--- library_name: transformers tags: [] --- # Model Card for Super Tiny Bert This is a super tiny Bert model for testing purposes. ## Model Details This model has been generated using: ``` from transformers import BertTokenizer, BertModel, BertConfig # Define a tiny BERT configuration config = BertConfig( vocab_size=30, hidden_size=8, num_hidden_layers=2, num_attention_heads=2, intermediate_size=8, max_position_embeddings=8, ) # Initialize a tiny BERT model with the custom configuration model = BertModel(config) # Create a custom vocabulary vocab = { "[PAD]": 0, "[UNK]": 1, "[CLS]": 2, "[SEP]": 3, "[MASK]": 4, "hello": 5, "how": 6, "are": 7, "you": 8, "?": 9, "i": 10, "am": 11, "fine": 12, "thanks": 13, "and": 14, "good": 15, "morning": 16, "evening": 17, "night": 18, "yes": 19, "no": 20, "please": 21, "thank": 22, "welcome": 23, "sorry": 24, "bye": 25, "see": 26, "later": 27, "take": 28, "care": 29, } # Save the vocabulary to a file vocab_file = "vocab.txt" with open(vocab_file, "w") as f: for token, index in sorted(vocab.items(), key=lambda item: item[1]): f.write(f"{token}\n") # Initialize the tokenizer with the custom vocabulary tokenizer = BertTokenizer(vocab_file=vocab_file) # Example usage: Tokenize input text text = "Hello, how are you?" inputs = tokenizer(text, return_tensors="pt") # Forward pass through the model outputs = model(**inputs) # Extract the last hidden states last_hidden_states = outputs.last_hidden_state print("Last hidden states shape:", last_hidden_states.shape) # Save the tokenizer and model to the Hugging Face Hub model_name = "flexsystems/flex-e2e-super-tiny-bert-model" tokenizer.push_to_hub(model_name, private=False) model.push_to_hub(model_name, private=False) print(f"Tiny BERT model and tokenizer saved to the Hugging Face Hub as '{model_name}'.") ```