper>
|
| 884 |
+
# - pred_noise_t -> e_theta(x_t, t)
|
| 885 |
+
# - pred_original_image -> f_theta(x_t, t) or x_0
|
| 886 |
+
# - std_dev_t -> sigma_t
|
| 887 |
+
# - eta -> η
|
| 888 |
+
# - pred_image_direction -> "direction pointingc to x_t"
|
| 889 |
+
# - pred_prev_image -> "x_t-1"
|
| 890 |
+
for t in tqdm.tqdm(reversed(range(num_inference_steps_upscale)), total=num_inference_steps_upscale):
|
| 891 |
+
# 1. predict noise residual
|
| 892 |
+
with torch.no_grad():
|
| 893 |
+
time_input = torch.tensor([t] * image.shape[0], device=torch_device)
|
| 894 |
+
model_output = self.upscale_unet(image, time_input, low_res)
|
| 895 |
+
noise_residual, pred_variance = torch.split(model_output, 3, dim=1)
|
| 896 |
+
|
| 897 |
+
# 2. predict previous mean of image x_t-1
|
| 898 |
+
pred_prev_image = self.upscale_noise_scheduler.step(noise_residual, image, t, num_inference_steps_upscale, eta)
|
| 899 |
+
|
| 900 |
+
# 3. optionally sample variance
|
| 901 |
+
variance = 0
|
| 902 |
+
if eta > 0:
|
| 903 |
+
noise = torch.randn(image.shape, generator=generator).to(image.device)
|
| 904 |
+
variance = self.upscale_noise_scheduler.get_variance(t, num_inference_steps_upscale).sqrt() * eta * noise
|
| 905 |
+
|
| 906 |
+
# 4. set current image to prev_image: x_t -> x_t-1
|
| 907 |
+
image = pred_prev_image + variance
|
| 908 |
+
|
| 909 |
+
image = image.permute(0, 2, 3, 1)
|
| 910 |
+
|
| 911 |
+
return image
|