Upload train_demo.py with huggingface_hub
Browse files- train_demo.py +23 -17
train_demo.py
CHANGED
|
@@ -16,57 +16,60 @@ from trl import SFTTrainer, SFTConfig
|
|
| 16 |
# Initialize Trackio for real-time monitoring
|
| 17 |
trackio.init(
|
| 18 |
project="qwen-demo-sft",
|
| 19 |
-
space_id="evalstate/
|
| 20 |
config={
|
| 21 |
"model": "Qwen/Qwen2.5-0.5B",
|
| 22 |
"dataset": "trl-lib/Capybara",
|
|
|
|
| 23 |
"learning_rate": 2e-5,
|
| 24 |
"max_steps": 20,
|
| 25 |
-
"
|
| 26 |
}
|
| 27 |
)
|
| 28 |
|
| 29 |
-
# Load
|
| 30 |
dataset = load_dataset("trl-lib/Capybara", split="train[:50]")
|
| 31 |
print(f"β
Dataset loaded: {len(dataset)} examples")
|
|
|
|
| 32 |
|
| 33 |
# Training configuration
|
| 34 |
config = SFTConfig(
|
| 35 |
-
# CRITICAL
|
| 36 |
output_dir="qwen-demo-sft",
|
| 37 |
push_to_hub=True,
|
| 38 |
hub_model_id="evalstate/qwen-demo-sft",
|
|
|
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
max_steps=20,
|
| 42 |
per_device_train_batch_size=2,
|
| 43 |
gradient_accumulation_steps=2,
|
| 44 |
learning_rate=2e-5,
|
| 45 |
|
| 46 |
# Logging
|
| 47 |
logging_steps=5,
|
| 48 |
-
save_strategy="
|
| 49 |
-
save_steps=20,
|
| 50 |
|
| 51 |
# Optimization
|
| 52 |
-
warmup_steps=
|
| 53 |
lr_scheduler_type="cosine",
|
| 54 |
|
| 55 |
# Monitoring
|
| 56 |
report_to="trackio",
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# LoRA configuration
|
| 60 |
peft_config = LoraConfig(
|
| 61 |
-
r=
|
| 62 |
-
lora_alpha=
|
| 63 |
lora_dropout=0.05,
|
| 64 |
bias="none",
|
| 65 |
task_type="CAUSAL_LM",
|
| 66 |
target_modules=["q_proj", "v_proj"],
|
| 67 |
)
|
| 68 |
|
| 69 |
-
# Initialize
|
|
|
|
| 70 |
trainer = SFTTrainer(
|
| 71 |
model="Qwen/Qwen2.5-0.5B",
|
| 72 |
train_dataset=dataset,
|
|
@@ -74,14 +77,17 @@ trainer = SFTTrainer(
|
|
| 74 |
peft_config=peft_config,
|
| 75 |
)
|
| 76 |
|
| 77 |
-
|
|
|
|
| 78 |
trainer.train()
|
| 79 |
|
| 80 |
-
|
|
|
|
| 81 |
trainer.push_to_hub()
|
| 82 |
|
| 83 |
# Finish Trackio tracking
|
| 84 |
trackio.finish()
|
| 85 |
|
| 86 |
-
print("β
|
| 87 |
-
print("
|
|
|
|
|
|
| 16 |
# Initialize Trackio for real-time monitoring
|
| 17 |
trackio.init(
|
| 18 |
project="qwen-demo-sft",
|
| 19 |
+
space_id="evalstate/trackio-demo", # Will auto-create if doesn't exist
|
| 20 |
config={
|
| 21 |
"model": "Qwen/Qwen2.5-0.5B",
|
| 22 |
"dataset": "trl-lib/Capybara",
|
| 23 |
+
"dataset_size": 50,
|
| 24 |
"learning_rate": 2e-5,
|
| 25 |
"max_steps": 20,
|
| 26 |
+
"demo": True,
|
| 27 |
}
|
| 28 |
)
|
| 29 |
|
| 30 |
+
# Load dataset (only 50 examples for quick demo)
|
| 31 |
dataset = load_dataset("trl-lib/Capybara", split="train[:50]")
|
| 32 |
print(f"β
Dataset loaded: {len(dataset)} examples")
|
| 33 |
+
print(f"π Sample: {dataset[0]}")
|
| 34 |
|
| 35 |
# Training configuration
|
| 36 |
config = SFTConfig(
|
| 37 |
+
# Hub settings - CRITICAL for saving results
|
| 38 |
output_dir="qwen-demo-sft",
|
| 39 |
push_to_hub=True,
|
| 40 |
hub_model_id="evalstate/qwen-demo-sft",
|
| 41 |
+
hub_strategy="end", # Push only at end for demo
|
| 42 |
|
| 43 |
+
# Training parameters (minimal for quick demo)
|
| 44 |
+
max_steps=20, # Very short training
|
| 45 |
per_device_train_batch_size=2,
|
| 46 |
gradient_accumulation_steps=2,
|
| 47 |
learning_rate=2e-5,
|
| 48 |
|
| 49 |
# Logging
|
| 50 |
logging_steps=5,
|
| 51 |
+
save_strategy="no", # Don't save checkpoints during training
|
|
|
|
| 52 |
|
| 53 |
# Optimization
|
| 54 |
+
warmup_steps=5,
|
| 55 |
lr_scheduler_type="cosine",
|
| 56 |
|
| 57 |
# Monitoring
|
| 58 |
report_to="trackio",
|
| 59 |
)
|
| 60 |
|
| 61 |
+
# LoRA configuration (reduces memory usage)
|
| 62 |
peft_config = LoraConfig(
|
| 63 |
+
r=8, # Small rank for demo
|
| 64 |
+
lora_alpha=16,
|
| 65 |
lora_dropout=0.05,
|
| 66 |
bias="none",
|
| 67 |
task_type="CAUSAL_LM",
|
| 68 |
target_modules=["q_proj", "v_proj"],
|
| 69 |
)
|
| 70 |
|
| 71 |
+
# Initialize trainer
|
| 72 |
+
print("π Initializing trainer...")
|
| 73 |
trainer = SFTTrainer(
|
| 74 |
model="Qwen/Qwen2.5-0.5B",
|
| 75 |
train_dataset=dataset,
|
|
|
|
| 77 |
peft_config=peft_config,
|
| 78 |
)
|
| 79 |
|
| 80 |
+
# Train
|
| 81 |
+
print("π₯ Starting training (20 steps)...")
|
| 82 |
trainer.train()
|
| 83 |
|
| 84 |
+
# Push to Hub
|
| 85 |
+
print("πΎ Pushing model to Hub...")
|
| 86 |
trainer.push_to_hub()
|
| 87 |
|
| 88 |
# Finish Trackio tracking
|
| 89 |
trackio.finish()
|
| 90 |
|
| 91 |
+
print("β
Training complete!")
|
| 92 |
+
print(f"π¦ Model: https://huggingface.co/evalstate/qwen-demo-sft")
|
| 93 |
+
print(f"π Metrics: https://huggingface.co/spaces/evalstate/trackio-demo")
|