File size: 2,129 Bytes
			
			754c42e  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83  | 
								---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- fsicoli/cv16-fleurs
metrics:
- wer
model-index:
- name: whisper-medium-pt-cv16-fleurs2-lr
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fsicoli/cv16-fleurs default
      type: fsicoli/cv16-fleurs
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.0932
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-pt-cv16-fleurs2-lr
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv16-fleurs default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2088
- Wer: 0.0932
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.25e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- training_steps: 25000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch   | Step  | Validation Loss | Wer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|
| 0.0856        | 2.3343  | 5000  | 0.1601          | 0.1030 |
| 0.0156        | 4.6685  | 10000 | 0.1831          | 0.1003 |
| 0.0189        | 7.0028  | 15000 | 0.1996          | 0.0980 |
| 0.0052        | 9.3371  | 20000 | 0.2079          | 0.0956 |
| 0.0035        | 11.6713 | 25000 | 0.2088          | 0.0932 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.19.1
 |