Commit
·
cc6fb1f
1
Parent(s):
32e75ad
init
Browse files- config.json +30 -0
- latest +1 -0
- pytorch_model.bin +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- trainer_state.json +1032 -0
- training_args.bin +3 -0
- zero_to_fp32.py +348 -0
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "google/t5-xl-lm-adapt",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"T5ForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"d_ff": 5120,
|
| 7 |
+
"d_kv": 64,
|
| 8 |
+
"d_model": 2048,
|
| 9 |
+
"decoder_start_token_id": 0,
|
| 10 |
+
"dropout_rate": 0.1,
|
| 11 |
+
"eos_token_id": 1,
|
| 12 |
+
"feed_forward_proj": "gated-gelu",
|
| 13 |
+
"gradient_checkpointing": true,
|
| 14 |
+
"initializer_factor": 1.0,
|
| 15 |
+
"is_encoder_decoder": true,
|
| 16 |
+
"layer_norm_epsilon": 1e-06,
|
| 17 |
+
"max_length": 512,
|
| 18 |
+
"model_type": "t5",
|
| 19 |
+
"num_decoder_layers": 24,
|
| 20 |
+
"num_heads": 32,
|
| 21 |
+
"num_layers": 24,
|
| 22 |
+
"output_past": true,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"relative_attention_num_buckets": 32,
|
| 25 |
+
"tie_word_embeddings": false,
|
| 26 |
+
"torch_dtype": "float16",
|
| 27 |
+
"transformers_version": "4.9.1",
|
| 28 |
+
"use_cache": false,
|
| 29 |
+
"vocab_size": 32128
|
| 30 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1468
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:36d68f3d271a1cc6d33713073d481b941d6bbede3a94a2faaf3cdf2ba10b919e
|
| 3 |
+
size 5699709020
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7093e78e8bcc848425c8e8a27ff222309d28b1d53273368019fd473b9138d36a
|
| 3 |
+
size 14649
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a562f9861959dfadc22e0ffda9d4596ceda51983243f8fb8d9974dacd1a5be43
|
| 3 |
+
size 14654
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afecf04a3ad8ac2f42e78dcdfeda7c906578621291b8dca4aa3d2af1767a4b9c
|
| 3 |
+
size 14654
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f743373a21914b9fc9ed6491acfc64797d5c40cfe0bd5620b77f5e10692f69a
|
| 3 |
+
size 14654
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "sp_model_kwargs": {}, "model_max_length": 512, "name_or_path": "google/t5-xl-lm-adapt", "special_tokens_map_file": "/home/patrick/.cache/huggingface/transformers/e88f2448cc299b3d5844700ccb67f86e37caa0873ebab334ad4e881fd84f1abf.c94798918c92ded6aeef2d2f0e666d2cc4145eca1aa6e1336fde07f2e13e2f46", "tokenizer_class": "T5Tokenizer"}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 117.31948881789137,
|
| 5 |
+
"global_step": 1408,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.8,
|
| 12 |
+
"learning_rate": 9.99969999399988e-05,
|
| 13 |
+
"loss": 3.2772,
|
| 14 |
+
"step": 10
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 1.64,
|
| 18 |
+
"learning_rate": 9.99869997399948e-05,
|
| 19 |
+
"loss": 0.587,
|
| 20 |
+
"step": 20
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 2.48,
|
| 24 |
+
"learning_rate": 9.99759995199904e-05,
|
| 25 |
+
"loss": 0.2432,
|
| 26 |
+
"step": 30
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 3.32,
|
| 30 |
+
"learning_rate": 9.99659993199864e-05,
|
| 31 |
+
"loss": 0.1511,
|
| 32 |
+
"step": 40
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 4.16,
|
| 36 |
+
"learning_rate": 9.9954999099982e-05,
|
| 37 |
+
"loss": 0.1104,
|
| 38 |
+
"step": 50
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 4.96,
|
| 42 |
+
"learning_rate": 9.994499889997801e-05,
|
| 43 |
+
"loss": 0.0839,
|
| 44 |
+
"step": 60
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 5.32,
|
| 48 |
+
"eval_loss": 0.116455078125,
|
| 49 |
+
"eval_runtime": 85.2162,
|
| 50 |
+
"eval_samples_per_second": 38.044,
|
| 51 |
+
"eval_steps_per_second": 0.481,
|
| 52 |
+
"step": 64
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 5.8,
|
| 56 |
+
"learning_rate": 9.9934998699974e-05,
|
| 57 |
+
"loss": 0.0716,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 6.64,
|
| 62 |
+
"learning_rate": 9.99239984799696e-05,
|
| 63 |
+
"loss": 0.0665,
|
| 64 |
+
"step": 80
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"epoch": 7.48,
|
| 68 |
+
"learning_rate": 9.99139982799656e-05,
|
| 69 |
+
"loss": 0.057,
|
| 70 |
+
"step": 90
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"epoch": 8.32,
|
| 74 |
+
"learning_rate": 9.990299805996121e-05,
|
| 75 |
+
"loss": 0.0521,
|
| 76 |
+
"step": 100
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"epoch": 9.16,
|
| 80 |
+
"learning_rate": 9.98929978599572e-05,
|
| 81 |
+
"loss": 0.0466,
|
| 82 |
+
"step": 110
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 9.96,
|
| 86 |
+
"learning_rate": 9.98829976599532e-05,
|
| 87 |
+
"loss": 0.0417,
|
| 88 |
+
"step": 120
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 10.64,
|
| 92 |
+
"eval_loss": 0.12420654296875,
|
| 93 |
+
"eval_runtime": 85.7837,
|
| 94 |
+
"eval_samples_per_second": 37.793,
|
| 95 |
+
"eval_steps_per_second": 0.478,
|
| 96 |
+
"step": 128
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"epoch": 10.8,
|
| 100 |
+
"learning_rate": 9.987199743994881e-05,
|
| 101 |
+
"loss": 0.0388,
|
| 102 |
+
"step": 130
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"epoch": 11.64,
|
| 106 |
+
"learning_rate": 9.986199723994481e-05,
|
| 107 |
+
"loss": 0.0371,
|
| 108 |
+
"step": 140
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 12.48,
|
| 112 |
+
"learning_rate": 9.98509970199404e-05,
|
| 113 |
+
"loss": 0.0342,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 13.32,
|
| 118 |
+
"learning_rate": 9.98409968199364e-05,
|
| 119 |
+
"loss": 0.0303,
|
| 120 |
+
"step": 160
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"epoch": 14.16,
|
| 124 |
+
"learning_rate": 9.982999659993201e-05,
|
| 125 |
+
"loss": 0.0287,
|
| 126 |
+
"step": 170
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"epoch": 14.96,
|
| 130 |
+
"learning_rate": 9.981999639992801e-05,
|
| 131 |
+
"loss": 0.0262,
|
| 132 |
+
"step": 180
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"epoch": 15.8,
|
| 136 |
+
"learning_rate": 9.9809996199924e-05,
|
| 137 |
+
"loss": 0.0242,
|
| 138 |
+
"step": 190
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"epoch": 15.96,
|
| 142 |
+
"eval_loss": 0.13671875,
|
| 143 |
+
"eval_runtime": 71.3468,
|
| 144 |
+
"eval_samples_per_second": 45.44,
|
| 145 |
+
"eval_steps_per_second": 0.575,
|
| 146 |
+
"step": 192
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 16.64,
|
| 150 |
+
"learning_rate": 9.979899597991961e-05,
|
| 151 |
+
"loss": 0.0239,
|
| 152 |
+
"step": 200
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 17.48,
|
| 156 |
+
"learning_rate": 9.978899577991561e-05,
|
| 157 |
+
"loss": 0.0216,
|
| 158 |
+
"step": 210
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 18.32,
|
| 162 |
+
"learning_rate": 9.97779955599112e-05,
|
| 163 |
+
"loss": 0.0204,
|
| 164 |
+
"step": 220
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 19.16,
|
| 168 |
+
"learning_rate": 9.97679953599072e-05,
|
| 169 |
+
"loss": 0.0194,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 19.96,
|
| 174 |
+
"learning_rate": 9.97579951599032e-05,
|
| 175 |
+
"loss": 0.0167,
|
| 176 |
+
"step": 240
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 20.8,
|
| 180 |
+
"learning_rate": 9.974699493989881e-05,
|
| 181 |
+
"loss": 0.0177,
|
| 182 |
+
"step": 250
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 21.32,
|
| 186 |
+
"eval_loss": 0.15576171875,
|
| 187 |
+
"eval_runtime": 73.465,
|
| 188 |
+
"eval_samples_per_second": 44.13,
|
| 189 |
+
"eval_steps_per_second": 0.558,
|
| 190 |
+
"step": 256
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"epoch": 21.64,
|
| 194 |
+
"learning_rate": 9.973699473989481e-05,
|
| 195 |
+
"loss": 0.0155,
|
| 196 |
+
"step": 260
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"epoch": 22.48,
|
| 200 |
+
"learning_rate": 9.97259945198904e-05,
|
| 201 |
+
"loss": 0.015,
|
| 202 |
+
"step": 270
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 23.32,
|
| 206 |
+
"learning_rate": 9.971599431988641e-05,
|
| 207 |
+
"loss": 0.0148,
|
| 208 |
+
"step": 280
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"epoch": 24.16,
|
| 212 |
+
"learning_rate": 9.9704994099882e-05,
|
| 213 |
+
"loss": 0.0137,
|
| 214 |
+
"step": 290
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"epoch": 24.96,
|
| 218 |
+
"learning_rate": 9.969499389987799e-05,
|
| 219 |
+
"loss": 0.0117,
|
| 220 |
+
"step": 300
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 25.8,
|
| 224 |
+
"learning_rate": 9.96839936798736e-05,
|
| 225 |
+
"loss": 0.0118,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 26.64,
|
| 230 |
+
"learning_rate": 9.96739934798696e-05,
|
| 231 |
+
"loss": 0.0111,
|
| 232 |
+
"step": 320
|
| 233 |
+
},
|
| 234 |
+
{
|
| 235 |
+
"epoch": 26.64,
|
| 236 |
+
"eval_loss": 0.1729736328125,
|
| 237 |
+
"eval_runtime": 73.6,
|
| 238 |
+
"eval_samples_per_second": 44.049,
|
| 239 |
+
"eval_steps_per_second": 0.557,
|
| 240 |
+
"step": 320
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 27.48,
|
| 244 |
+
"learning_rate": 9.96629932598652e-05,
|
| 245 |
+
"loss": 0.0109,
|
| 246 |
+
"step": 330
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"epoch": 28.32,
|
| 250 |
+
"learning_rate": 9.96529930598612e-05,
|
| 251 |
+
"loss": 0.0102,
|
| 252 |
+
"step": 340
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"epoch": 29.16,
|
| 256 |
+
"learning_rate": 9.96419928398568e-05,
|
| 257 |
+
"loss": 0.0094,
|
| 258 |
+
"step": 350
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 29.96,
|
| 262 |
+
"learning_rate": 9.96319926398528e-05,
|
| 263 |
+
"loss": 0.0088,
|
| 264 |
+
"step": 360
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"epoch": 30.8,
|
| 268 |
+
"learning_rate": 9.96219924398488e-05,
|
| 269 |
+
"loss": 0.0084,
|
| 270 |
+
"step": 370
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"epoch": 31.64,
|
| 274 |
+
"learning_rate": 9.96109922198444e-05,
|
| 275 |
+
"loss": 0.0082,
|
| 276 |
+
"step": 380
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 31.96,
|
| 280 |
+
"eval_loss": 0.1884765625,
|
| 281 |
+
"eval_runtime": 72.563,
|
| 282 |
+
"eval_samples_per_second": 44.678,
|
| 283 |
+
"eval_steps_per_second": 0.565,
|
| 284 |
+
"step": 384
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 32.48,
|
| 288 |
+
"learning_rate": 9.96009920198404e-05,
|
| 289 |
+
"loss": 0.0082,
|
| 290 |
+
"step": 390
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 33.32,
|
| 294 |
+
"learning_rate": 9.9589991799836e-05,
|
| 295 |
+
"loss": 0.0078,
|
| 296 |
+
"step": 400
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 34.16,
|
| 300 |
+
"learning_rate": 9.9579991599832e-05,
|
| 301 |
+
"loss": 0.0068,
|
| 302 |
+
"step": 410
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 34.96,
|
| 306 |
+
"learning_rate": 9.9569991399828e-05,
|
| 307 |
+
"loss": 0.0063,
|
| 308 |
+
"step": 420
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 35.8,
|
| 312 |
+
"learning_rate": 9.95589911798236e-05,
|
| 313 |
+
"loss": 0.0061,
|
| 314 |
+
"step": 430
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 36.64,
|
| 318 |
+
"learning_rate": 9.95489909798196e-05,
|
| 319 |
+
"loss": 0.0064,
|
| 320 |
+
"step": 440
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 37.32,
|
| 324 |
+
"eval_loss": 0.191162109375,
|
| 325 |
+
"eval_runtime": 72.3445,
|
| 326 |
+
"eval_samples_per_second": 44.813,
|
| 327 |
+
"eval_steps_per_second": 0.567,
|
| 328 |
+
"step": 448
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"epoch": 37.48,
|
| 332 |
+
"learning_rate": 9.95379907598152e-05,
|
| 333 |
+
"loss": 0.0058,
|
| 334 |
+
"step": 450
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"epoch": 38.32,
|
| 338 |
+
"learning_rate": 9.95279905598112e-05,
|
| 339 |
+
"loss": 0.0051,
|
| 340 |
+
"step": 460
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"epoch": 39.16,
|
| 344 |
+
"learning_rate": 9.95169903398068e-05,
|
| 345 |
+
"loss": 0.0053,
|
| 346 |
+
"step": 470
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 39.96,
|
| 350 |
+
"learning_rate": 9.950699013980281e-05,
|
| 351 |
+
"loss": 0.0049,
|
| 352 |
+
"step": 480
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 40.8,
|
| 356 |
+
"learning_rate": 9.94969899397988e-05,
|
| 357 |
+
"loss": 0.0048,
|
| 358 |
+
"step": 490
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"epoch": 41.64,
|
| 362 |
+
"learning_rate": 9.94859897197944e-05,
|
| 363 |
+
"loss": 0.0047,
|
| 364 |
+
"step": 500
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"epoch": 42.48,
|
| 368 |
+
"learning_rate": 9.94759895197904e-05,
|
| 369 |
+
"loss": 0.0047,
|
| 370 |
+
"step": 510
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 42.64,
|
| 374 |
+
"eval_loss": 0.195556640625,
|
| 375 |
+
"eval_runtime": 71.2606,
|
| 376 |
+
"eval_samples_per_second": 45.495,
|
| 377 |
+
"eval_steps_per_second": 0.575,
|
| 378 |
+
"step": 512
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"epoch": 43.32,
|
| 382 |
+
"learning_rate": 9.946498929978601e-05,
|
| 383 |
+
"loss": 0.0044,
|
| 384 |
+
"step": 520
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"epoch": 44.16,
|
| 388 |
+
"learning_rate": 9.9454989099782e-05,
|
| 389 |
+
"loss": 0.0044,
|
| 390 |
+
"step": 530
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"epoch": 44.96,
|
| 394 |
+
"learning_rate": 9.9444988899778e-05,
|
| 395 |
+
"loss": 0.0039,
|
| 396 |
+
"step": 540
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"epoch": 45.8,
|
| 400 |
+
"learning_rate": 9.943398867977361e-05,
|
| 401 |
+
"loss": 0.0036,
|
| 402 |
+
"step": 550
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 46.64,
|
| 406 |
+
"learning_rate": 9.942398847976961e-05,
|
| 407 |
+
"loss": 0.0037,
|
| 408 |
+
"step": 560
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 47.48,
|
| 412 |
+
"learning_rate": 9.94129882597652e-05,
|
| 413 |
+
"loss": 0.0034,
|
| 414 |
+
"step": 570
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"epoch": 47.96,
|
| 418 |
+
"eval_loss": 0.2215576171875,
|
| 419 |
+
"eval_runtime": 71.3132,
|
| 420 |
+
"eval_samples_per_second": 45.461,
|
| 421 |
+
"eval_steps_per_second": 0.575,
|
| 422 |
+
"step": 576
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 48.32,
|
| 426 |
+
"learning_rate": 9.94029880597612e-05,
|
| 427 |
+
"loss": 0.0032,
|
| 428 |
+
"step": 580
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"epoch": 49.16,
|
| 432 |
+
"learning_rate": 9.93919878397568e-05,
|
| 433 |
+
"loss": 0.0035,
|
| 434 |
+
"step": 590
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 49.96,
|
| 438 |
+
"learning_rate": 9.938198763975281e-05,
|
| 439 |
+
"loss": 0.0032,
|
| 440 |
+
"step": 600
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 50.8,
|
| 444 |
+
"learning_rate": 9.93709874197484e-05,
|
| 445 |
+
"loss": 0.003,
|
| 446 |
+
"step": 610
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 51.64,
|
| 450 |
+
"learning_rate": 9.93609872197444e-05,
|
| 451 |
+
"loss": 0.0031,
|
| 452 |
+
"step": 620
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"epoch": 52.48,
|
| 456 |
+
"learning_rate": 9.934998699974e-05,
|
| 457 |
+
"loss": 0.0029,
|
| 458 |
+
"step": 630
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 53.32,
|
| 462 |
+
"learning_rate": 9.933998679973599e-05,
|
| 463 |
+
"loss": 0.0029,
|
| 464 |
+
"step": 640
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 53.32,
|
| 468 |
+
"eval_loss": 0.221923828125,
|
| 469 |
+
"eval_runtime": 71.4852,
|
| 470 |
+
"eval_samples_per_second": 45.352,
|
| 471 |
+
"eval_steps_per_second": 0.574,
|
| 472 |
+
"step": 640
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 54.16,
|
| 476 |
+
"learning_rate": 9.93289865797316e-05,
|
| 477 |
+
"loss": 0.0028,
|
| 478 |
+
"step": 650
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 54.96,
|
| 482 |
+
"learning_rate": 9.93189863797276e-05,
|
| 483 |
+
"loss": 0.0027,
|
| 484 |
+
"step": 660
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"epoch": 55.8,
|
| 488 |
+
"learning_rate": 9.93089861797236e-05,
|
| 489 |
+
"loss": 0.0026,
|
| 490 |
+
"step": 670
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 56.64,
|
| 494 |
+
"learning_rate": 9.929798595971919e-05,
|
| 495 |
+
"loss": 0.0022,
|
| 496 |
+
"step": 680
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"epoch": 57.48,
|
| 500 |
+
"learning_rate": 9.92879857597152e-05,
|
| 501 |
+
"loss": 0.0022,
|
| 502 |
+
"step": 690
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"epoch": 58.32,
|
| 506 |
+
"learning_rate": 9.92769855397108e-05,
|
| 507 |
+
"loss": 0.0022,
|
| 508 |
+
"step": 700
|
| 509 |
+
},
|
| 510 |
+
{
|
| 511 |
+
"epoch": 58.64,
|
| 512 |
+
"eval_loss": 0.2276611328125,
|
| 513 |
+
"eval_runtime": 71.4916,
|
| 514 |
+
"eval_samples_per_second": 45.348,
|
| 515 |
+
"eval_steps_per_second": 0.573,
|
| 516 |
+
"step": 704
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"epoch": 59.16,
|
| 520 |
+
"learning_rate": 9.92669853397068e-05,
|
| 521 |
+
"loss": 0.0025,
|
| 522 |
+
"step": 710
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"epoch": 59.96,
|
| 526 |
+
"learning_rate": 9.925698513970279e-05,
|
| 527 |
+
"loss": 0.0021,
|
| 528 |
+
"step": 720
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 60.8,
|
| 532 |
+
"learning_rate": 9.92459849196984e-05,
|
| 533 |
+
"loss": 0.0024,
|
| 534 |
+
"step": 730
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 61.64,
|
| 538 |
+
"learning_rate": 9.92359847196944e-05,
|
| 539 |
+
"loss": 0.0022,
|
| 540 |
+
"step": 740
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"epoch": 62.48,
|
| 544 |
+
"learning_rate": 9.922498449968999e-05,
|
| 545 |
+
"loss": 0.0018,
|
| 546 |
+
"step": 750
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 63.32,
|
| 550 |
+
"learning_rate": 9.9214984299686e-05,
|
| 551 |
+
"loss": 0.0017,
|
| 552 |
+
"step": 760
|
| 553 |
+
},
|
| 554 |
+
{
|
| 555 |
+
"epoch": 63.96,
|
| 556 |
+
"eval_loss": 0.24072265625,
|
| 557 |
+
"eval_runtime": 72.0268,
|
| 558 |
+
"eval_samples_per_second": 45.011,
|
| 559 |
+
"eval_steps_per_second": 0.569,
|
| 560 |
+
"step": 768
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 64.16,
|
| 564 |
+
"learning_rate": 9.92039840796816e-05,
|
| 565 |
+
"loss": 0.0021,
|
| 566 |
+
"step": 770
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 64.96,
|
| 570 |
+
"learning_rate": 9.91939838796776e-05,
|
| 571 |
+
"loss": 0.0017,
|
| 572 |
+
"step": 780
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"epoch": 65.8,
|
| 576 |
+
"learning_rate": 9.91839836796736e-05,
|
| 577 |
+
"loss": 0.0022,
|
| 578 |
+
"step": 790
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 66.64,
|
| 582 |
+
"learning_rate": 9.91729834596692e-05,
|
| 583 |
+
"loss": 0.0019,
|
| 584 |
+
"step": 800
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 67.48,
|
| 588 |
+
"learning_rate": 9.91629832596652e-05,
|
| 589 |
+
"loss": 0.0017,
|
| 590 |
+
"step": 810
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 68.32,
|
| 594 |
+
"learning_rate": 9.91519830396608e-05,
|
| 595 |
+
"loss": 0.0017,
|
| 596 |
+
"step": 820
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"epoch": 69.16,
|
| 600 |
+
"learning_rate": 9.91419828396568e-05,
|
| 601 |
+
"loss": 0.0018,
|
| 602 |
+
"step": 830
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 69.32,
|
| 606 |
+
"eval_loss": 0.24853515625,
|
| 607 |
+
"eval_runtime": 73.1565,
|
| 608 |
+
"eval_samples_per_second": 44.316,
|
| 609 |
+
"eval_steps_per_second": 0.56,
|
| 610 |
+
"step": 832
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"epoch": 69.96,
|
| 614 |
+
"learning_rate": 9.91319826396528e-05,
|
| 615 |
+
"loss": 0.0018,
|
| 616 |
+
"step": 840
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"epoch": 70.8,
|
| 620 |
+
"learning_rate": 9.91209824196484e-05,
|
| 621 |
+
"loss": 0.0016,
|
| 622 |
+
"step": 850
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"epoch": 71.64,
|
| 626 |
+
"learning_rate": 9.91109822196444e-05,
|
| 627 |
+
"loss": 0.0015,
|
| 628 |
+
"step": 860
|
| 629 |
+
},
|
| 630 |
+
{
|
| 631 |
+
"epoch": 72.48,
|
| 632 |
+
"learning_rate": 9.909998199964e-05,
|
| 633 |
+
"loss": 0.0016,
|
| 634 |
+
"step": 870
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 73.32,
|
| 638 |
+
"learning_rate": 9.9089981799636e-05,
|
| 639 |
+
"loss": 0.0016,
|
| 640 |
+
"step": 880
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 74.16,
|
| 644 |
+
"learning_rate": 9.90789815796316e-05,
|
| 645 |
+
"loss": 0.0015,
|
| 646 |
+
"step": 890
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 74.64,
|
| 650 |
+
"eval_loss": 0.23681640625,
|
| 651 |
+
"eval_runtime": 71.4778,
|
| 652 |
+
"eval_samples_per_second": 45.357,
|
| 653 |
+
"eval_steps_per_second": 0.574,
|
| 654 |
+
"step": 896
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 74.96,
|
| 658 |
+
"learning_rate": 9.90689813796276e-05,
|
| 659 |
+
"loss": 0.0016,
|
| 660 |
+
"step": 900
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 75.8,
|
| 664 |
+
"learning_rate": 9.905798115962319e-05,
|
| 665 |
+
"loss": 0.0016,
|
| 666 |
+
"step": 910
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"epoch": 76.64,
|
| 670 |
+
"learning_rate": 9.90479809596192e-05,
|
| 671 |
+
"loss": 0.0016,
|
| 672 |
+
"step": 920
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"epoch": 77.48,
|
| 676 |
+
"learning_rate": 9.90369807396148e-05,
|
| 677 |
+
"loss": 0.0014,
|
| 678 |
+
"step": 930
|
| 679 |
+
},
|
| 680 |
+
{
|
| 681 |
+
"epoch": 78.32,
|
| 682 |
+
"learning_rate": 9.90269805396108e-05,
|
| 683 |
+
"loss": 0.0011,
|
| 684 |
+
"step": 940
|
| 685 |
+
},
|
| 686 |
+
{
|
| 687 |
+
"epoch": 79.16,
|
| 688 |
+
"learning_rate": 9.901598031960639e-05,
|
| 689 |
+
"loss": 0.0015,
|
| 690 |
+
"step": 950
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 79.96,
|
| 694 |
+
"learning_rate": 9.900598011960239e-05,
|
| 695 |
+
"loss": 0.0012,
|
| 696 |
+
"step": 960
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 79.96,
|
| 700 |
+
"eval_loss": 0.254150390625,
|
| 701 |
+
"eval_runtime": 76.7721,
|
| 702 |
+
"eval_samples_per_second": 42.229,
|
| 703 |
+
"eval_steps_per_second": 0.534,
|
| 704 |
+
"step": 960
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 80.8,
|
| 708 |
+
"learning_rate": 9.89959799195984e-05,
|
| 709 |
+
"loss": 0.0013,
|
| 710 |
+
"step": 970
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 81.64,
|
| 714 |
+
"learning_rate": 9.898497969959399e-05,
|
| 715 |
+
"loss": 0.0014,
|
| 716 |
+
"step": 980
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 82.48,
|
| 720 |
+
"learning_rate": 9.897497949958999e-05,
|
| 721 |
+
"loss": 0.0015,
|
| 722 |
+
"step": 990
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 83.32,
|
| 726 |
+
"learning_rate": 9.89639792795856e-05,
|
| 727 |
+
"loss": 0.0013,
|
| 728 |
+
"step": 1000
|
| 729 |
+
},
|
| 730 |
+
{
|
| 731 |
+
"epoch": 84.16,
|
| 732 |
+
"learning_rate": 9.89539790795816e-05,
|
| 733 |
+
"loss": 0.0014,
|
| 734 |
+
"step": 1010
|
| 735 |
+
},
|
| 736 |
+
{
|
| 737 |
+
"epoch": 84.96,
|
| 738 |
+
"learning_rate": 9.894397887957759e-05,
|
| 739 |
+
"loss": 0.0012,
|
| 740 |
+
"step": 1020
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"epoch": 85.32,
|
| 744 |
+
"eval_loss": 0.253662109375,
|
| 745 |
+
"eval_runtime": 76.0139,
|
| 746 |
+
"eval_samples_per_second": 42.65,
|
| 747 |
+
"eval_steps_per_second": 0.539,
|
| 748 |
+
"step": 1024
|
| 749 |
+
},
|
| 750 |
+
{
|
| 751 |
+
"epoch": 85.8,
|
| 752 |
+
"learning_rate": 9.893297865957319e-05,
|
| 753 |
+
"loss": 0.0014,
|
| 754 |
+
"step": 1030
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"epoch": 86.64,
|
| 758 |
+
"learning_rate": 9.89229784595692e-05,
|
| 759 |
+
"loss": 0.0011,
|
| 760 |
+
"step": 1040
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 87.48,
|
| 764 |
+
"learning_rate": 9.89119782395648e-05,
|
| 765 |
+
"loss": 0.0012,
|
| 766 |
+
"step": 1050
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 88.32,
|
| 770 |
+
"learning_rate": 9.890197803956079e-05,
|
| 771 |
+
"loss": 0.0012,
|
| 772 |
+
"step": 1060
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 89.16,
|
| 776 |
+
"learning_rate": 9.88909778195564e-05,
|
| 777 |
+
"loss": 0.0013,
|
| 778 |
+
"step": 1070
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 89.96,
|
| 782 |
+
"learning_rate": 9.88809776195524e-05,
|
| 783 |
+
"loss": 0.0011,
|
| 784 |
+
"step": 1080
|
| 785 |
+
},
|
| 786 |
+
{
|
| 787 |
+
"epoch": 90.64,
|
| 788 |
+
"eval_loss": 0.268798828125,
|
| 789 |
+
"eval_runtime": 75.8685,
|
| 790 |
+
"eval_samples_per_second": 42.732,
|
| 791 |
+
"eval_steps_per_second": 0.54,
|
| 792 |
+
"step": 1088
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"epoch": 90.8,
|
| 796 |
+
"learning_rate": 9.88709774195484e-05,
|
| 797 |
+
"loss": 0.0011,
|
| 798 |
+
"step": 1090
|
| 799 |
+
},
|
| 800 |
+
{
|
| 801 |
+
"epoch": 91.64,
|
| 802 |
+
"learning_rate": 9.885997719954399e-05,
|
| 803 |
+
"loss": 0.0013,
|
| 804 |
+
"step": 1100
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"epoch": 92.48,
|
| 808 |
+
"learning_rate": 9.884997699954e-05,
|
| 809 |
+
"loss": 0.001,
|
| 810 |
+
"step": 1110
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 93.32,
|
| 814 |
+
"learning_rate": 9.88389767795356e-05,
|
| 815 |
+
"loss": 0.0011,
|
| 816 |
+
"step": 1120
|
| 817 |
+
},
|
| 818 |
+
{
|
| 819 |
+
"epoch": 94.16,
|
| 820 |
+
"learning_rate": 9.88289765795316e-05,
|
| 821 |
+
"loss": 0.0013,
|
| 822 |
+
"step": 1130
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 94.96,
|
| 826 |
+
"learning_rate": 9.881897637952759e-05,
|
| 827 |
+
"loss": 0.001,
|
| 828 |
+
"step": 1140
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 95.8,
|
| 832 |
+
"learning_rate": 9.88079761595232e-05,
|
| 833 |
+
"loss": 0.0016,
|
| 834 |
+
"step": 1150
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"epoch": 95.96,
|
| 838 |
+
"eval_loss": 0.24560546875,
|
| 839 |
+
"eval_runtime": 75.5498,
|
| 840 |
+
"eval_samples_per_second": 42.912,
|
| 841 |
+
"eval_steps_per_second": 0.543,
|
| 842 |
+
"step": 1152
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 96.64,
|
| 846 |
+
"learning_rate": 9.87979759595192e-05,
|
| 847 |
+
"loss": 0.0011,
|
| 848 |
+
"step": 1160
|
| 849 |
+
},
|
| 850 |
+
{
|
| 851 |
+
"epoch": 97.48,
|
| 852 |
+
"learning_rate": 9.878697573951479e-05,
|
| 853 |
+
"loss": 0.0011,
|
| 854 |
+
"step": 1170
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"epoch": 98.32,
|
| 858 |
+
"learning_rate": 9.87769755395108e-05,
|
| 859 |
+
"loss": 0.0013,
|
| 860 |
+
"step": 1180
|
| 861 |
+
},
|
| 862 |
+
{
|
| 863 |
+
"epoch": 99.16,
|
| 864 |
+
"learning_rate": 9.87659753195064e-05,
|
| 865 |
+
"loss": 0.0011,
|
| 866 |
+
"step": 1190
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"epoch": 99.96,
|
| 870 |
+
"learning_rate": 9.87559751195024e-05,
|
| 871 |
+
"loss": 0.0011,
|
| 872 |
+
"step": 1200
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"epoch": 100.8,
|
| 876 |
+
"learning_rate": 9.8744974899498e-05,
|
| 877 |
+
"loss": 0.0008,
|
| 878 |
+
"step": 1210
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 101.32,
|
| 882 |
+
"eval_loss": 0.278076171875,
|
| 883 |
+
"eval_runtime": 74.8396,
|
| 884 |
+
"eval_samples_per_second": 43.319,
|
| 885 |
+
"eval_steps_per_second": 0.548,
|
| 886 |
+
"step": 1216
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 101.64,
|
| 890 |
+
"learning_rate": 9.8734974699494e-05,
|
| 891 |
+
"loss": 0.001,
|
| 892 |
+
"step": 1220
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 102.48,
|
| 896 |
+
"learning_rate": 9.872397447948958e-05,
|
| 897 |
+
"loss": 0.0008,
|
| 898 |
+
"step": 1230
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 103.32,
|
| 902 |
+
"learning_rate": 9.87139742794856e-05,
|
| 903 |
+
"loss": 0.0009,
|
| 904 |
+
"step": 1240
|
| 905 |
+
},
|
| 906 |
+
{
|
| 907 |
+
"epoch": 104.16,
|
| 908 |
+
"learning_rate": 9.870297405948119e-05,
|
| 909 |
+
"loss": 0.0008,
|
| 910 |
+
"step": 1250
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"epoch": 104.96,
|
| 914 |
+
"learning_rate": 9.869297385947719e-05,
|
| 915 |
+
"loss": 0.0008,
|
| 916 |
+
"step": 1260
|
| 917 |
+
},
|
| 918 |
+
{
|
| 919 |
+
"epoch": 105.8,
|
| 920 |
+
"learning_rate": 9.86829736594732e-05,
|
| 921 |
+
"loss": 0.0011,
|
| 922 |
+
"step": 1270
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 106.64,
|
| 926 |
+
"learning_rate": 9.86719734394688e-05,
|
| 927 |
+
"loss": 0.0009,
|
| 928 |
+
"step": 1280
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 106.64,
|
| 932 |
+
"eval_loss": 0.2666015625,
|
| 933 |
+
"eval_runtime": 75.7897,
|
| 934 |
+
"eval_samples_per_second": 42.776,
|
| 935 |
+
"eval_steps_per_second": 0.541,
|
| 936 |
+
"step": 1280
|
| 937 |
+
},
|
| 938 |
+
{
|
| 939 |
+
"epoch": 107.48,
|
| 940 |
+
"learning_rate": 9.866197323946479e-05,
|
| 941 |
+
"loss": 0.001,
|
| 942 |
+
"step": 1290
|
| 943 |
+
},
|
| 944 |
+
{
|
| 945 |
+
"epoch": 108.32,
|
| 946 |
+
"learning_rate": 9.865097301946039e-05,
|
| 947 |
+
"loss": 0.0009,
|
| 948 |
+
"step": 1300
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 109.16,
|
| 952 |
+
"learning_rate": 9.864097281945638e-05,
|
| 953 |
+
"loss": 0.001,
|
| 954 |
+
"step": 1310
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 109.96,
|
| 958 |
+
"learning_rate": 9.86309726194524e-05,
|
| 959 |
+
"loss": 0.001,
|
| 960 |
+
"step": 1320
|
| 961 |
+
},
|
| 962 |
+
{
|
| 963 |
+
"epoch": 110.8,
|
| 964 |
+
"learning_rate": 9.861997239944799e-05,
|
| 965 |
+
"loss": 0.0009,
|
| 966 |
+
"step": 1330
|
| 967 |
+
},
|
| 968 |
+
{
|
| 969 |
+
"epoch": 111.64,
|
| 970 |
+
"learning_rate": 9.860997219944399e-05,
|
| 971 |
+
"loss": 0.0011,
|
| 972 |
+
"step": 1340
|
| 973 |
+
},
|
| 974 |
+
{
|
| 975 |
+
"epoch": 111.96,
|
| 976 |
+
"eval_loss": 0.260009765625,
|
| 977 |
+
"eval_runtime": 75.6048,
|
| 978 |
+
"eval_samples_per_second": 42.881,
|
| 979 |
+
"eval_steps_per_second": 0.542,
|
| 980 |
+
"step": 1344
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"epoch": 112.48,
|
| 984 |
+
"learning_rate": 9.85989719794396e-05,
|
| 985 |
+
"loss": 0.0008,
|
| 986 |
+
"step": 1350
|
| 987 |
+
},
|
| 988 |
+
{
|
| 989 |
+
"epoch": 113.32,
|
| 990 |
+
"learning_rate": 9.858897177943559e-05,
|
| 991 |
+
"loss": 0.0007,
|
| 992 |
+
"step": 1360
|
| 993 |
+
},
|
| 994 |
+
{
|
| 995 |
+
"epoch": 114.16,
|
| 996 |
+
"learning_rate": 9.857797155943119e-05,
|
| 997 |
+
"loss": 0.0007,
|
| 998 |
+
"step": 1370
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 114.96,
|
| 1002 |
+
"learning_rate": 9.856797135942719e-05,
|
| 1003 |
+
"loss": 0.0008,
|
| 1004 |
+
"step": 1380
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 115.8,
|
| 1008 |
+
"learning_rate": 9.85579711594232e-05,
|
| 1009 |
+
"loss": 0.0007,
|
| 1010 |
+
"step": 1390
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 116.64,
|
| 1014 |
+
"learning_rate": 9.854697093941879e-05,
|
| 1015 |
+
"loss": 0.0008,
|
| 1016 |
+
"step": 1400
|
| 1017 |
+
},
|
| 1018 |
+
{
|
| 1019 |
+
"epoch": 117.32,
|
| 1020 |
+
"eval_loss": 0.273681640625,
|
| 1021 |
+
"eval_runtime": 76.2765,
|
| 1022 |
+
"eval_samples_per_second": 42.503,
|
| 1023 |
+
"eval_steps_per_second": 0.538,
|
| 1024 |
+
"step": 1408
|
| 1025 |
+
}
|
| 1026 |
+
],
|
| 1027 |
+
"max_steps": 100000,
|
| 1028 |
+
"num_train_epochs": 8334,
|
| 1029 |
+
"total_flos": 7491160366080.0,
|
| 1030 |
+
"trial_name": null,
|
| 1031 |
+
"trial_params": null
|
| 1032 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1063828ba2e9ddcd06c922117754b55edeba8f0e5dbe1457111b25089b27d900
|
| 3 |
+
size 4207
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 6 |
+
# application.
|
| 7 |
+
#
|
| 8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 9 |
+
|
| 10 |
+
import argparse
|
| 11 |
+
import torch
|
| 12 |
+
import glob
|
| 13 |
+
import os
|
| 14 |
+
from collections import OrderedDict
|
| 15 |
+
|
| 16 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 17 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 18 |
+
import deepspeed
|
| 19 |
+
from deepspeed.utils import logger
|
| 20 |
+
|
| 21 |
+
debug = 0
|
| 22 |
+
|
| 23 |
+
# load to cpu
|
| 24 |
+
device = torch.device('cpu')
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 28 |
+
if not os.path.isdir(checkpoint_dir):
|
| 29 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 30 |
+
|
| 31 |
+
# there should be only one file
|
| 32 |
+
if zero_stage == 2:
|
| 33 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 34 |
+
elif zero_stage == 3:
|
| 35 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 36 |
+
|
| 37 |
+
if not os.path.exists(file):
|
| 38 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 39 |
+
|
| 40 |
+
return file
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def get_optim_files(checkpoint_dir):
|
| 44 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 45 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, "*_optim_states.pt")))
|
| 46 |
+
|
| 47 |
+
if len(optim_files) == 0:
|
| 48 |
+
raise FileNotFoundError(
|
| 49 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
| 50 |
+
|
| 51 |
+
return optim_files
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def parse_model_state(file):
|
| 55 |
+
state_dict = torch.load(file, map_location=device)
|
| 56 |
+
|
| 57 |
+
if "buffer_names" not in state_dict:
|
| 58 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 59 |
+
buffer_names = state_dict["buffer_names"]
|
| 60 |
+
if debug:
|
| 61 |
+
print("Found buffers:", buffer_names)
|
| 62 |
+
|
| 63 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 64 |
+
buffers = {
|
| 65 |
+
k: v.float()
|
| 66 |
+
for k,
|
| 67 |
+
v in state_dict["module"].items() if k in buffer_names
|
| 68 |
+
}
|
| 69 |
+
return buffers
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 73 |
+
|
| 74 |
+
total_files = len(files)
|
| 75 |
+
state_dicts = []
|
| 76 |
+
for f in files:
|
| 77 |
+
state_dicts.append(torch.load(f, map_location=device))
|
| 78 |
+
|
| 79 |
+
if not "zero_stage" in state_dicts[0]['optimizer_state_dict']:
|
| 80 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 81 |
+
zero_stage = state_dicts[0]['optimizer_state_dict']["zero_stage"]
|
| 82 |
+
world_size = state_dicts[0]['optimizer_state_dict']["partition_count"]
|
| 83 |
+
param_shapes = state_dicts[0]["param_shapes"]
|
| 84 |
+
|
| 85 |
+
if world_size != total_files:
|
| 86 |
+
raise ValueError(
|
| 87 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 88 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# the groups are named differently in each stage
|
| 92 |
+
if zero_stage == 2:
|
| 93 |
+
fp32_groups_key = "single_partition_of_fp32_groups"
|
| 94 |
+
elif zero_stage == 3:
|
| 95 |
+
fp32_groups_key = "fp32_flat_groups"
|
| 96 |
+
else:
|
| 97 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 98 |
+
|
| 99 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 100 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 101 |
+
#
|
| 102 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 103 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 104 |
+
fp32_flat_groups = [
|
| 105 |
+
torch.cat(state_dicts[i]['optimizer_state_dict'][fp32_groups_key],
|
| 106 |
+
0) for i in range(len(state_dicts))
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
return zero_stage, world_size, param_shapes, fp32_flat_groups
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 113 |
+
remainder = unpartitioned_numel % world_size
|
| 114 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 115 |
+
partitioned_numel = int(unpartitioned_numel / world_size)
|
| 116 |
+
return partitioned_numel, padding_numel
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 120 |
+
"""
|
| 121 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 125 |
+
|
| 126 |
+
"""
|
| 127 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 128 |
+
|
| 129 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 130 |
+
zero_stage, world_size, param_shapes, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 131 |
+
print(
|
| 132 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 133 |
+
|
| 134 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
| 135 |
+
buffers = parse_model_state(model_file)
|
| 136 |
+
|
| 137 |
+
# Reconstruction protocol:
|
| 138 |
+
#
|
| 139 |
+
# - for zero2 we just need to concat the partitions back to back and reconsolidate over one huge
|
| 140 |
+
# flat buffer - no need to deal with padding since if there is any it will be only in the tail
|
| 141 |
+
# of the last partition so there it will be just left out
|
| 142 |
+
#
|
| 143 |
+
# - for zero3 we need to zip the partitions together at boundary of each param, re-consolidating
|
| 144 |
+
# each param, while dealing with padding if any
|
| 145 |
+
|
| 146 |
+
if debug:
|
| 147 |
+
for i in range(world_size):
|
| 148 |
+
print(f"fp32_flat_groups[i].shape={fp32_flat_groups[i].shape}")
|
| 149 |
+
|
| 150 |
+
if zero_stage == 2:
|
| 151 |
+
# XXX: memory usage doubles here (zero2)
|
| 152 |
+
full_single_fp32_vector = torch.cat(fp32_flat_groups, 0)
|
| 153 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 154 |
+
elif zero_stage == 3:
|
| 155 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 156 |
+
|
| 157 |
+
if debug:
|
| 158 |
+
wanted_params = len(param_shapes)
|
| 159 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 160 |
+
# not asserting if there is a mismatch due to possible padding
|
| 161 |
+
print(f"Have {avail_numel} numels to process.")
|
| 162 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 163 |
+
|
| 164 |
+
state_dict = OrderedDict()
|
| 165 |
+
|
| 166 |
+
# buffers
|
| 167 |
+
state_dict.update(buffers)
|
| 168 |
+
if debug:
|
| 169 |
+
print(f"added {len(buffers)} buffers")
|
| 170 |
+
|
| 171 |
+
# params
|
| 172 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 173 |
+
# out-of-core computing solution
|
| 174 |
+
offset = 0
|
| 175 |
+
total_numel = 0
|
| 176 |
+
total_params = 0
|
| 177 |
+
for name, shape in param_shapes.items():
|
| 178 |
+
|
| 179 |
+
unpartitioned_numel = shape.numel()
|
| 180 |
+
total_numel += unpartitioned_numel
|
| 181 |
+
total_params += 1
|
| 182 |
+
|
| 183 |
+
if zero_stage == 2:
|
| 184 |
+
if debug:
|
| 185 |
+
print(
|
| 186 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
| 187 |
+
)
|
| 188 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
| 189 |
+
0,
|
| 190 |
+
offset,
|
| 191 |
+
unpartitioned_numel).view(shape)
|
| 192 |
+
offset += unpartitioned_numel
|
| 193 |
+
|
| 194 |
+
elif zero_stage == 3:
|
| 195 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 196 |
+
|
| 197 |
+
if debug:
|
| 198 |
+
print(
|
| 199 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# XXX: memory usage doubles here (zero3)
|
| 203 |
+
state_dict[name] = torch.cat(
|
| 204 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
| 205 |
+
offset,
|
| 206 |
+
partitioned_numel)
|
| 207 |
+
for i in range(world_size)),
|
| 208 |
+
0).view(shape)
|
| 209 |
+
offset += partitioned_numel + partitioned_padding_numel
|
| 210 |
+
|
| 211 |
+
if zero_stage == 3:
|
| 212 |
+
offset *= world_size
|
| 213 |
+
|
| 214 |
+
# Sanity check
|
| 215 |
+
if offset != avail_numel:
|
| 216 |
+
raise ValueError(
|
| 217 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 218 |
+
|
| 219 |
+
print(
|
| 220 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
return state_dict
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 227 |
+
"""
|
| 228 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 229 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 230 |
+
via a model hub.
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 234 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
- pytorch ``state_dict``
|
| 238 |
+
|
| 239 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 240 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 241 |
+
the checkpoint.
|
| 242 |
+
|
| 243 |
+
A typical usage might be ::
|
| 244 |
+
|
| 245 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 246 |
+
# do the training and checkpoint saving
|
| 247 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 248 |
+
model = model.cpu() # move to cpu
|
| 249 |
+
model.load_state_dict(state_dict)
|
| 250 |
+
# submit to model hub or save the model to share with others
|
| 251 |
+
|
| 252 |
+
In this example the ``model`` will no longer be useable in the deepspeed context of the same
|
| 253 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 254 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 255 |
+
|
| 256 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 257 |
+
|
| 258 |
+
"""
|
| 259 |
+
if tag is None:
|
| 260 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 261 |
+
if os.path.isfile(latest_path):
|
| 262 |
+
with open(latest_path, 'r') as fd:
|
| 263 |
+
tag = fd.read().strip()
|
| 264 |
+
else:
|
| 265 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 266 |
+
|
| 267 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 268 |
+
|
| 269 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 270 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 271 |
+
|
| 272 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 276 |
+
"""
|
| 277 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 278 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 279 |
+
|
| 280 |
+
Args:
|
| 281 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 282 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 283 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 284 |
+
"""
|
| 285 |
+
|
| 286 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 287 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 288 |
+
torch.save(state_dict, output_file)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 292 |
+
"""
|
| 293 |
+
1. Put the provided model to cpu
|
| 294 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 295 |
+
3. Load it into the provided model
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
- ``model``: the model object to update
|
| 299 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 300 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 301 |
+
|
| 302 |
+
Returns:
|
| 303 |
+
- ``model`: modified model
|
| 304 |
+
|
| 305 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 306 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 307 |
+
conveniently placed for you in the checkpoint folder.
|
| 308 |
+
|
| 309 |
+
A typical usage might be ::
|
| 310 |
+
|
| 311 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 312 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 313 |
+
# submit to model hub or save the model to share with others
|
| 314 |
+
|
| 315 |
+
Note, that once this was run, the ``model`` will no longer be useable in the deepspeed context
|
| 316 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 317 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 318 |
+
|
| 319 |
+
"""
|
| 320 |
+
logger.info(f"Extracting fp32 weights")
|
| 321 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 322 |
+
|
| 323 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 324 |
+
model = model.cpu()
|
| 325 |
+
model.load_state_dict(state_dict, strict=False)
|
| 326 |
+
|
| 327 |
+
return model
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
if __name__ == "__main__":
|
| 331 |
+
|
| 332 |
+
parser = argparse.ArgumentParser()
|
| 333 |
+
parser.add_argument(
|
| 334 |
+
"checkpoint_dir",
|
| 335 |
+
type=str,
|
| 336 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 337 |
+
parser.add_argument(
|
| 338 |
+
"output_file",
|
| 339 |
+
type=str,
|
| 340 |
+
help=
|
| 341 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
| 342 |
+
)
|
| 343 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 344 |
+
args = parser.parse_args()
|
| 345 |
+
|
| 346 |
+
debug = args.debug
|
| 347 |
+
|
| 348 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|