# /// script # dependencies = [ # "trl>=0.12.0", # "peft>=0.7.0", # "transformers>=4.36.0", # "datasets>=2.14.0", # ] # /// from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer, SFTConfig import os print("🚀 Starting quick demo training...") # Load a tiny subset of data dataset = load_dataset("trl-lib/Capybara", split="train[:50]") print(f"✅ Dataset loaded: {len(dataset)} examples") # Training configuration config = SFTConfig( # CRITICAL: Hub settings output_dir="demo-qwen-sft", push_to_hub=True, hub_model_id="evalstate/demo-qwen-sft", # Quick demo settings max_steps=10, # Just 10 steps for quick demo per_device_train_batch_size=2, learning_rate=2e-5, # Logging logging_steps=2, save_strategy="no", # Don't save checkpoints for quick demo # Optimization warmup_steps=2, lr_scheduler_type="constant", ) # LoRA configuration (reduces memory) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], ) # Initialize and train trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, args=config, peft_config=peft_config, ) print("🏃 Training for 10 steps...") trainer.train() print("💾 Pushing to Hub...") trainer.push_to_hub() print("✅ Complete! Model at: https://huggingface.co/evalstate/demo-qwen-sft")