initial commit
Browse files- README.md +158 -0
 - loss.tsv +21 -0
 - pytorch_model.bin +3 -0
 - training.log +892 -0
 
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,158 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            tags:
         
     | 
| 3 | 
         
            +
            - flair
         
     | 
| 4 | 
         
            +
            - token-classification
         
     | 
| 5 | 
         
            +
            - sequence-tagger-model
         
     | 
| 6 | 
         
            +
            language: de
         
     | 
| 7 | 
         
            +
            datasets:
         
     | 
| 8 | 
         
            +
            - conll2003
         
     | 
| 9 | 
         
            +
            inference: false
         
     | 
| 10 | 
         
            +
            ---
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            ## German NER in Flair (large model)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/).
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            F1-Score: **92,31** (CoNLL-03 German revised)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            **! This model only works with Flair version 0.8 (will be released in the next few days) !**
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            Predicts 4 tags:
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            | **tag**                        | **meaning** |
         
     | 
| 23 | 
         
            +
            |---------------------------------|-----------|
         
     | 
| 24 | 
         
            +
            | PER         | person name | 
         
     | 
| 25 | 
         
            +
            | LOC         | location name | 
         
     | 
| 26 | 
         
            +
            | ORG         | organization name | 
         
     | 
| 27 | 
         
            +
            | MISC         | other name | 
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            Based on [document-level XLM-R embeddings](https://www.aclweb.org/anthology/C18-1139/).
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            ---
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            ### Demo: How to use in Flair
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            ```python
         
     | 
| 38 | 
         
            +
            from flair.data import Sentence
         
     | 
| 39 | 
         
            +
            from flair.models import SequenceTagger
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            # load tagger
         
     | 
| 42 | 
         
            +
            tagger = SequenceTagger.load("flair/ner-german-large")
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            # make example sentence
         
     | 
| 45 | 
         
            +
            sentence = Sentence("George Washington ging nach Washington")
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            # predict NER tags
         
     | 
| 48 | 
         
            +
            tagger.predict(sentence)
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            # print sentence
         
     | 
| 51 | 
         
            +
            print(sentence)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            # print predicted NER spans
         
     | 
| 54 | 
         
            +
            print('The following NER tags are found:')
         
     | 
| 55 | 
         
            +
            # iterate over entities and print
         
     | 
| 56 | 
         
            +
            for entity in sentence.get_spans('ner'):
         
     | 
| 57 | 
         
            +
                print(entity)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            ```
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            This yields the following output:
         
     | 
| 62 | 
         
            +
            ```
         
     | 
| 63 | 
         
            +
            Span [1,2]: "George Washington"   [− Labels: PER (1.0)]
         
     | 
| 64 | 
         
            +
            Span [5]: "Washington"   [− Labels: LOC (1.0)]
         
     | 
| 65 | 
         
            +
            ```
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". 
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            ---
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            ### Training: Script to train this model
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            The following Flair script was used to train this model: 
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            ```python
         
     | 
| 77 | 
         
            +
            import torch
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            # 1. get the corpus
         
     | 
| 80 | 
         
            +
            from flair.datasets import CONLL_03_GERMAN
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            corpus = CONLL_03_GERMAN()
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            # 2. what tag do we want to predict?
         
     | 
| 85 | 
         
            +
            tag_type = 'ner'
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            # 3. make the tag dictionary from the corpus
         
     | 
| 88 | 
         
            +
            tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            # 4. initialize fine-tuneable transformer embeddings WITH document context
         
     | 
| 91 | 
         
            +
            from flair.embeddings import TransformerWordEmbeddings
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            embeddings = TransformerWordEmbeddings(
         
     | 
| 94 | 
         
            +
                model='xlm-roberta-large',
         
     | 
| 95 | 
         
            +
                layers="-1",
         
     | 
| 96 | 
         
            +
                subtoken_pooling="first",
         
     | 
| 97 | 
         
            +
                fine_tune=True,
         
     | 
| 98 | 
         
            +
                use_context=True,
         
     | 
| 99 | 
         
            +
            )
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
         
     | 
| 102 | 
         
            +
            from flair.models import SequenceTagger
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            tagger = SequenceTagger(
         
     | 
| 105 | 
         
            +
                hidden_size=256,
         
     | 
| 106 | 
         
            +
                embeddings=embeddings,
         
     | 
| 107 | 
         
            +
                tag_dictionary=tag_dictionary,
         
     | 
| 108 | 
         
            +
                tag_type='ner',
         
     | 
| 109 | 
         
            +
                use_crf=False,
         
     | 
| 110 | 
         
            +
                use_rnn=False,
         
     | 
| 111 | 
         
            +
                reproject_embeddings=False,
         
     | 
| 112 | 
         
            +
            )
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            # 6. initialize trainer with AdamW optimizer
         
     | 
| 115 | 
         
            +
            from flair.trainers import ModelTrainer
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            # 7. run training with XLM parameters (20 epochs, small LR)
         
     | 
| 120 | 
         
            +
            from torch.optim.lr_scheduler import OneCycleLR
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
            trainer.train('resources/taggers/ner-german-large',
         
     | 
| 123 | 
         
            +
                          learning_rate=5.0e-6,
         
     | 
| 124 | 
         
            +
                          mini_batch_size=4,
         
     | 
| 125 | 
         
            +
                          mini_batch_chunk_size=1,
         
     | 
| 126 | 
         
            +
                          max_epochs=20,
         
     | 
| 127 | 
         
            +
                          scheduler=OneCycleLR,
         
     | 
| 128 | 
         
            +
                          embeddings_storage_mode='none',
         
     | 
| 129 | 
         
            +
                          weight_decay=0.,
         
     | 
| 130 | 
         
            +
                          )
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
            )
         
     | 
| 133 | 
         
            +
            ```
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
            ---
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            ### Cite
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            Please cite the following paper when using this model.
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            ```
         
     | 
| 144 | 
         
            +
            @misc{schweter2020flert,
         
     | 
| 145 | 
         
            +
                title={FLERT: Document-Level Features for Named Entity Recognition},
         
     | 
| 146 | 
         
            +
                author={Stefan Schweter and Alan Akbik},
         
     | 
| 147 | 
         
            +
                year={2020},
         
     | 
| 148 | 
         
            +
                eprint={2011.06993},
         
     | 
| 149 | 
         
            +
                archivePrefix={arXiv},
         
     | 
| 150 | 
         
            +
                primaryClass={cs.CL}
         
     | 
| 151 | 
         
            +
            }
         
     | 
| 152 | 
         
            +
            ```
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            ---
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
            ### Issues?
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
            The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
         
     | 
    	
        loss.tsv
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            EPOCH	TIMESTAMP	BAD_EPOCHS	LEARNING_RATE	TRAIN_LOSS
         
     | 
| 2 | 
         
            +
            1	23:09:11	4	0.0000	0.32601759576456596
         
     | 
| 3 | 
         
            +
            2	23:47:24	4	0.0000	0.2290581286322424
         
     | 
| 4 | 
         
            +
            3	00:24:29	4	0.0000	0.18555273314403667
         
     | 
| 5 | 
         
            +
            4	01:01:23	4	0.0000	0.1656336001230214
         
     | 
| 6 | 
         
            +
            5	01:38:16	4	0.0000	0.1648284967723802
         
     | 
| 7 | 
         
            +
            6	02:15:11	4	0.0000	0.16483939256504943
         
     | 
| 8 | 
         
            +
            7	02:52:04	4	0.0000	0.16203806226872322
         
     | 
| 9 | 
         
            +
            8	03:30:04	4	0.0000	0.1390128146978733
         
     | 
| 10 | 
         
            +
            9	04:06:55	4	0.0000	0.1558572274514281
         
     | 
| 11 | 
         
            +
            10	04:46:02	4	0.0000	0.1625431115291299
         
     | 
| 12 | 
         
            +
            11	05:24:31	4	0.0000	0.14667205465203892
         
     | 
| 13 | 
         
            +
            12	06:01:33	4	0.0000	0.14475093385013862
         
     | 
| 14 | 
         
            +
            13	06:39:47	4	0.0000	0.15118245752181225
         
     | 
| 15 | 
         
            +
            14	07:17:44	4	0.0000	0.14665753430476344
         
     | 
| 16 | 
         
            +
            15	07:55:53	4	0.0000	0.14730402247343105
         
     | 
| 17 | 
         
            +
            16	08:35:02	4	0.0000	0.14555113955140297
         
     | 
| 18 | 
         
            +
            17	09:14:10	4	0.0000	0.14034509936848258
         
     | 
| 19 | 
         
            +
            18	09:46:00	4	0.0000	0.14482688813742225
         
     | 
| 20 | 
         
            +
            19	10:18:27	4	0.0000	0.1385989190499177
         
     | 
| 21 | 
         
            +
            20	10:50:38	4	0.0000	0.13479246194568445
         
     | 
    	
        pytorch_model.bin
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:69644e87635b92a84d0f23f67c0fce11eac39a3c9a0dae107e7e3e0d6ef20edd
         
     | 
| 3 | 
         
            +
            size 2239866697
         
     | 
    	
        training.log
    ADDED
    
    | 
         @@ -0,0 +1,892 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            2021-01-20 22:30:34,817 ----------------------------------------------------------------------------------------------------
         
     | 
| 2 | 
         
            +
            2021-01-20 22:30:34,820 Model: "SequenceTagger(
         
     | 
| 3 | 
         
            +
              (embeddings): TransformerWordEmbeddings(
         
     | 
| 4 | 
         
            +
                (model): XLMRobertaModel(
         
     | 
| 5 | 
         
            +
                  (embeddings): RobertaEmbeddings(
         
     | 
| 6 | 
         
            +
                    (word_embeddings): Embedding(250002, 1024, padding_idx=1)
         
     | 
| 7 | 
         
            +
                    (position_embeddings): Embedding(514, 1024, padding_idx=1)
         
     | 
| 8 | 
         
            +
                    (token_type_embeddings): Embedding(1, 1024)
         
     | 
| 9 | 
         
            +
                    (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 10 | 
         
            +
                    (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 11 | 
         
            +
                  )
         
     | 
| 12 | 
         
            +
                  (encoder): RobertaEncoder(
         
     | 
| 13 | 
         
            +
                    (layer): ModuleList(
         
     | 
| 14 | 
         
            +
                      (0): RobertaLayer(
         
     | 
| 15 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 16 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 17 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 18 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 19 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 20 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 21 | 
         
            +
                          )
         
     | 
| 22 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 23 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 24 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 25 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 26 | 
         
            +
                          )
         
     | 
| 27 | 
         
            +
                        )
         
     | 
| 28 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 29 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 30 | 
         
            +
                        )
         
     | 
| 31 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 32 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 33 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 34 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 35 | 
         
            +
                        )
         
     | 
| 36 | 
         
            +
                      )
         
     | 
| 37 | 
         
            +
                      (1): RobertaLayer(
         
     | 
| 38 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 39 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 40 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 41 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 42 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 43 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 44 | 
         
            +
                          )
         
     | 
| 45 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 46 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 47 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 48 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 49 | 
         
            +
                          )
         
     | 
| 50 | 
         
            +
                        )
         
     | 
| 51 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 52 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 53 | 
         
            +
                        )
         
     | 
| 54 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 55 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 56 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 57 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 58 | 
         
            +
                        )
         
     | 
| 59 | 
         
            +
                      )
         
     | 
| 60 | 
         
            +
                      (2): RobertaLayer(
         
     | 
| 61 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 62 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 63 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 64 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 65 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 66 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 67 | 
         
            +
                          )
         
     | 
| 68 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 69 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 70 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 71 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 72 | 
         
            +
                          )
         
     | 
| 73 | 
         
            +
                        )
         
     | 
| 74 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 75 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 76 | 
         
            +
                        )
         
     | 
| 77 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 78 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 79 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 80 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 81 | 
         
            +
                        )
         
     | 
| 82 | 
         
            +
                      )
         
     | 
| 83 | 
         
            +
                      (3): RobertaLayer(
         
     | 
| 84 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 85 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 86 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 87 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 88 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 89 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 90 | 
         
            +
                          )
         
     | 
| 91 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 92 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 93 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 94 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 95 | 
         
            +
                          )
         
     | 
| 96 | 
         
            +
                        )
         
     | 
| 97 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 98 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 99 | 
         
            +
                        )
         
     | 
| 100 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 101 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 102 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 103 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 104 | 
         
            +
                        )
         
     | 
| 105 | 
         
            +
                      )
         
     | 
| 106 | 
         
            +
                      (4): RobertaLayer(
         
     | 
| 107 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 108 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 109 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 110 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 111 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 112 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 113 | 
         
            +
                          )
         
     | 
| 114 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 115 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 116 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 117 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 118 | 
         
            +
                          )
         
     | 
| 119 | 
         
            +
                        )
         
     | 
| 120 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 121 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 122 | 
         
            +
                        )
         
     | 
| 123 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 124 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 125 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 126 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 127 | 
         
            +
                        )
         
     | 
| 128 | 
         
            +
                      )
         
     | 
| 129 | 
         
            +
                      (5): RobertaLayer(
         
     | 
| 130 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 131 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 132 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 133 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 134 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 135 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 136 | 
         
            +
                          )
         
     | 
| 137 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 138 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 139 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 140 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 141 | 
         
            +
                          )
         
     | 
| 142 | 
         
            +
                        )
         
     | 
| 143 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 144 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 145 | 
         
            +
                        )
         
     | 
| 146 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 147 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 148 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 149 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 150 | 
         
            +
                        )
         
     | 
| 151 | 
         
            +
                      )
         
     | 
| 152 | 
         
            +
                      (6): RobertaLayer(
         
     | 
| 153 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 154 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 155 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 156 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 157 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 158 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 159 | 
         
            +
                          )
         
     | 
| 160 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 161 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 162 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 163 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 164 | 
         
            +
                          )
         
     | 
| 165 | 
         
            +
                        )
         
     | 
| 166 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 167 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 168 | 
         
            +
                        )
         
     | 
| 169 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 170 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 171 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 172 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 173 | 
         
            +
                        )
         
     | 
| 174 | 
         
            +
                      )
         
     | 
| 175 | 
         
            +
                      (7): RobertaLayer(
         
     | 
| 176 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 177 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 178 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 179 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 180 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 181 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 182 | 
         
            +
                          )
         
     | 
| 183 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 184 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 185 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 186 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 187 | 
         
            +
                          )
         
     | 
| 188 | 
         
            +
                        )
         
     | 
| 189 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 190 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 191 | 
         
            +
                        )
         
     | 
| 192 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 193 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 194 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 195 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 196 | 
         
            +
                        )
         
     | 
| 197 | 
         
            +
                      )
         
     | 
| 198 | 
         
            +
                      (8): RobertaLayer(
         
     | 
| 199 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 200 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 201 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 202 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 203 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 204 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 205 | 
         
            +
                          )
         
     | 
| 206 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 207 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 208 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 209 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 210 | 
         
            +
                          )
         
     | 
| 211 | 
         
            +
                        )
         
     | 
| 212 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 213 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 214 | 
         
            +
                        )
         
     | 
| 215 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 216 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 217 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 218 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 219 | 
         
            +
                        )
         
     | 
| 220 | 
         
            +
                      )
         
     | 
| 221 | 
         
            +
                      (9): RobertaLayer(
         
     | 
| 222 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 223 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 224 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 225 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 226 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 227 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 228 | 
         
            +
                          )
         
     | 
| 229 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 230 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 231 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 232 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 233 | 
         
            +
                          )
         
     | 
| 234 | 
         
            +
                        )
         
     | 
| 235 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 236 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 237 | 
         
            +
                        )
         
     | 
| 238 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 239 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 240 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 241 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 242 | 
         
            +
                        )
         
     | 
| 243 | 
         
            +
                      )
         
     | 
| 244 | 
         
            +
                      (10): RobertaLayer(
         
     | 
| 245 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 246 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 247 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 248 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 249 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 250 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 251 | 
         
            +
                          )
         
     | 
| 252 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 253 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 254 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 255 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 256 | 
         
            +
                          )
         
     | 
| 257 | 
         
            +
                        )
         
     | 
| 258 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 259 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 260 | 
         
            +
                        )
         
     | 
| 261 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 262 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 263 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 264 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 265 | 
         
            +
                        )
         
     | 
| 266 | 
         
            +
                      )
         
     | 
| 267 | 
         
            +
                      (11): RobertaLayer(
         
     | 
| 268 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 269 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 270 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 271 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 272 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 273 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 274 | 
         
            +
                          )
         
     | 
| 275 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 276 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 277 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 278 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 279 | 
         
            +
                          )
         
     | 
| 280 | 
         
            +
                        )
         
     | 
| 281 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 282 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 283 | 
         
            +
                        )
         
     | 
| 284 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 285 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 286 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 287 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 288 | 
         
            +
                        )
         
     | 
| 289 | 
         
            +
                      )
         
     | 
| 290 | 
         
            +
                      (12): RobertaLayer(
         
     | 
| 291 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 292 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 293 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 294 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 295 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 296 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 297 | 
         
            +
                          )
         
     | 
| 298 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 299 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 300 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 301 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 302 | 
         
            +
                          )
         
     | 
| 303 | 
         
            +
                        )
         
     | 
| 304 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 305 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 306 | 
         
            +
                        )
         
     | 
| 307 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 308 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 309 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 310 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 311 | 
         
            +
                        )
         
     | 
| 312 | 
         
            +
                      )
         
     | 
| 313 | 
         
            +
                      (13): RobertaLayer(
         
     | 
| 314 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 315 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 316 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 317 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 318 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 319 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 320 | 
         
            +
                          )
         
     | 
| 321 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 322 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 323 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 324 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 325 | 
         
            +
                          )
         
     | 
| 326 | 
         
            +
                        )
         
     | 
| 327 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 328 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 329 | 
         
            +
                        )
         
     | 
| 330 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 331 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 332 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 333 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 334 | 
         
            +
                        )
         
     | 
| 335 | 
         
            +
                      )
         
     | 
| 336 | 
         
            +
                      (14): RobertaLayer(
         
     | 
| 337 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 338 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 339 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 340 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 341 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 342 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 343 | 
         
            +
                          )
         
     | 
| 344 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 345 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 346 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 347 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 348 | 
         
            +
                          )
         
     | 
| 349 | 
         
            +
                        )
         
     | 
| 350 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 351 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 352 | 
         
            +
                        )
         
     | 
| 353 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 354 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 355 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 356 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 357 | 
         
            +
                        )
         
     | 
| 358 | 
         
            +
                      )
         
     | 
| 359 | 
         
            +
                      (15): RobertaLayer(
         
     | 
| 360 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 361 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 362 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 363 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 364 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 365 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 366 | 
         
            +
                          )
         
     | 
| 367 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 368 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 369 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 370 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 371 | 
         
            +
                          )
         
     | 
| 372 | 
         
            +
                        )
         
     | 
| 373 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 374 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 375 | 
         
            +
                        )
         
     | 
| 376 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 377 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 378 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 379 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 380 | 
         
            +
                        )
         
     | 
| 381 | 
         
            +
                      )
         
     | 
| 382 | 
         
            +
                      (16): RobertaLayer(
         
     | 
| 383 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 384 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 385 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 386 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 387 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 388 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 389 | 
         
            +
                          )
         
     | 
| 390 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 391 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 392 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 393 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 394 | 
         
            +
                          )
         
     | 
| 395 | 
         
            +
                        )
         
     | 
| 396 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 397 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 398 | 
         
            +
                        )
         
     | 
| 399 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 400 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 401 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 402 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 403 | 
         
            +
                        )
         
     | 
| 404 | 
         
            +
                      )
         
     | 
| 405 | 
         
            +
                      (17): RobertaLayer(
         
     | 
| 406 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 407 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 408 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 409 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 410 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 411 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 412 | 
         
            +
                          )
         
     | 
| 413 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 414 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 415 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 416 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 417 | 
         
            +
                          )
         
     | 
| 418 | 
         
            +
                        )
         
     | 
| 419 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 420 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 421 | 
         
            +
                        )
         
     | 
| 422 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 423 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 424 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 425 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 426 | 
         
            +
                        )
         
     | 
| 427 | 
         
            +
                      )
         
     | 
| 428 | 
         
            +
                      (18): RobertaLayer(
         
     | 
| 429 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 430 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 431 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 432 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 433 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 434 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 435 | 
         
            +
                          )
         
     | 
| 436 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 437 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 438 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 439 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 440 | 
         
            +
                          )
         
     | 
| 441 | 
         
            +
                        )
         
     | 
| 442 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 443 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 444 | 
         
            +
                        )
         
     | 
| 445 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 446 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 447 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 448 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 449 | 
         
            +
                        )
         
     | 
| 450 | 
         
            +
                      )
         
     | 
| 451 | 
         
            +
                      (19): RobertaLayer(
         
     | 
| 452 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 453 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 454 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 455 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 456 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 457 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 458 | 
         
            +
                          )
         
     | 
| 459 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 460 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 461 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 462 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 463 | 
         
            +
                          )
         
     | 
| 464 | 
         
            +
                        )
         
     | 
| 465 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 466 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 467 | 
         
            +
                        )
         
     | 
| 468 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 469 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 470 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 471 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 472 | 
         
            +
                        )
         
     | 
| 473 | 
         
            +
                      )
         
     | 
| 474 | 
         
            +
                      (20): RobertaLayer(
         
     | 
| 475 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 476 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 477 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 478 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 479 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 480 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 481 | 
         
            +
                          )
         
     | 
| 482 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 483 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 484 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 485 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 486 | 
         
            +
                          )
         
     | 
| 487 | 
         
            +
                        )
         
     | 
| 488 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 489 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 490 | 
         
            +
                        )
         
     | 
| 491 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 492 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 493 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 494 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 495 | 
         
            +
                        )
         
     | 
| 496 | 
         
            +
                      )
         
     | 
| 497 | 
         
            +
                      (21): RobertaLayer(
         
     | 
| 498 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 499 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 500 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 501 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 502 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 503 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 504 | 
         
            +
                          )
         
     | 
| 505 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 506 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 507 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 508 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 509 | 
         
            +
                          )
         
     | 
| 510 | 
         
            +
                        )
         
     | 
| 511 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 512 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 513 | 
         
            +
                        )
         
     | 
| 514 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 515 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 516 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 517 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 518 | 
         
            +
                        )
         
     | 
| 519 | 
         
            +
                      )
         
     | 
| 520 | 
         
            +
                      (22): RobertaLayer(
         
     | 
| 521 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 522 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 523 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 524 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 525 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 526 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 527 | 
         
            +
                          )
         
     | 
| 528 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 529 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 530 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 531 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 532 | 
         
            +
                          )
         
     | 
| 533 | 
         
            +
                        )
         
     | 
| 534 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 535 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 536 | 
         
            +
                        )
         
     | 
| 537 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 538 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 539 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 540 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 541 | 
         
            +
                        )
         
     | 
| 542 | 
         
            +
                      )
         
     | 
| 543 | 
         
            +
                      (23): RobertaLayer(
         
     | 
| 544 | 
         
            +
                        (attention): RobertaAttention(
         
     | 
| 545 | 
         
            +
                          (self): RobertaSelfAttention(
         
     | 
| 546 | 
         
            +
                            (query): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 547 | 
         
            +
                            (key): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 548 | 
         
            +
                            (value): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 549 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 550 | 
         
            +
                          )
         
     | 
| 551 | 
         
            +
                          (output): RobertaSelfOutput(
         
     | 
| 552 | 
         
            +
                            (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 553 | 
         
            +
                            (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 554 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 555 | 
         
            +
                          )
         
     | 
| 556 | 
         
            +
                        )
         
     | 
| 557 | 
         
            +
                        (intermediate): RobertaIntermediate(
         
     | 
| 558 | 
         
            +
                          (dense): Linear(in_features=1024, out_features=4096, bias=True)
         
     | 
| 559 | 
         
            +
                        )
         
     | 
| 560 | 
         
            +
                        (output): RobertaOutput(
         
     | 
| 561 | 
         
            +
                          (dense): Linear(in_features=4096, out_features=1024, bias=True)
         
     | 
| 562 | 
         
            +
                          (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
         
     | 
| 563 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 564 | 
         
            +
                        )
         
     | 
| 565 | 
         
            +
                      )
         
     | 
| 566 | 
         
            +
                    )
         
     | 
| 567 | 
         
            +
                  )
         
     | 
| 568 | 
         
            +
                  (pooler): RobertaPooler(
         
     | 
| 569 | 
         
            +
                    (dense): Linear(in_features=1024, out_features=1024, bias=True)
         
     | 
| 570 | 
         
            +
                    (activation): Tanh()
         
     | 
| 571 | 
         
            +
                  )
         
     | 
| 572 | 
         
            +
                )
         
     | 
| 573 | 
         
            +
              )
         
     | 
| 574 | 
         
            +
              (word_dropout): WordDropout(p=0.05)
         
     | 
| 575 | 
         
            +
              (locked_dropout): LockedDropout(p=0.5)
         
     | 
| 576 | 
         
            +
              (linear): Linear(in_features=1024, out_features=20, bias=True)
         
     | 
| 577 | 
         
            +
              (beta): 1.0
         
     | 
| 578 | 
         
            +
              (weights): None
         
     | 
| 579 | 
         
            +
              (weight_tensor) None
         
     | 
| 580 | 
         
            +
            )"
         
     | 
| 581 | 
         
            +
            2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
         
     | 
| 582 | 
         
            +
            2021-01-20 22:30:34,821 Corpus: "Corpus: 16093 train + 2969 dev + 5314 test sentences"
         
     | 
| 583 | 
         
            +
            2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
         
     | 
| 584 | 
         
            +
            2021-01-20 22:30:34,821 Parameters:
         
     | 
| 585 | 
         
            +
            2021-01-20 22:30:34,821  - learning_rate: "5e-06"
         
     | 
| 586 | 
         
            +
            2021-01-20 22:30:34,821  - mini_batch_size: "4"
         
     | 
| 587 | 
         
            +
            2021-01-20 22:30:34,821  - patience: "3"
         
     | 
| 588 | 
         
            +
            2021-01-20 22:30:34,821  - anneal_factor: "0.5"
         
     | 
| 589 | 
         
            +
            2021-01-20 22:30:34,822  - max_epochs: "20"
         
     | 
| 590 | 
         
            +
            2021-01-20 22:30:34,822  - shuffle: "True"
         
     | 
| 591 | 
         
            +
            2021-01-20 22:30:34,822  - train_with_dev: "True"
         
     | 
| 592 | 
         
            +
            2021-01-20 22:30:34,822  - batch_growth_annealing: "False"
         
     | 
| 593 | 
         
            +
            2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
         
     | 
| 594 | 
         
            +
            2021-01-20 22:30:34,822 Model training base path: "resources/contextdrop/flert-nl-ft+dev-xlm-roberta-large-context+drop-64-True-127"
         
     | 
| 595 | 
         
            +
            2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
         
     | 
| 596 | 
         
            +
            2021-01-20 22:30:34,822 Device: cuda:0
         
     | 
| 597 | 
         
            +
            2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
         
     | 
| 598 | 
         
            +
            2021-01-20 22:30:34,822 Embeddings storage mode: none
         
     | 
| 599 | 
         
            +
            2021-01-20 22:30:34,833 ----------------------------------------------------------------------------------------------------
         
     | 
| 600 | 
         
            +
            2021-01-20 22:34:24,138 epoch 1 - iter 476/4766 - loss 0.75007446 - samples/sec: 8.30 - lr: 0.000005
         
     | 
| 601 | 
         
            +
            2021-01-20 22:38:11,813 epoch 1 - iter 952/4766 - loss 0.55138470 - samples/sec: 8.36 - lr: 0.000005
         
     | 
| 602 | 
         
            +
            2021-01-20 22:42:03,548 epoch 1 - iter 1428/4766 - loss 0.46882800 - samples/sec: 8.22 - lr: 0.000005
         
     | 
| 603 | 
         
            +
            2021-01-20 22:45:56,496 epoch 1 - iter 1904/4766 - loss 0.42568348 - samples/sec: 8.17 - lr: 0.000005
         
     | 
| 604 | 
         
            +
            2021-01-20 22:49:48,705 epoch 1 - iter 2380/4766 - loss 0.40460601 - samples/sec: 8.20 - lr: 0.000005
         
     | 
| 605 | 
         
            +
            2021-01-20 22:53:40,511 epoch 1 - iter 2856/4766 - loss 0.38479376 - samples/sec: 8.21 - lr: 0.000005
         
     | 
| 606 | 
         
            +
            2021-01-20 22:57:31,693 epoch 1 - iter 3332/4766 - loss 0.36783532 - samples/sec: 8.24 - lr: 0.000005
         
     | 
| 607 | 
         
            +
            2021-01-20 23:01:24,894 epoch 1 - iter 3808/4766 - loss 0.35297261 - samples/sec: 8.17 - lr: 0.000005
         
     | 
| 608 | 
         
            +
            2021-01-20 23:05:16,842 epoch 1 - iter 4284/4766 - loss 0.33562353 - samples/sec: 8.21 - lr: 0.000005
         
     | 
| 609 | 
         
            +
            2021-01-20 23:09:08,356 epoch 1 - iter 4760/4766 - loss 0.32624764 - samples/sec: 8.22 - lr: 0.000005
         
     | 
| 610 | 
         
            +
            2021-01-20 23:09:11,043 ----------------------------------------------------------------------------------------------------
         
     | 
| 611 | 
         
            +
            2021-01-20 23:09:11,044 EPOCH 1 done: loss 0.3260 - lr 0.0000050
         
     | 
| 612 | 
         
            +
            2021-01-20 23:09:11,044 BAD EPOCHS (no improvement): 4
         
     | 
| 613 | 
         
            +
            2021-01-20 23:09:11,056 ----------------------------------------------------------------------------------------------------
         
     | 
| 614 | 
         
            +
            2021-01-20 23:13:02,174 epoch 2 - iter 476/4766 - loss 0.19592687 - samples/sec: 8.24 - lr: 0.000005
         
     | 
| 615 | 
         
            +
            2021-01-20 23:16:52,896 epoch 2 - iter 952/4766 - loss 0.19343522 - samples/sec: 8.25 - lr: 0.000005
         
     | 
| 616 | 
         
            +
            2021-01-20 23:20:44,314 epoch 2 - iter 1428/4766 - loss 0.19096819 - samples/sec: 8.23 - lr: 0.000005
         
     | 
| 617 | 
         
            +
            2021-01-20 23:24:34,798 epoch 2 - iter 1904/4766 - loss 0.20419720 - samples/sec: 8.26 - lr: 0.000005
         
     | 
| 618 | 
         
            +
            2021-01-20 23:28:25,592 epoch 2 - iter 2380/4766 - loss 0.20562715 - samples/sec: 8.25 - lr: 0.000005
         
     | 
| 619 | 
         
            +
            2021-01-20 23:32:18,034 epoch 2 - iter 2856/4766 - loss 0.21479885 - samples/sec: 8.19 - lr: 0.000005
         
     | 
| 620 | 
         
            +
            2021-01-20 23:36:11,088 epoch 2 - iter 3332/4766 - loss 0.22119955 - samples/sec: 8.17 - lr: 0.000005
         
     | 
| 621 | 
         
            +
            2021-01-20 23:39:57,520 epoch 2 - iter 3808/4766 - loss 0.22084426 - samples/sec: 8.41 - lr: 0.000005
         
     | 
| 622 | 
         
            +
            2021-01-20 23:43:40,262 epoch 2 - iter 4284/4766 - loss 0.22666022 - samples/sec: 8.55 - lr: 0.000005
         
     | 
| 623 | 
         
            +
            2021-01-20 23:47:22,340 epoch 2 - iter 4760/4766 - loss 0.22898245 - samples/sec: 8.57 - lr: 0.000005
         
     | 
| 624 | 
         
            +
            2021-01-20 23:47:24,928 ----------------------------------------------------------------------------------------------------
         
     | 
| 625 | 
         
            +
            2021-01-20 23:47:24,928 EPOCH 2 done: loss 0.2291 - lr 0.0000049
         
     | 
| 626 | 
         
            +
            2021-01-20 23:47:24,928 BAD EPOCHS (no improvement): 4
         
     | 
| 627 | 
         
            +
            2021-01-20 23:47:24,932 ----------------------------------------------------------------------------------------------------
         
     | 
| 628 | 
         
            +
            2021-01-20 23:51:06,331 epoch 3 - iter 476/4766 - loss 0.17300695 - samples/sec: 8.60 - lr: 0.000005
         
     | 
| 629 | 
         
            +
            2021-01-20 23:54:48,800 epoch 3 - iter 952/4766 - loss 0.18720678 - samples/sec: 8.56 - lr: 0.000005
         
     | 
| 630 | 
         
            +
            2021-01-20 23:58:33,629 epoch 3 - iter 1428/4766 - loss 0.18315013 - samples/sec: 8.47 - lr: 0.000005
         
     | 
| 631 | 
         
            +
            2021-01-21 00:02:15,888 epoch 3 - iter 1904/4766 - loss 0.18674032 - samples/sec: 8.57 - lr: 0.000005
         
     | 
| 632 | 
         
            +
            2021-01-21 00:05:57,520 epoch 3 - iter 2380/4766 - loss 0.19216686 - samples/sec: 8.59 - lr: 0.000005
         
     | 
| 633 | 
         
            +
            2021-01-21 00:09:39,305 epoch 3 - iter 2856/4766 - loss 0.19094677 - samples/sec: 8.59 - lr: 0.000005
         
     | 
| 634 | 
         
            +
            2021-01-21 00:13:20,604 epoch 3 - iter 3332/4766 - loss 0.18956430 - samples/sec: 8.60 - lr: 0.000005
         
     | 
| 635 | 
         
            +
            2021-01-21 00:17:01,961 epoch 3 - iter 3808/4766 - loss 0.18552889 - samples/sec: 8.60 - lr: 0.000005
         
     | 
| 636 | 
         
            +
            2021-01-21 00:20:43,755 epoch 3 - iter 4284/4766 - loss 0.18237621 - samples/sec: 8.59 - lr: 0.000005
         
     | 
| 637 | 
         
            +
            2021-01-21 00:24:26,424 epoch 3 - iter 4760/4766 - loss 0.18548491 - samples/sec: 8.55 - lr: 0.000005
         
     | 
| 638 | 
         
            +
            2021-01-21 00:24:29,094 ----------------------------------------------------------------------------------------------------
         
     | 
| 639 | 
         
            +
            2021-01-21 00:24:29,094 EPOCH 3 done: loss 0.1856 - lr 0.0000047
         
     | 
| 640 | 
         
            +
            2021-01-21 00:24:29,094 BAD EPOCHS (no improvement): 4
         
     | 
| 641 | 
         
            +
            2021-01-21 00:24:29,113 ----------------------------------------------------------------------------------------------------
         
     | 
| 642 | 
         
            +
            2021-01-21 00:28:10,733 epoch 4 - iter 476/4766 - loss 0.16395309 - samples/sec: 8.59 - lr: 0.000005
         
     | 
| 643 | 
         
            +
            2021-01-21 00:31:51,536 epoch 4 - iter 952/4766 - loss 0.15725064 - samples/sec: 8.62 - lr: 0.000005
         
     | 
| 644 | 
         
            +
            2021-01-21 00:35:32,411 epoch 4 - iter 1428/4766 - loss 0.15046027 - samples/sec: 8.62 - lr: 0.000005
         
     | 
| 645 | 
         
            +
            2021-01-21 00:39:11,999 epoch 4 - iter 1904/4766 - loss 0.15211000 - samples/sec: 8.67 - lr: 0.000005
         
     | 
| 646 | 
         
            +
            2021-01-21 00:42:52,983 epoch 4 - iter 2380/4766 - loss 0.15810432 - samples/sec: 8.62 - lr: 0.000005
         
     | 
| 647 | 
         
            +
            2021-01-21 00:46:35,874 epoch 4 - iter 2856/4766 - loss 0.15986602 - samples/sec: 8.54 - lr: 0.000005
         
     | 
| 648 | 
         
            +
            2021-01-21 00:50:17,362 epoch 4 - iter 3332/4766 - loss 0.15994249 - samples/sec: 8.60 - lr: 0.000005
         
     | 
| 649 | 
         
            +
            2021-01-21 00:53:58,810 epoch 4 - iter 3808/4766 - loss 0.15891707 - samples/sec: 8.60 - lr: 0.000005
         
     | 
| 650 | 
         
            +
            2021-01-21 00:57:39,682 epoch 4 - iter 4284/4766 - loss 0.16493451 - samples/sec: 8.62 - lr: 0.000005
         
     | 
| 651 | 
         
            +
            2021-01-21 01:01:20,887 epoch 4 - iter 4760/4766 - loss 0.16578159 - samples/sec: 8.61 - lr: 0.000005
         
     | 
| 652 | 
         
            +
            2021-01-21 01:01:23,546 ----------------------------------------------------------------------------------------------------
         
     | 
| 653 | 
         
            +
            2021-01-21 01:01:23,546 EPOCH 4 done: loss 0.1656 - lr 0.0000045
         
     | 
| 654 | 
         
            +
            2021-01-21 01:01:23,546 BAD EPOCHS (no improvement): 4
         
     | 
| 655 | 
         
            +
            2021-01-21 01:01:23,549 ----------------------------------------------------------------------------------------------------
         
     | 
| 656 | 
         
            +
            2021-01-21 01:05:05,137 epoch 5 - iter 476/4766 - loss 0.16713775 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 657 | 
         
            +
            2021-01-21 01:08:46,452 epoch 5 - iter 952/4766 - loss 0.15990526 - samples/sec: 8.60 - lr: 0.000004
         
     | 
| 658 | 
         
            +
            2021-01-21 01:12:28,191 epoch 5 - iter 1428/4766 - loss 0.16156578 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 659 | 
         
            +
            2021-01-21 01:16:08,457 epoch 5 - iter 1904/4766 - loss 0.16763724 - samples/sec: 8.64 - lr: 0.000004
         
     | 
| 660 | 
         
            +
            2021-01-21 01:19:50,350 epoch 5 - iter 2380/4766 - loss 0.16378794 - samples/sec: 8.58 - lr: 0.000004
         
     | 
| 661 | 
         
            +
            2021-01-21 01:23:30,578 epoch 5 - iter 2856/4766 - loss 0.16849384 - samples/sec: 8.65 - lr: 0.000004
         
     | 
| 662 | 
         
            +
            2021-01-21 01:27:10,395 epoch 5 - iter 3332/4766 - loss 0.16382910 - samples/sec: 8.66 - lr: 0.000004
         
     | 
| 663 | 
         
            +
            2021-01-21 01:30:51,552 epoch 5 - iter 3808/4766 - loss 0.16654785 - samples/sec: 8.61 - lr: 0.000004
         
     | 
| 664 | 
         
            +
            2021-01-21 01:34:33,151 epoch 5 - iter 4284/4766 - loss 0.16617839 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 665 | 
         
            +
            2021-01-21 01:38:13,465 epoch 5 - iter 4760/4766 - loss 0.16489933 - samples/sec: 8.64 - lr: 0.000004
         
     | 
| 666 | 
         
            +
            2021-01-21 01:38:16,065 ----------------------------------------------------------------------------------------------------
         
     | 
| 667 | 
         
            +
            2021-01-21 01:38:16,065 EPOCH 5 done: loss 0.1648 - lr 0.0000043
         
     | 
| 668 | 
         
            +
            2021-01-21 01:38:16,066 BAD EPOCHS (no improvement): 4
         
     | 
| 669 | 
         
            +
            2021-01-21 01:38:16,069 ----------------------------------------------------------------------------------------------------
         
     | 
| 670 | 
         
            +
            2021-01-21 01:41:56,751 epoch 6 - iter 476/4766 - loss 0.15331536 - samples/sec: 8.63 - lr: 0.000004
         
     | 
| 671 | 
         
            +
            2021-01-21 01:45:37,683 epoch 6 - iter 952/4766 - loss 0.16628115 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 672 | 
         
            +
            2021-01-21 01:49:18,657 epoch 6 - iter 1428/4766 - loss 0.16559479 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 673 | 
         
            +
            2021-01-21 01:52:59,337 epoch 6 - iter 1904/4766 - loss 0.16505749 - samples/sec: 8.63 - lr: 0.000004
         
     | 
| 674 | 
         
            +
            2021-01-21 01:56:41,398 epoch 6 - iter 2380/4766 - loss 0.16408360 - samples/sec: 8.57 - lr: 0.000004
         
     | 
| 675 | 
         
            +
            2021-01-21 02:00:22,782 epoch 6 - iter 2856/4766 - loss 0.16367926 - samples/sec: 8.60 - lr: 0.000004
         
     | 
| 676 | 
         
            +
            2021-01-21 02:04:04,491 epoch 6 - iter 3332/4766 - loss 0.16323212 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 677 | 
         
            +
            2021-01-21 02:07:46,417 epoch 6 - iter 3808/4766 - loss 0.16476110 - samples/sec: 8.58 - lr: 0.000004
         
     | 
| 678 | 
         
            +
            2021-01-21 02:11:27,402 epoch 6 - iter 4284/4766 - loss 0.16556307 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 679 | 
         
            +
            2021-01-21 02:15:08,877 epoch 6 - iter 4760/4766 - loss 0.16431570 - samples/sec: 8.60 - lr: 0.000004
         
     | 
| 680 | 
         
            +
            2021-01-21 02:15:11,479 ----------------------------------------------------------------------------------------------------
         
     | 
| 681 | 
         
            +
            2021-01-21 02:15:11,480 EPOCH 6 done: loss 0.1648 - lr 0.0000040
         
     | 
| 682 | 
         
            +
            2021-01-21 02:15:11,480 BAD EPOCHS (no improvement): 4
         
     | 
| 683 | 
         
            +
            2021-01-21 02:15:11,483 ----------------------------------------------------------------------------------------------------
         
     | 
| 684 | 
         
            +
            2021-01-21 02:18:51,563 epoch 7 - iter 476/4766 - loss 0.16677021 - samples/sec: 8.65 - lr: 0.000004
         
     | 
| 685 | 
         
            +
            2021-01-21 02:22:33,148 epoch 7 - iter 952/4766 - loss 0.15199812 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 686 | 
         
            +
            2021-01-21 02:26:14,043 epoch 7 - iter 1428/4766 - loss 0.15998079 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 687 | 
         
            +
            2021-01-21 02:29:54,619 epoch 7 - iter 1904/4766 - loss 0.16023978 - samples/sec: 8.63 - lr: 0.000004
         
     | 
| 688 | 
         
            +
            2021-01-21 02:33:35,634 epoch 7 - iter 2380/4766 - loss 0.15702676 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 689 | 
         
            +
            2021-01-21 02:37:16,548 epoch 7 - iter 2856/4766 - loss 0.15350997 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 690 | 
         
            +
            2021-01-21 02:40:57,346 epoch 7 - iter 3332/4766 - loss 0.15488921 - samples/sec: 8.62 - lr: 0.000004
         
     | 
| 691 | 
         
            +
            2021-01-21 02:44:38,614 epoch 7 - iter 3808/4766 - loss 0.15987947 - samples/sec: 8.61 - lr: 0.000004
         
     | 
| 692 | 
         
            +
            2021-01-21 02:48:20,175 epoch 7 - iter 4284/4766 - loss 0.16276295 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 693 | 
         
            +
            2021-01-21 02:52:01,908 epoch 7 - iter 4760/4766 - loss 0.16197284 - samples/sec: 8.59 - lr: 0.000004
         
     | 
| 694 | 
         
            +
            2021-01-21 02:52:04,547 ----------------------------------------------------------------------------------------------------
         
     | 
| 695 | 
         
            +
            2021-01-21 02:52:04,547 EPOCH 7 done: loss 0.1620 - lr 0.0000036
         
     | 
| 696 | 
         
            +
            2021-01-21 02:52:04,547 BAD EPOCHS (no improvement): 4
         
     | 
| 697 | 
         
            +
            2021-01-21 02:52:04,550 ----------------------------------------------------------------------------------------------------
         
     | 
| 698 | 
         
            +
            2021-01-21 02:55:44,290 epoch 8 - iter 476/4766 - loss 0.12739570 - samples/sec: 8.67 - lr: 0.000004
         
     | 
| 699 | 
         
            +
            2021-01-21 02:59:24,874 epoch 8 - iter 952/4766 - loss 0.13459088 - samples/sec: 8.63 - lr: 0.000004
         
     | 
| 700 | 
         
            +
            2021-01-21 03:03:05,915 epoch 8 - iter 1428/4766 - loss 0.13249889 - samples/sec: 8.61 - lr: 0.000004
         
     | 
| 701 | 
         
            +
            2021-01-21 03:07:51,438 epoch 8 - iter 1904/4766 - loss 0.13557002 - samples/sec: 6.67 - lr: 0.000003
         
     | 
| 702 | 
         
            +
            2021-01-21 03:11:32,960 epoch 8 - iter 2380/4766 - loss 0.13750847 - samples/sec: 8.60 - lr: 0.000003
         
     | 
| 703 | 
         
            +
            2021-01-21 03:15:15,240 epoch 8 - iter 2856/4766 - loss 0.13920395 - samples/sec: 8.57 - lr: 0.000003
         
     | 
| 704 | 
         
            +
            2021-01-21 03:18:56,540 epoch 8 - iter 3332/4766 - loss 0.14196834 - samples/sec: 8.60 - lr: 0.000003
         
     | 
| 705 | 
         
            +
            2021-01-21 03:22:38,133 epoch 8 - iter 3808/4766 - loss 0.14013979 - samples/sec: 8.59 - lr: 0.000003
         
     | 
| 706 | 
         
            +
            2021-01-21 03:26:20,491 epoch 8 - iter 4284/4766 - loss 0.14057112 - samples/sec: 8.56 - lr: 0.000003
         
     | 
| 707 | 
         
            +
            2021-01-21 03:30:01,506 epoch 8 - iter 4760/4766 - loss 0.13849626 - samples/sec: 8.62 - lr: 0.000003
         
     | 
| 708 | 
         
            +
            2021-01-21 03:30:04,136 ----------------------------------------------------------------------------------------------------
         
     | 
| 709 | 
         
            +
            2021-01-21 03:30:04,136 EPOCH 8 done: loss 0.1390 - lr 0.0000033
         
     | 
| 710 | 
         
            +
            2021-01-21 03:30:04,136 BAD EPOCHS (no improvement): 4
         
     | 
| 711 | 
         
            +
            2021-01-21 03:30:04,139 ----------------------------------------------------------------------------------------------------
         
     | 
| 712 | 
         
            +
            2021-01-21 03:33:43,789 epoch 9 - iter 476/4766 - loss 0.10898947 - samples/sec: 8.67 - lr: 0.000003
         
     | 
| 713 | 
         
            +
            2021-01-21 03:37:24,937 epoch 9 - iter 952/4766 - loss 0.13779523 - samples/sec: 8.61 - lr: 0.000003
         
     | 
| 714 | 
         
            +
            2021-01-21 03:41:06,312 epoch 9 - iter 1428/4766 - loss 0.13999643 - samples/sec: 8.60 - lr: 0.000003
         
     | 
| 715 | 
         
            +
            2021-01-21 03:44:48,413 epoch 9 - iter 1904/4766 - loss 0.14934964 - samples/sec: 8.57 - lr: 0.000003
         
     | 
| 716 | 
         
            +
            2021-01-21 03:48:28,888 epoch 9 - iter 2380/4766 - loss 0.14817911 - samples/sec: 8.64 - lr: 0.000003
         
     | 
| 717 | 
         
            +
            2021-01-21 03:52:09,651 epoch 9 - iter 2856/4766 - loss 0.14990197 - samples/sec: 8.63 - lr: 0.000003
         
     | 
| 718 | 
         
            +
            2021-01-21 03:55:50,402 epoch 9 - iter 3332/4766 - loss 0.15379190 - samples/sec: 8.63 - lr: 0.000003
         
     | 
| 719 | 
         
            +
            2021-01-21 03:59:32,243 epoch 9 - iter 3808/4766 - loss 0.15360767 - samples/sec: 8.58 - lr: 0.000003
         
     | 
| 720 | 
         
            +
            2021-01-21 04:03:12,525 epoch 9 - iter 4284/4766 - loss 0.15584102 - samples/sec: 8.64 - lr: 0.000003
         
     | 
| 721 | 
         
            +
            2021-01-21 04:06:52,524 epoch 9 - iter 4760/4766 - loss 0.15575696 - samples/sec: 8.66 - lr: 0.000003
         
     | 
| 722 | 
         
            +
            2021-01-21 04:06:55,162 ----------------------------------------------------------------------------------------------------
         
     | 
| 723 | 
         
            +
            2021-01-21 04:06:55,162 EPOCH 9 done: loss 0.1559 - lr 0.0000029
         
     | 
| 724 | 
         
            +
            2021-01-21 04:06:55,162 BAD EPOCHS (no improvement): 4
         
     | 
| 725 | 
         
            +
            2021-01-21 04:06:55,174 ----------------------------------------------------------------------------------------------------
         
     | 
| 726 | 
         
            +
            2021-01-21 04:10:34,900 epoch 10 - iter 476/4766 - loss 0.16271080 - samples/sec: 8.67 - lr: 0.000003
         
     | 
| 727 | 
         
            +
            2021-01-21 04:14:20,175 epoch 10 - iter 952/4766 - loss 0.16397437 - samples/sec: 8.45 - lr: 0.000003
         
     | 
| 728 | 
         
            +
            2021-01-21 04:18:06,987 epoch 10 - iter 1428/4766 - loss 0.15725672 - samples/sec: 8.40 - lr: 0.000003
         
     | 
| 729 | 
         
            +
            2021-01-21 04:21:49,215 epoch 10 - iter 1904/4766 - loss 0.15423771 - samples/sec: 8.57 - lr: 0.000003
         
     | 
| 730 | 
         
            +
            2021-01-21 04:25:28,895 epoch 10 - iter 2380/4766 - loss 0.15973856 - samples/sec: 8.67 - lr: 0.000003
         
     | 
| 731 | 
         
            +
            2021-01-21 04:29:23,464 epoch 10 - iter 2856/4766 - loss 0.16022188 - samples/sec: 8.12 - lr: 0.000003
         
     | 
| 732 | 
         
            +
            2021-01-21 04:33:45,631 epoch 10 - iter 3332/4766 - loss 0.16116028 - samples/sec: 7.26 - lr: 0.000003
         
     | 
| 733 | 
         
            +
            2021-01-21 04:37:33,764 epoch 10 - iter 3808/4766 - loss 0.16539610 - samples/sec: 8.35 - lr: 0.000003
         
     | 
| 734 | 
         
            +
            2021-01-21 04:42:13,315 epoch 10 - iter 4284/4766 - loss 0.16546677 - samples/sec: 6.81 - lr: 0.000003
         
     | 
| 735 | 
         
            +
            2021-01-21 04:45:59,709 epoch 10 - iter 4760/4766 - loss 0.16271866 - samples/sec: 8.41 - lr: 0.000003
         
     | 
| 736 | 
         
            +
            2021-01-21 04:46:02,392 ----------------------------------------------------------------------------------------------------
         
     | 
| 737 | 
         
            +
            2021-01-21 04:46:02,392 EPOCH 10 done: loss 0.1625 - lr 0.0000025
         
     | 
| 738 | 
         
            +
            2021-01-21 04:46:02,392 BAD EPOCHS (no improvement): 4
         
     | 
| 739 | 
         
            +
            2021-01-21 04:46:02,396 ----------------------------------------------------------------------------------------------------
         
     | 
| 740 | 
         
            +
            2021-01-21 04:49:48,063 epoch 11 - iter 476/4766 - loss 0.12302402 - samples/sec: 8.44 - lr: 0.000002
         
     | 
| 741 | 
         
            +
            2021-01-21 04:53:27,641 epoch 11 - iter 952/4766 - loss 0.14938588 - samples/sec: 8.67 - lr: 0.000002
         
     | 
| 742 | 
         
            +
            2021-01-21 04:57:17,073 epoch 11 - iter 1428/4766 - loss 0.15249822 - samples/sec: 8.30 - lr: 0.000002
         
     | 
| 743 | 
         
            +
            2021-01-21 05:01:04,811 epoch 11 - iter 1904/4766 - loss 0.15278022 - samples/sec: 8.36 - lr: 0.000002
         
     | 
| 744 | 
         
            +
            2021-01-21 05:04:54,048 epoch 11 - iter 2380/4766 - loss 0.14726127 - samples/sec: 8.31 - lr: 0.000002
         
     | 
| 745 | 
         
            +
            2021-01-21 05:08:43,193 epoch 11 - iter 2856/4766 - loss 0.14789523 - samples/sec: 8.31 - lr: 0.000002
         
     | 
| 746 | 
         
            +
            2021-01-21 05:13:06,493 epoch 11 - iter 3332/4766 - loss 0.14714088 - samples/sec: 7.23 - lr: 0.000002
         
     | 
| 747 | 
         
            +
            2021-01-21 05:16:50,965 epoch 11 - iter 3808/4766 - loss 0.14520739 - samples/sec: 8.48 - lr: 0.000002
         
     | 
| 748 | 
         
            +
            2021-01-21 05:20:39,478 epoch 11 - iter 4284/4766 - loss 0.14887415 - samples/sec: 8.33 - lr: 0.000002
         
     | 
| 749 | 
         
            +
            2021-01-21 05:24:29,111 epoch 11 - iter 4760/4766 - loss 0.14659288 - samples/sec: 8.29 - lr: 0.000002
         
     | 
| 750 | 
         
            +
            2021-01-21 05:24:31,802 ----------------------------------------------------------------------------------------------------
         
     | 
| 751 | 
         
            +
            2021-01-21 05:24:31,802 EPOCH 11 done: loss 0.1467 - lr 0.0000021
         
     | 
| 752 | 
         
            +
            2021-01-21 05:24:31,802 BAD EPOCHS (no improvement): 4
         
     | 
| 753 | 
         
            +
            2021-01-21 05:24:31,805 ----------------------------------------------------------------------------------------------------
         
     | 
| 754 | 
         
            +
            2021-01-21 05:28:14,475 epoch 12 - iter 476/4766 - loss 0.15315567 - samples/sec: 8.55 - lr: 0.000002
         
     | 
| 755 | 
         
            +
            2021-01-21 05:31:59,651 epoch 12 - iter 952/4766 - loss 0.16653427 - samples/sec: 8.46 - lr: 0.000002
         
     | 
| 756 | 
         
            +
            2021-01-21 05:35:41,742 epoch 12 - iter 1428/4766 - loss 0.15943798 - samples/sec: 8.57 - lr: 0.000002
         
     | 
| 757 | 
         
            +
            2021-01-21 05:39:23,773 epoch 12 - iter 1904/4766 - loss 0.14738183 - samples/sec: 8.58 - lr: 0.000002
         
     | 
| 758 | 
         
            +
            2021-01-21 05:43:07,737 epoch 12 - iter 2380/4766 - loss 0.14768732 - samples/sec: 8.50 - lr: 0.000002
         
     | 
| 759 | 
         
            +
            2021-01-21 05:46:50,097 epoch 12 - iter 2856/4766 - loss 0.14579714 - samples/sec: 8.56 - lr: 0.000002
         
     | 
| 760 | 
         
            +
            2021-01-21 05:50:30,750 epoch 12 - iter 3332/4766 - loss 0.14426661 - samples/sec: 8.63 - lr: 0.000002
         
     | 
| 761 | 
         
            +
            2021-01-21 05:54:10,533 epoch 12 - iter 3808/4766 - loss 0.14331669 - samples/sec: 8.66 - lr: 0.000002
         
     | 
| 762 | 
         
            +
            2021-01-21 05:57:51,040 epoch 12 - iter 4284/4766 - loss 0.14558392 - samples/sec: 8.64 - lr: 0.000002
         
     | 
| 763 | 
         
            +
            2021-01-21 06:01:31,114 epoch 12 - iter 4760/4766 - loss 0.14487869 - samples/sec: 8.65 - lr: 0.000002
         
     | 
| 764 | 
         
            +
            2021-01-21 06:01:33,698 ----------------------------------------------------------------------------------------------------
         
     | 
| 765 | 
         
            +
            2021-01-21 06:01:33,699 EPOCH 12 done: loss 0.1448 - lr 0.0000017
         
     | 
| 766 | 
         
            +
            2021-01-21 06:01:33,699 BAD EPOCHS (no improvement): 4
         
     | 
| 767 | 
         
            +
            2021-01-21 06:01:33,728 ----------------------------------------------------------------------------------------------------
         
     | 
| 768 | 
         
            +
            2021-01-21 06:05:13,916 epoch 13 - iter 476/4766 - loss 0.14655107 - samples/sec: 8.65 - lr: 0.000002
         
     | 
| 769 | 
         
            +
            2021-01-21 06:09:00,692 epoch 13 - iter 952/4766 - loss 0.15434704 - samples/sec: 8.40 - lr: 0.000002
         
     | 
| 770 | 
         
            +
            2021-01-21 06:13:01,021 epoch 13 - iter 1428/4766 - loss 0.14097797 - samples/sec: 7.92 - lr: 0.000002
         
     | 
| 771 | 
         
            +
            2021-01-21 06:16:53,666 epoch 13 - iter 1904/4766 - loss 0.14277714 - samples/sec: 8.18 - lr: 0.000002
         
     | 
| 772 | 
         
            +
            2021-01-21 06:20:42,859 epoch 13 - iter 2380/4766 - loss 0.14354307 - samples/sec: 8.31 - lr: 0.000002
         
     | 
| 773 | 
         
            +
            2021-01-21 06:24:31,146 epoch 13 - iter 2856/4766 - loss 0.14679997 - samples/sec: 8.34 - lr: 0.000002
         
     | 
| 774 | 
         
            +
            2021-01-21 06:28:19,832 epoch 13 - iter 3332/4766 - loss 0.14780579 - samples/sec: 8.33 - lr: 0.000001
         
     | 
| 775 | 
         
            +
            2021-01-21 06:32:08,563 epoch 13 - iter 3808/4766 - loss 0.14877294 - samples/sec: 8.32 - lr: 0.000001
         
     | 
| 776 | 
         
            +
            2021-01-21 06:35:55,834 epoch 13 - iter 4284/4766 - loss 0.14803883 - samples/sec: 8.38 - lr: 0.000001
         
     | 
| 777 | 
         
            +
            2021-01-21 06:39:44,884 epoch 13 - iter 4760/4766 - loss 0.15072743 - samples/sec: 8.31 - lr: 0.000001
         
     | 
| 778 | 
         
            +
            2021-01-21 06:39:47,605 ----------------------------------------------------------------------------------------------------
         
     | 
| 779 | 
         
            +
            2021-01-21 06:39:47,605 EPOCH 13 done: loss 0.1512 - lr 0.0000014
         
     | 
| 780 | 
         
            +
            2021-01-21 06:39:47,605 BAD EPOCHS (no improvement): 4
         
     | 
| 781 | 
         
            +
            2021-01-21 06:39:47,610 ----------------------------------------------------------------------------------------------------
         
     | 
| 782 | 
         
            +
            2021-01-21 06:43:34,894 epoch 14 - iter 476/4766 - loss 0.11684375 - samples/sec: 8.38 - lr: 0.000001
         
     | 
| 783 | 
         
            +
            2021-01-21 06:47:22,075 epoch 14 - iter 952/4766 - loss 0.13685666 - samples/sec: 8.38 - lr: 0.000001
         
     | 
| 784 | 
         
            +
            2021-01-21 06:51:09,835 epoch 14 - iter 1428/4766 - loss 0.15137543 - samples/sec: 8.36 - lr: 0.000001
         
     | 
| 785 | 
         
            +
            2021-01-21 06:54:56,328 epoch 14 - iter 1904/4766 - loss 0.15223388 - samples/sec: 8.41 - lr: 0.000001
         
     | 
| 786 | 
         
            +
            2021-01-21 06:58:43,179 epoch 14 - iter 2380/4766 - loss 0.15232770 - samples/sec: 8.39 - lr: 0.000001
         
     | 
| 787 | 
         
            +
            2021-01-21 07:02:29,960 epoch 14 - iter 2856/4766 - loss 0.15376646 - samples/sec: 8.40 - lr: 0.000001
         
     | 
| 788 | 
         
            +
            2021-01-21 07:06:16,979 epoch 14 - iter 3332/4766 - loss 0.14910628 - samples/sec: 8.39 - lr: 0.000001
         
     | 
| 789 | 
         
            +
            2021-01-21 07:10:05,313 epoch 14 - iter 3808/4766 - loss 0.15073272 - samples/sec: 8.34 - lr: 0.000001
         
     | 
| 790 | 
         
            +
            2021-01-21 07:13:52,950 epoch 14 - iter 4284/4766 - loss 0.14982179 - samples/sec: 8.36 - lr: 0.000001
         
     | 
| 791 | 
         
            +
            2021-01-21 07:17:41,726 epoch 14 - iter 4760/4766 - loss 0.14669553 - samples/sec: 8.32 - lr: 0.000001
         
     | 
| 792 | 
         
            +
            2021-01-21 07:17:44,436 ----------------------------------------------------------------------------------------------------
         
     | 
| 793 | 
         
            +
            2021-01-21 07:17:44,436 EPOCH 14 done: loss 0.1467 - lr 0.0000010
         
     | 
| 794 | 
         
            +
            2021-01-21 07:17:44,436 BAD EPOCHS (no improvement): 4
         
     | 
| 795 | 
         
            +
            2021-01-21 07:17:44,439 ----------------------------------------------------------------------------------------------------
         
     | 
| 796 | 
         
            +
            2021-01-21 07:21:32,208 epoch 15 - iter 476/4766 - loss 0.15710687 - samples/sec: 8.36 - lr: 0.000001
         
     | 
| 797 | 
         
            +
            2021-01-21 07:25:20,097 epoch 15 - iter 952/4766 - loss 0.15127131 - samples/sec: 8.36 - lr: 0.000001
         
     | 
| 798 | 
         
            +
            2021-01-21 07:29:09,242 epoch 15 - iter 1428/4766 - loss 0.15385280 - samples/sec: 8.31 - lr: 0.000001
         
     | 
| 799 | 
         
            +
            2021-01-21 07:32:56,645 epoch 15 - iter 1904/4766 - loss 0.15263483 - samples/sec: 8.37 - lr: 0.000001
         
     | 
| 800 | 
         
            +
            2021-01-21 07:36:44,549 epoch 15 - iter 2380/4766 - loss 0.15494254 - samples/sec: 8.35 - lr: 0.000001
         
     | 
| 801 | 
         
            +
            2021-01-21 07:40:31,861 epoch 15 - iter 2856/4766 - loss 0.14994557 - samples/sec: 8.38 - lr: 0.000001
         
     | 
| 802 | 
         
            +
            2021-01-21 07:44:20,745 epoch 15 - iter 3332/4766 - loss 0.15018726 - samples/sec: 8.32 - lr: 0.000001
         
     | 
| 803 | 
         
            +
            2021-01-21 07:48:07,710 epoch 15 - iter 3808/4766 - loss 0.14815315 - samples/sec: 8.39 - lr: 0.000001
         
     | 
| 804 | 
         
            +
            2021-01-21 07:51:58,674 epoch 15 - iter 4284/4766 - loss 0.14728940 - samples/sec: 8.24 - lr: 0.000001
         
     | 
| 805 | 
         
            +
            2021-01-21 07:55:50,263 epoch 15 - iter 4760/4766 - loss 0.14723711 - samples/sec: 8.22 - lr: 0.000001
         
     | 
| 806 | 
         
            +
            2021-01-21 07:55:53,003 ----------------------------------------------------------------------------------------------------
         
     | 
| 807 | 
         
            +
            2021-01-21 07:55:53,003 EPOCH 15 done: loss 0.1473 - lr 0.0000007
         
     | 
| 808 | 
         
            +
            2021-01-21 07:55:53,003 BAD EPOCHS (no improvement): 4
         
     | 
| 809 | 
         
            +
            2021-01-21 07:55:53,008 ----------------------------------------------------------------------------------------------------
         
     | 
| 810 | 
         
            +
            2021-01-21 07:59:44,568 epoch 16 - iter 476/4766 - loss 0.13166130 - samples/sec: 8.22 - lr: 0.000001
         
     | 
| 811 | 
         
            +
            2021-01-21 08:03:36,181 epoch 16 - iter 952/4766 - loss 0.14175737 - samples/sec: 8.22 - lr: 0.000001
         
     | 
| 812 | 
         
            +
            2021-01-21 08:07:28,882 epoch 16 - iter 1428/4766 - loss 0.14304356 - samples/sec: 8.18 - lr: 0.000001
         
     | 
| 813 | 
         
            +
            2021-01-21 08:11:20,434 epoch 16 - iter 1904/4766 - loss 0.14622200 - samples/sec: 8.22 - lr: 0.000001
         
     | 
| 814 | 
         
            +
            2021-01-21 08:15:12,406 epoch 16 - iter 2380/4766 - loss 0.14768067 - samples/sec: 8.21 - lr: 0.000001
         
     | 
| 815 | 
         
            +
            2021-01-21 08:19:04,996 epoch 16 - iter 2856/4766 - loss 0.14707410 - samples/sec: 8.19 - lr: 0.000001
         
     | 
| 816 | 
         
            +
            2021-01-21 08:22:56,583 epoch 16 - iter 3332/4766 - loss 0.14688055 - samples/sec: 8.22 - lr: 0.000001
         
     | 
| 817 | 
         
            +
            2021-01-21 08:27:15,003 epoch 16 - iter 3808/4766 - loss 0.14730450 - samples/sec: 7.37 - lr: 0.000001
         
     | 
| 818 | 
         
            +
            2021-01-21 08:31:07,174 epoch 16 - iter 4284/4766 - loss 0.14827136 - samples/sec: 8.20 - lr: 0.000001
         
     | 
| 819 | 
         
            +
            2021-01-21 08:34:59,482 epoch 16 - iter 4760/4766 - loss 0.14568427 - samples/sec: 8.20 - lr: 0.000000
         
     | 
| 820 | 
         
            +
            2021-01-21 08:35:02,197 ----------------------------------------------------------------------------------------------------
         
     | 
| 821 | 
         
            +
            2021-01-21 08:35:02,198 EPOCH 16 done: loss 0.1456 - lr 0.0000005
         
     | 
| 822 | 
         
            +
            2021-01-21 08:35:02,198 BAD EPOCHS (no improvement): 4
         
     | 
| 823 | 
         
            +
            2021-01-21 08:35:02,216 ----------------------------------------------------------------------------------------------------
         
     | 
| 824 | 
         
            +
            2021-01-21 08:38:52,372 epoch 17 - iter 476/4766 - loss 0.12585091 - samples/sec: 8.27 - lr: 0.000000
         
     | 
| 825 | 
         
            +
            2021-01-21 08:42:26,708 epoch 17 - iter 952/4766 - loss 0.13980769 - samples/sec: 8.88 - lr: 0.000000
         
     | 
| 826 | 
         
            +
            2021-01-21 08:45:38,094 epoch 17 - iter 1428/4766 - loss 0.13790265 - samples/sec: 9.95 - lr: 0.000000
         
     | 
| 827 | 
         
            +
            2021-01-21 08:48:48,648 epoch 17 - iter 1904/4766 - loss 0.13518588 - samples/sec: 9.99 - lr: 0.000000
         
     | 
| 828 | 
         
            +
            2021-01-21 08:52:38,876 epoch 17 - iter 2380/4766 - loss 0.14102829 - samples/sec: 8.27 - lr: 0.000000
         
     | 
| 829 | 
         
            +
            2021-01-21 08:58:28,052 epoch 17 - iter 2856/4766 - loss 0.13996114 - samples/sec: 5.45 - lr: 0.000000
         
     | 
| 830 | 
         
            +
            2021-01-21 09:04:23,763 epoch 17 - iter 3332/4766 - loss 0.13826631 - samples/sec: 5.35 - lr: 0.000000
         
     | 
| 831 | 
         
            +
            2021-01-21 09:07:47,606 epoch 17 - iter 3808/4766 - loss 0.13959091 - samples/sec: 9.34 - lr: 0.000000
         
     | 
| 832 | 
         
            +
            2021-01-21 09:10:58,844 epoch 17 - iter 4284/4766 - loss 0.13834961 - samples/sec: 9.96 - lr: 0.000000
         
     | 
| 833 | 
         
            +
            2021-01-21 09:14:07,816 epoch 17 - iter 4760/4766 - loss 0.14037759 - samples/sec: 10.08 - lr: 0.000000
         
     | 
| 834 | 
         
            +
            2021-01-21 09:14:10,160 ----------------------------------------------------------------------------------------------------
         
     | 
| 835 | 
         
            +
            2021-01-21 09:14:10,160 EPOCH 17 done: loss 0.1403 - lr 0.0000003
         
     | 
| 836 | 
         
            +
            2021-01-21 09:14:10,160 BAD EPOCHS (no improvement): 4
         
     | 
| 837 | 
         
            +
            2021-01-21 09:14:10,181 ----------------------------------------------------------------------------------------------------
         
     | 
| 838 | 
         
            +
            2021-01-21 09:17:20,231 epoch 18 - iter 476/4766 - loss 0.13481177 - samples/sec: 10.02 - lr: 0.000000
         
     | 
| 839 | 
         
            +
            2021-01-21 09:20:31,285 epoch 18 - iter 952/4766 - loss 0.12601264 - samples/sec: 9.97 - lr: 0.000000
         
     | 
| 840 | 
         
            +
            2021-01-21 09:23:41,236 epoch 18 - iter 1428/4766 - loss 0.12608326 - samples/sec: 10.02 - lr: 0.000000
         
     | 
| 841 | 
         
            +
            2021-01-21 09:26:51,839 epoch 18 - iter 1904/4766 - loss 0.13399083 - samples/sec: 9.99 - lr: 0.000000
         
     | 
| 842 | 
         
            +
            2021-01-21 09:30:03,764 epoch 18 - iter 2380/4766 - loss 0.13876490 - samples/sec: 9.92 - lr: 0.000000
         
     | 
| 843 | 
         
            +
            2021-01-21 09:33:15,574 epoch 18 - iter 2856/4766 - loss 0.13878700 - samples/sec: 9.93 - lr: 0.000000
         
     | 
| 844 | 
         
            +
            2021-01-21 09:36:26,971 epoch 18 - iter 3332/4766 - loss 0.14409246 - samples/sec: 9.95 - lr: 0.000000
         
     | 
| 845 | 
         
            +
            2021-01-21 09:39:37,934 epoch 18 - iter 3808/4766 - loss 0.14454244 - samples/sec: 9.97 - lr: 0.000000
         
     | 
| 846 | 
         
            +
            2021-01-21 09:42:48,260 epoch 18 - iter 4284/4766 - loss 0.14386075 - samples/sec: 10.00 - lr: 0.000000
         
     | 
| 847 | 
         
            +
            2021-01-21 09:45:58,345 epoch 18 - iter 4760/4766 - loss 0.14489400 - samples/sec: 10.02 - lr: 0.000000
         
     | 
| 848 | 
         
            +
            2021-01-21 09:46:00,567 ----------------------------------------------------------------------------------------------------
         
     | 
| 849 | 
         
            +
            2021-01-21 09:46:00,567 EPOCH 18 done: loss 0.1448 - lr 0.0000001
         
     | 
| 850 | 
         
            +
            2021-01-21 09:46:00,567 BAD EPOCHS (no improvement): 4
         
     | 
| 851 | 
         
            +
            2021-01-21 09:46:00,570 ----------------------------------------------------------------------------------------------------
         
     | 
| 852 | 
         
            +
            2021-01-21 09:49:13,016 epoch 19 - iter 476/4766 - loss 0.16550822 - samples/sec: 9.89 - lr: 0.000000
         
     | 
| 853 | 
         
            +
            2021-01-21 09:52:27,091 epoch 19 - iter 952/4766 - loss 0.13214122 - samples/sec: 9.81 - lr: 0.000000
         
     | 
| 854 | 
         
            +
            2021-01-21 09:55:42,085 epoch 19 - iter 1428/4766 - loss 0.13831234 - samples/sec: 9.77 - lr: 0.000000
         
     | 
| 855 | 
         
            +
            2021-01-21 09:58:56,680 epoch 19 - iter 1904/4766 - loss 0.13832571 - samples/sec: 9.79 - lr: 0.000000
         
     | 
| 856 | 
         
            +
            2021-01-21 10:02:12,350 epoch 19 - iter 2380/4766 - loss 0.13808449 - samples/sec: 9.73 - lr: 0.000000
         
     | 
| 857 | 
         
            +
            2021-01-21 10:05:26,205 epoch 19 - iter 2856/4766 - loss 0.13753814 - samples/sec: 9.82 - lr: 0.000000
         
     | 
| 858 | 
         
            +
            2021-01-21 10:08:40,777 epoch 19 - iter 3332/4766 - loss 0.13826467 - samples/sec: 9.79 - lr: 0.000000
         
     | 
| 859 | 
         
            +
            2021-01-21 10:11:55,648 epoch 19 - iter 3808/4766 - loss 0.14029889 - samples/sec: 9.77 - lr: 0.000000
         
     | 
| 860 | 
         
            +
            2021-01-21 10:15:10,349 epoch 19 - iter 4284/4766 - loss 0.13696667 - samples/sec: 9.78 - lr: 0.000000
         
     | 
| 861 | 
         
            +
            2021-01-21 10:18:24,777 epoch 19 - iter 4760/4766 - loss 0.13874853 - samples/sec: 9.79 - lr: 0.000000
         
     | 
| 862 | 
         
            +
            2021-01-21 10:18:27,049 ----------------------------------------------------------------------------------------------------
         
     | 
| 863 | 
         
            +
            2021-01-21 10:18:27,049 EPOCH 19 done: loss 0.1386 - lr 0.0000000
         
     | 
| 864 | 
         
            +
            2021-01-21 10:18:27,049 BAD EPOCHS (no improvement): 4
         
     | 
| 865 | 
         
            +
            2021-01-21 10:18:27,582 ----------------------------------------------------------------------------------------------------
         
     | 
| 866 | 
         
            +
            2021-01-21 10:21:42,494 epoch 20 - iter 476/4766 - loss 0.11851291 - samples/sec: 9.77 - lr: 0.000000
         
     | 
| 867 | 
         
            +
            2021-01-21 10:24:56,145 epoch 20 - iter 952/4766 - loss 0.13441288 - samples/sec: 9.83 - lr: 0.000000
         
     | 
| 868 | 
         
            +
            2021-01-21 10:28:10,170 epoch 20 - iter 1428/4766 - loss 0.14083137 - samples/sec: 9.81 - lr: 0.000000
         
     | 
| 869 | 
         
            +
            2021-01-21 10:31:25,784 epoch 20 - iter 1904/4766 - loss 0.14039091 - samples/sec: 9.73 - lr: 0.000000
         
     | 
| 870 | 
         
            +
            2021-01-21 10:34:40,300 epoch 20 - iter 2380/4766 - loss 0.14164687 - samples/sec: 9.79 - lr: 0.000000
         
     | 
| 871 | 
         
            +
            2021-01-21 10:37:54,324 epoch 20 - iter 2856/4766 - loss 0.13843665 - samples/sec: 9.81 - lr: 0.000000
         
     | 
| 872 | 
         
            +
            2021-01-21 10:41:05,695 epoch 20 - iter 3332/4766 - loss 0.13902040 - samples/sec: 9.95 - lr: 0.000000
         
     | 
| 873 | 
         
            +
            2021-01-21 10:44:16,299 epoch 20 - iter 3808/4766 - loss 0.13728566 - samples/sec: 9.99 - lr: 0.000000
         
     | 
| 874 | 
         
            +
            2021-01-21 10:47:26,320 epoch 20 - iter 4284/4766 - loss 0.13661214 - samples/sec: 10.02 - lr: 0.000000
         
     | 
| 875 | 
         
            +
            2021-01-21 10:50:35,967 epoch 20 - iter 4760/4766 - loss 0.13488013 - samples/sec: 10.04 - lr: 0.000000
         
     | 
| 876 | 
         
            +
            2021-01-21 10:50:38,248 ----------------------------------------------------------------------------------------------------
         
     | 
| 877 | 
         
            +
            2021-01-21 10:50:38,248 EPOCH 20 done: loss 0.1348 - lr 0.0000000
         
     | 
| 878 | 
         
            +
            2021-01-21 10:50:38,248 BAD EPOCHS (no improvement): 4
         
     | 
| 879 | 
         
            +
            2021-01-21 10:51:28,424 ----------------------------------------------------------------------------------------------------
         
     | 
| 880 | 
         
            +
            2021-01-21 10:51:28,425 Testing using best model ...
         
     | 
| 881 | 
         
            +
            2021-01-21 10:54:06,963 0.9530	0.9520	0.9525
         
     | 
| 882 | 
         
            +
            2021-01-21 10:54:06,963 
         
     | 
| 883 | 
         
            +
            Results:
         
     | 
| 884 | 
         
            +
            - F1-score (micro) 0.9525
         
     | 
| 885 | 
         
            +
            - F1-score (macro) 0.9528
         
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
            By class:
         
     | 
| 888 | 
         
            +
            LOC        tp: 751 - fp: 36 - fn: 23 - precision: 0.9543 - recall: 0.9703 - f1-score: 0.9622
         
     | 
| 889 | 
         
            +
            MISC       tp: 1095 - fp: 56 - fn: 92 - precision: 0.9513 - recall: 0.9225 - f1-score: 0.9367
         
     | 
| 890 | 
         
            +
            ORG        tp: 834 - fp: 59 - fn: 48 - precision: 0.9339 - recall: 0.9456 - f1-score: 0.9397
         
     | 
| 891 | 
         
            +
            PER        tp: 1072 - fp: 34 - fn: 26 - precision: 0.9693 - recall: 0.9763 - f1-score: 0.9728
         
     | 
| 892 | 
         
            +
            2021-01-21 10:54:06,963 ----------------------------------------------------------------------------------------------------
         
     |