Update modelling_walsh.py
Browse files- Added support for inference cache.
- Refactor common code in attention
- Removed unused code (fragments from another project)
- modelling_walsh.py +369 -296
modelling_walsh.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# See: https://huggingface.co/docs/transformers/custom_models
|
| 2 |
-
from typing import Optional, Tuple, Union
|
| 3 |
import math
|
| 4 |
import copy
|
| 5 |
import sys
|
|
@@ -9,7 +9,7 @@ import torch
|
|
| 9 |
from torch import nn, Tensor
|
| 10 |
import torch.nn.init as init
|
| 11 |
from torch.nn import functional as F
|
| 12 |
-
from transformers.modeling_outputs import CausalLMOutput
|
| 13 |
from transformers import (
|
| 14 |
PreTrainedModel,
|
| 15 |
PretrainedConfig,
|
|
@@ -18,6 +18,10 @@ from transformers import (
|
|
| 18 |
AutoModelForCausalLM,
|
| 19 |
)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
from transformers.utils import (
|
| 22 |
is_flash_attn_2_available,
|
| 23 |
is_flash_attn_greater_or_equal_2_10,
|
|
@@ -26,6 +30,8 @@ from transformers.utils import (
|
|
| 26 |
if is_flash_attn_2_available():
|
| 27 |
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
|
| 28 |
|
|
|
|
|
|
|
| 29 |
# The model type string to bind.
|
| 30 |
model_type = "walsh-causal-v1"
|
| 31 |
|
|
@@ -78,6 +84,10 @@ class Config(PretrainedConfig):
|
|
| 78 |
layer_args=dict(),
|
| 79 |
embedding_args=dict(),
|
| 80 |
output_proj_args=dict(),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
**kwargs,
|
| 83 |
):
|
|
@@ -113,6 +123,10 @@ class Config(PretrainedConfig):
|
|
| 113 |
self.layer_args = layer_args
|
| 114 |
self.embedding_args = embedding_args
|
| 115 |
self.output_proj_args = output_proj_args
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
super().__init__(**kwargs)
|
| 118 |
|
|
@@ -204,6 +218,8 @@ class HFCausalModel(PreTrainedModel):
|
|
| 204 |
_no_split_modules = ["DeepNetLayer"]
|
| 205 |
_supports_flash_attn_2 = True
|
| 206 |
_supports_sdpa = True
|
|
|
|
|
|
|
| 207 |
|
| 208 |
def __init__(self, config):
|
| 209 |
super().__init__(config)
|
|
@@ -221,40 +237,143 @@ class HFCausalModel(PreTrainedModel):
|
|
| 221 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 222 |
position_ids: Optional[torch.LongTensor] = None,
|
| 223 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
|
|
|
| 224 |
output_attentions: Optional[bool] = None,
|
| 225 |
output_hidden_states: Optional[bool] = None,
|
| 226 |
return_dict: Optional[bool] = None,
|
| 227 |
**kwargs,
|
| 228 |
) -> (Tensor, dict[str, Tensor]):
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
gradient_checkpointing_func = self._gradient_checkpointing_func
|
| 232 |
else:
|
| 233 |
gradient_checkpointing_func = None
|
|
|
|
| 234 |
|
| 235 |
-
|
| 236 |
input_ids=input_ids,
|
| 237 |
-
|
|
|
|
| 238 |
gradient_checkpointing_func=gradient_checkpointing_func,
|
|
|
|
|
|
|
|
|
|
| 239 |
)
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
# Compute loss.
|
| 242 |
if labels is not None:
|
| 243 |
loss = self.loss_function(logits=logits, labels=labels, input_ids=input_ids)
|
| 244 |
else:
|
| 245 |
loss = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
return
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
return model_inputs
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
def _make_embedding(self, config):
|
| 259 |
embedding_cls = get_dynamic_class(config.embdding_cls)
|
| 260 |
return embedding_cls(config.vocab_size, self.d_model, config.pad_index, **config.embedding_args)
|
|
@@ -278,7 +397,7 @@ class HFCausalModel(PreTrainedModel):
|
|
| 278 |
norm_cls = get_dynamic_class(config.norm_cls)
|
| 279 |
return norm_cls(self.d_model)
|
| 280 |
|
| 281 |
-
def _make_self_attention(self, config):
|
| 282 |
attention_cls = get_dynamic_class(config.attention_cls)
|
| 283 |
# Map HF _attn_implementation to attn_type
|
| 284 |
match config._attn_implementation:
|
|
@@ -299,28 +418,32 @@ class HFCausalModel(PreTrainedModel):
|
|
| 299 |
d_model=self.d_model,
|
| 300 |
num_heads=config.num_attention_heads,
|
| 301 |
attn_type=attn_type,
|
|
|
|
|
|
|
| 302 |
**config.attention_args,
|
| 303 |
)
|
| 304 |
|
| 305 |
-
def _make_feedforward(self, config):
|
| 306 |
feedforward_cls = get_dynamic_class(config.feedforward_cls)
|
| 307 |
return feedforward_cls(
|
| 308 |
d_model=self.d_model,
|
| 309 |
feedforward_dim=config.dim_feedforward,
|
| 310 |
dropout=config.dropout,
|
| 311 |
activation=self._make_activation(config),
|
|
|
|
| 312 |
**config.feedforward_args,
|
| 313 |
)
|
| 314 |
|
| 315 |
-
def _make_layer(self, config):
|
| 316 |
layer_cls = get_dynamic_class(config.layer_cls)
|
| 317 |
return layer_cls(
|
| 318 |
d_model=self.d_model,
|
| 319 |
dropout=self._make_dropout(config),
|
| 320 |
-
attention=self._make_self_attention(config),
|
| 321 |
-
feedforward=self._make_feedforward(config),
|
| 322 |
norm1=self._make_norm(config),
|
| 323 |
norm2=self._make_norm(config),
|
|
|
|
| 324 |
**config.layer_args,
|
| 325 |
)
|
| 326 |
|
|
@@ -328,7 +451,7 @@ class HFCausalModel(PreTrainedModel):
|
|
| 328 |
layer_stack_cls = get_dynamic_class(config.layer_stack_cls)
|
| 329 |
return layer_stack_cls(
|
| 330 |
layers=nn.ModuleList([
|
| 331 |
-
self._make_layer(config) for
|
| 332 |
]),
|
| 333 |
**config.layer_stack_args,
|
| 334 |
)
|
|
@@ -364,43 +487,35 @@ class Transformer(nn.Module):
|
|
| 364 |
self.sqrt_d_model = d_model**0.5
|
| 365 |
self.reset_parameters()
|
| 366 |
|
| 367 |
-
def forward(
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
)
|
| 375 |
|
| 376 |
-
# Translate output
|
| 377 |
-
logits = self.output_projection(
|
| 378 |
-
|
|
|
|
| 379 |
|
| 380 |
def reset_parameters(self):
|
| 381 |
init.xavier_uniform_(self.output_projection.weight)
|
| 382 |
init.constant_(self.output_projection.bias, 0.)
|
| 383 |
init.normal_(self.embedding.weight, std=self.d_model**-0.5)
|
| 384 |
|
| 385 |
-
# A vanilla positional encoder
|
| 386 |
-
class PositionalEncoder(nn.Module):
|
| 387 |
-
def __init__(self, d_embed, max_seq):
|
| 388 |
-
super().__init__()
|
| 389 |
-
self.d_embed = d_embed
|
| 390 |
-
self.max_seq = max_seq
|
| 391 |
-
|
| 392 |
-
weight = torch.zeros(max_seq, d_embed)
|
| 393 |
-
position = torch.arange(0, max_seq, dtype=torch.float).unsqueeze(1)
|
| 394 |
-
div_term = torch.exp(torch.arange(0, d_embed, 2).float() * (-math.log(10000.0) / d_embed))
|
| 395 |
-
weight[:, 0::2] = torch.sin(position * div_term)
|
| 396 |
-
weight[:, 1::2] = torch.cos(position * div_term)
|
| 397 |
-
weight = weight.unsqueeze(0)
|
| 398 |
-
self.register_buffer('weight', weight)
|
| 399 |
-
|
| 400 |
-
def forward(self, x):
|
| 401 |
-
seq_len = x.size(-2)
|
| 402 |
-
return x + self.weight[:, :seq_len]
|
| 403 |
-
|
| 404 |
# Converts a torch array of integers into their equivalent binary codes.
|
| 405 |
def binary_tensor(x, bits):
|
| 406 |
mask = 2**torch.arange(bits).to(x.device, x.dtype)
|
|
@@ -472,7 +587,7 @@ class RSWalshPositionalEncoder(nn.Module):
|
|
| 472 |
# walsh = (hadamard_walsh_matrix(k)[:bits,:d_embed] -0.5) * self.gain
|
| 473 |
self.register_buffer('walsh', walsh, persistent=False)
|
| 474 |
|
| 475 |
-
def forward(self, x):
|
| 476 |
seq_len = x.size(-2)
|
| 477 |
|
| 478 |
# Get sequence of binary codes...
|
|
@@ -486,6 +601,12 @@ class RSWalshPositionalEncoder(nn.Module):
|
|
| 486 |
shift = torch.randint(self.max_seq - seq_len + 1, (1,)).item()
|
| 487 |
seq = self.binary_code[shift:seq_len + shift,:]
|
| 488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
# Disable shifting when not training. This does not appear to change the evaluation loss, but
|
| 490 |
# it does makes predictions easier to analyse when the attention weights are not shifting with each step.
|
| 491 |
else:
|
|
@@ -508,25 +629,58 @@ class TransformerLayerStack(nn.Module):
|
|
| 508 |
super().__init__()
|
| 509 |
self.layers = layers
|
| 510 |
|
| 511 |
-
def forward(
|
| 512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
for layer in self.layers:
|
| 514 |
if gradient_checkpointing_func is not None:
|
| 515 |
-
|
| 516 |
layer.__call__,
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
| 520 |
)
|
| 521 |
else:
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
|
|
|
|
|
|
|
|
|
| 525 |
|
| 526 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
|
| 528 |
# DeepNet: Scaling Transformers to 1,000 Layers
|
| 529 |
# https://arxiv.org/abs/2203.00555
|
|
|
|
| 530 |
class DeepnetLayer(nn.Module):
|
| 531 |
def __init__(
|
| 532 |
self,
|
|
@@ -536,6 +690,7 @@ class DeepnetLayer(nn.Module):
|
|
| 536 |
norm1,
|
| 537 |
norm2,
|
| 538 |
dropout,
|
|
|
|
| 539 |
alpha=1.0,
|
| 540 |
):
|
| 541 |
super().__init__()
|
|
@@ -547,27 +702,45 @@ class DeepnetLayer(nn.Module):
|
|
| 547 |
self.dropout = dropout
|
| 548 |
# Deepnet alpha
|
| 549 |
self.alpha = alpha
|
|
|
|
| 550 |
|
| 551 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
# Keep input as residual
|
| 553 |
-
residual =
|
| 554 |
|
| 555 |
# Compute attention
|
| 556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
|
| 558 |
# Add attention with residual and normalize.
|
| 559 |
-
|
| 560 |
|
| 561 |
# Keep output as next residual.
|
| 562 |
-
residual =
|
| 563 |
|
| 564 |
# Pass through feedforward network.
|
| 565 |
-
|
| 566 |
|
| 567 |
# Combine residual and ff output, then normalize again.
|
| 568 |
-
|
| 569 |
|
| 570 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
|
| 572 |
# A vanilla MLP transfomer layer.
|
| 573 |
class FeedforwardLayer(nn.Module):
|
|
@@ -576,6 +749,7 @@ class FeedforwardLayer(nn.Module):
|
|
| 576 |
d_model: int,
|
| 577 |
feedforward_dim: int,
|
| 578 |
dropout,
|
|
|
|
| 579 |
activation=nn.ReLU(),
|
| 580 |
beta=1.0,
|
| 581 |
bias=True,
|
|
@@ -598,41 +772,6 @@ class FeedforwardLayer(nn.Module):
|
|
| 598 |
init.constant_(self.linear1.bias, 0.)
|
| 599 |
init.constant_(self.linear2.bias, 0.)
|
| 600 |
|
| 601 |
-
# GLU Variants Improve Transformer
|
| 602 |
-
# https://arxiv.org/pdf/2002.05202v1.pdf
|
| 603 |
-
class SwiGLUFeedforwardLayer(nn.Module):
|
| 604 |
-
def __init__(
|
| 605 |
-
self,
|
| 606 |
-
d_model,
|
| 607 |
-
d_feedforward,
|
| 608 |
-
beta=1.0,
|
| 609 |
-
dropout=0.1
|
| 610 |
-
):
|
| 611 |
-
super().__init__()
|
| 612 |
-
self.d_model = d_model
|
| 613 |
-
self.d_feedforward = d_feedforward
|
| 614 |
-
self.beta = 1.0
|
| 615 |
-
|
| 616 |
-
self.linear1 = nn.Linear(self.d_model, self.d_feedforward * 2, bias=False)
|
| 617 |
-
self.linear2 = nn.Linear(self.d_feedforward, self.d_model, bias=False)
|
| 618 |
-
self.dropout = nn.Dropout(dropout)
|
| 619 |
-
self.reset_parameters()
|
| 620 |
-
|
| 621 |
-
def forward(self, x):
|
| 622 |
-
x, gate = self.linear1(x).chunk(2, dim=-1)
|
| 623 |
-
x = x * F.silu(gate)
|
| 624 |
-
x = self.dropout(x)
|
| 625 |
-
x = self.linear2(x)
|
| 626 |
-
return x
|
| 627 |
-
|
| 628 |
-
def reset_parameters(self):
|
| 629 |
-
# Deepnet initialization
|
| 630 |
-
# https://arxiv.org/pdf/2203.00555.pdf
|
| 631 |
-
w, g = self.linear1.weight.chunk(2, dim=0)
|
| 632 |
-
init.xavier_uniform_(w, gain=self.beta)
|
| 633 |
-
init.xavier_uniform_(g, gain=self.beta)
|
| 634 |
-
init.xavier_uniform_(self.linear2.weight, gain=self.beta)
|
| 635 |
-
|
| 636 |
class CausalSelfAttention(nn.Module):
|
| 637 |
def __init__(
|
| 638 |
self,
|
|
@@ -643,6 +782,8 @@ class CausalSelfAttention(nn.Module):
|
|
| 643 |
# torch: Use pytorch "scaled_dot_product_attention()"; faster; generally good compatibility; does not support returning attn weights.
|
| 644 |
# flash2: Use Flash-Attention2 implementation; fastest; limited to int16 and bfloat16 types; least memory usage.
|
| 645 |
attn_type,
|
|
|
|
|
|
|
| 646 |
beta=1.0,
|
| 647 |
dropout=0.1,
|
| 648 |
):
|
|
@@ -651,6 +792,8 @@ class CausalSelfAttention(nn.Module):
|
|
| 651 |
self.num_heads = num_heads
|
| 652 |
self.beta = beta
|
| 653 |
self.attn_type = attn_type
|
|
|
|
|
|
|
| 654 |
|
| 655 |
assert d_model % num_heads == 0, "d_model must be evenly divisible by num_heads"
|
| 656 |
|
|
@@ -681,29 +824,56 @@ class CausalSelfAttention(nn.Module):
|
|
| 681 |
init.constant_(self.in_proj.bias, 0.)
|
| 682 |
init.constant_(self.output_linear.bias, 0.)
|
| 683 |
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
return proj.chunk(chunks=3, dim=-1)
|
| 687 |
-
|
| 688 |
-
def forward(self, qkv, need_weights):
|
| 689 |
-
if self.attn_type == "flash2":
|
| 690 |
-
return self.flash2_forward(qkv)
|
| 691 |
-
|
| 692 |
-
# qkv: (batch_size, seq_len, d_embed)
|
| 693 |
batch_size, seq_len, d_embed = qkv.shape
|
|
|
|
|
|
|
| 694 |
|
| 695 |
-
# Feed the inputs through the K, Q, V matrices.
|
| 696 |
-
query, key, value = self.project_input(qkv)
|
| 697 |
-
|
| 698 |
# Split projections into multiple heads and swap position of sequence / heads dimension
|
| 699 |
query = query.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 700 |
key = key.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 701 |
value = value.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 702 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
# Default to returning empty attention weights.
|
| 704 |
-
|
|
|
|
|
|
|
| 705 |
|
| 706 |
-
if
|
| 707 |
# This context manager can be used to force which implementation to use.
|
| 708 |
#with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
| 709 |
attended_values = F.scaled_dot_product_attention(
|
|
@@ -712,7 +882,7 @@ class CausalSelfAttention(nn.Module):
|
|
| 712 |
value,
|
| 713 |
attn_mask=None,
|
| 714 |
dropout_p=self.dropout.p if self.training else 0.0,
|
| 715 |
-
is_causal=
|
| 716 |
scale=self.dot_product_scale
|
| 717 |
)
|
| 718 |
# "native" scaled-dot-product attention implementation.
|
|
@@ -721,44 +891,57 @@ class CausalSelfAttention(nn.Module):
|
|
| 721 |
scores = torch.matmul(query, key.transpose(-2, -1)) * self.dot_product_scale
|
| 722 |
|
| 723 |
# Mask future positions from the past
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
torch.
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
|
|
|
| 731 |
|
| 732 |
# Calculate the attention weights; avoid NANs that might emerge from zeros in softmax's denominator
|
| 733 |
-
|
| 734 |
del scores
|
| 735 |
|
| 736 |
# Use the attention weights to get a weighted combination of value vectors
|
| 737 |
-
attended_values = torch.matmul(
|
| 738 |
-
if not
|
| 739 |
-
del
|
| 740 |
-
|
| 741 |
|
| 742 |
# Concatenate attention heads and project to original embedding size using the output linear layer
|
| 743 |
attended_values = attended_values.transpose(1, 2).contiguous().view(batch_size, seq_len, d_embed)
|
| 744 |
|
| 745 |
# Project the concatenated output through the output matrix.
|
| 746 |
attended_values = self.output_linear(attended_values)
|
| 747 |
-
return
|
| 748 |
-
|
| 749 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 750 |
batch_size, seq_len, d_embed = qkv.shape
|
| 751 |
|
| 752 |
# Feed the inputs through the K, Q, V matrices.
|
| 753 |
# query : (batch_size, seq_len, d_model)
|
| 754 |
# qkv : (batch_size, seq_len, 3, num_heads, d_kq)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 755 |
qkv = self.in_proj(qkv).unflatten(
|
| 756 |
-1,
|
| 757 |
(3, self.num_heads, self.d_head)
|
| 758 |
)
|
| 759 |
-
|
| 760 |
attended_values = flash_attn_qkvpacked_func(
|
| 761 |
-
|
| 762 |
dropout_p=self.dropout.p if self.training else 0.0,
|
| 763 |
softmax_scale=self.dot_product_scale,
|
| 764 |
causal=True,
|
|
@@ -770,180 +953,70 @@ class CausalSelfAttention(nn.Module):
|
|
| 770 |
|
| 771 |
# Project the concatenated output through the output matrix.
|
| 772 |
attended_values = self.output_linear(attended_values)
|
| 773 |
-
return
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
def alibi_biases(query_len, key_len, device='cpu'):
|
| 779 |
-
x = torch.arange(key_len, device=device)[None, :]
|
| 780 |
-
y = torch.arange(query_len, device=device)[:, None]
|
| 781 |
-
return x - y
|
| 782 |
|
| 783 |
-
|
| 784 |
-
|
|
|
|
| 785 |
self,
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
beta=1.0,
|
| 789 |
-
dropout=0.1,
|
| 790 |
-
# values:
|
| 791 |
-
# native: Use local impementation; slowest option; good for debugging; useful when experimenting with non-standard stuff.
|
| 792 |
-
# torch: Use pytorch "scaled_dot_product_attention()"; faster; generally good compatibility; does not support returning attn weights.
|
| 793 |
-
# flash2: Use Flash-Attention2 implementation; fastest; limited to int16 and bfloat16 types; can't train Alibi weights; least memory usage.
|
| 794 |
-
# Note: You can perform initial training with "torch," then switch to "flash2," after the Alibi weights have settled.
|
| 795 |
-
window_size=None,
|
| 796 |
-
attn_type="native",
|
| 797 |
-
freeze_alibi=True,
|
| 798 |
):
|
| 799 |
-
super().__init__()
|
| 800 |
-
self.d_model = d_model
|
| 801 |
-
self.num_heads = num_heads
|
| 802 |
-
self.beta = beta
|
| 803 |
-
self.attn_type = attn_type
|
| 804 |
-
|
| 805 |
-
assert d_model % num_heads == 0, "d_model must be evenly divisible by num_heads"
|
| 806 |
-
|
| 807 |
-
# The dimension of each head.
|
| 808 |
-
self.d_head = d_model // num_heads
|
| 809 |
-
|
| 810 |
-
# We scale the attention scores by the inverse-square-root of the head dimension
|
| 811 |
-
# this shifts the temerature of softmax.
|
| 812 |
-
self.dot_product_scale = 1.0 / math.sqrt(self.d_head)
|
| 813 |
-
|
| 814 |
-
self.in_proj = nn.Parameter(torch.empty(3 * self.d_model, self.d_model))
|
| 815 |
-
self.output_linear = nn.Linear(self.d_model, self.d_model, bias=False)
|
| 816 |
-
|
| 817 |
-
if window_size is not None:
|
| 818 |
-
self.window_size=(window_size, -1)
|
| 819 |
-
else:
|
| 820 |
-
self.window_size = (-1, -1)
|
| 821 |
-
|
| 822 |
-
self.dropout = nn.Dropout(dropout)
|
| 823 |
-
|
| 824 |
-
# This generates the original slope distribution from the paper.
|
| 825 |
-
# Observations with trainable slopes suggest that the high half of the slopes shift
|
| 826 |
-
# towards / past 1.0 and the low half approach zero or even go slightly negative.
|
| 827 |
-
# alibi_slopes = 1.0 / torch.logspace(1, 8, self.num_heads, base=2, dtype=torch.float)
|
| 828 |
-
|
| 829 |
-
# These appear to work better, as initial values, in practice.
|
| 830 |
-
alibi_slopes = 1.0 / torch.logspace(0, 7, self.num_heads, base=2, dtype=torch.float)
|
| 831 |
-
|
| 832 |
-
# If not trainable, it can improve performance somewhat if the low half are set to zero. Apparently
|
| 833 |
-
# making roughly half of the slopes position-agnostic is somehow closer to optimal?
|
| 834 |
-
# alibi_slopes.masked_fill_(torch.where(torch.arange(0, self.num_heads) >= (self.num_heads / 2), True, False), 0)
|
| 835 |
-
|
| 836 |
-
self.alibi_slopes = nn.Parameter(alibi_slopes)
|
| 837 |
-
|
| 838 |
-
# Optionally, allow/disallow training of ALiBi slopes.
|
| 839 |
-
self.alibi_slopes.requires_grad = (not freeze_alibi)
|
| 840 |
-
self.reset_parameters()
|
| 841 |
-
|
| 842 |
-
def extra_repr(self) -> str:
|
| 843 |
-
return f'd_model={self.d_model}, num_heads={self.num_heads}, beta={self.beta}, attn_type={self.attn_type}, window_size={self.window_size}, dropout={self.dropout}'
|
| 844 |
-
|
| 845 |
-
def reset_parameters(self):
|
| 846 |
-
# Deepnet initialization
|
| 847 |
-
# https://arxiv.org/pdf/2203.00555.pdf
|
| 848 |
-
|
| 849 |
-
q, k, v = self.in_proj.chunk(3)
|
| 850 |
-
init.xavier_uniform_(q, gain=1.0)
|
| 851 |
-
init.xavier_uniform_(k, gain=1.0)
|
| 852 |
-
init.xavier_uniform_(v, gain=self.beta)
|
| 853 |
-
init.xavier_uniform_(self.output_linear.weight, gain=self.beta)
|
| 854 |
-
|
| 855 |
-
def project_input(self, qkv):
|
| 856 |
-
proj = F.linear(qkv, self.in_proj)
|
| 857 |
-
return proj.chunk(chunks=3, dim=-1)
|
| 858 |
-
|
| 859 |
-
def forward(self, qkv, need_weights):
|
| 860 |
-
if self.attn_type == "flash2":
|
| 861 |
-
return self.flash2_forward(qkv)
|
| 862 |
-
|
| 863 |
-
# qkv: (batch_size, seq_len, d_embed)
|
| 864 |
-
batch_size, seq_len, d_embed = qkv.shape
|
| 865 |
-
|
| 866 |
-
# Feed the inputs through the K, Q, V matrices.
|
| 867 |
-
query, key, value = self.project_input(qkv)
|
| 868 |
-
|
| 869 |
-
# Split projections into multiple heads and swap position of sequence / heads dimension
|
| 870 |
-
query = query.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 871 |
-
key = key.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 872 |
-
value = value.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 873 |
-
|
| 874 |
-
# Apply Alibi relative positional biases.
|
| 875 |
-
attn_bias = alibi_biases(seq_len, seq_len, device=query.device) * self.alibi_slopes.view(-1, 1, 1)
|
| 876 |
-
|
| 877 |
-
# Mask future positions from the past
|
| 878 |
-
causal_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=qkv.device), diagonal=0)
|
| 879 |
-
attn_bias.masked_fill_(causal_mask.logical_not(), float('-inf'))
|
| 880 |
-
del causal_mask
|
| 881 |
-
|
| 882 |
-
# Default to returning empty attention weights.
|
| 883 |
-
attention_weights = None
|
| 884 |
-
|
| 885 |
-
if self.attn_type == "torch":
|
| 886 |
-
# This context manager can be used to force which implementation to use.
|
| 887 |
-
#with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
| 888 |
-
attended_values = F.scaled_dot_product_attention(
|
| 889 |
-
query,
|
| 890 |
-
key,
|
| 891 |
-
value,
|
| 892 |
-
attn_mask=attn_bias.to(dtype=query.dtype),
|
| 893 |
-
dropout_p=self.dropout.p if self.training else 0.0,
|
| 894 |
-
is_causal=False,
|
| 895 |
-
scale=self.dot_product_scale
|
| 896 |
-
)
|
| 897 |
-
# "native" scaled-dot-product attention implementation.
|
| 898 |
-
else:
|
| 899 |
-
# Compute attention scores
|
| 900 |
-
scores = torch.matmul(query, key.transpose(-2, -1)) * self.dot_product_scale
|
| 901 |
-
|
| 902 |
-
# Adjust scores with attn_mask
|
| 903 |
-
scores += attn_bias
|
| 904 |
-
|
| 905 |
-
# Calculate the attention weights; avoid NANs that might emerge from zeros in softmax's denominator
|
| 906 |
-
attention_weights = self.dropout(torch.softmax(scores, dim=-1).clamp(min=1e-10))
|
| 907 |
-
|
| 908 |
-
# Use the attention weights to get a weighted combination of value vectors
|
| 909 |
-
attended_values = torch.matmul(attention_weights, value)
|
| 910 |
-
if not need_weights:
|
| 911 |
-
attention_weights = None
|
| 912 |
-
|
| 913 |
-
# Concatenate attention heads and project to original embedding size using the output linear layer
|
| 914 |
-
attended_values = attended_values.transpose(1, 2).contiguous().view(batch_size, seq_len, d_embed)
|
| 915 |
-
|
| 916 |
-
# Project the concatenated output through the output matrix.
|
| 917 |
-
attended_values = self.output_linear(attended_values)
|
| 918 |
-
return attended_values, attention_weights
|
| 919 |
-
|
| 920 |
-
def flash2_forward(self, qkv):
|
| 921 |
batch_size, seq_len, d_embed = qkv.shape
|
| 922 |
|
| 923 |
# Feed the inputs through the K, Q, V matrices.
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
)
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
)
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
|
|
|
|
|
|
|
|
|
| 936 |
dropout_p=self.dropout.p if self.training else 0.0,
|
| 937 |
softmax_scale=self.dot_product_scale,
|
| 938 |
causal=True,
|
| 939 |
-
|
| 940 |
-
alibi_slopes=self.alibi_slopes.float(),
|
| 941 |
-
).to(dtype=qkv.dtype)
|
| 942 |
# attended_values: (batch_size, seqlen, nheads, headdim)
|
| 943 |
-
|
| 944 |
# Concatentate heads back into d_embed
|
| 945 |
attended_values = attended_values.view(batch_size, seq_len, d_embed)
|
| 946 |
|
| 947 |
# Project the concatenated output through the output matrix.
|
| 948 |
attended_values = self.output_linear(attended_values)
|
| 949 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# See: https://huggingface.co/docs/transformers/custom_models
|
| 2 |
+
from typing import Optional, Tuple, Union, List
|
| 3 |
import math
|
| 4 |
import copy
|
| 5 |
import sys
|
|
|
|
| 9 |
from torch import nn, Tensor
|
| 10 |
import torch.nn.init as init
|
| 11 |
from torch.nn import functional as F
|
| 12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutput, CausalLMOutputWithPast
|
| 13 |
from transformers import (
|
| 14 |
PreTrainedModel,
|
| 15 |
PretrainedConfig,
|
|
|
|
| 18 |
AutoModelForCausalLM,
|
| 19 |
)
|
| 20 |
|
| 21 |
+
from transformers.utils import logging
|
| 22 |
+
|
| 23 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 24 |
+
|
| 25 |
from transformers.utils import (
|
| 26 |
is_flash_attn_2_available,
|
| 27 |
is_flash_attn_greater_or_equal_2_10,
|
|
|
|
| 30 |
if is_flash_attn_2_available():
|
| 31 |
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
|
| 32 |
|
| 33 |
+
logger = logging.get_logger(__name__)
|
| 34 |
+
|
| 35 |
# The model type string to bind.
|
| 36 |
model_type = "walsh-causal-v1"
|
| 37 |
|
|
|
|
| 84 |
layer_args=dict(),
|
| 85 |
embedding_args=dict(),
|
| 86 |
output_proj_args=dict(),
|
| 87 |
+
|
| 88 |
+
output_attentions=False,
|
| 89 |
+
output_hidden_states=False,
|
| 90 |
+
use_cache=True,
|
| 91 |
|
| 92 |
**kwargs,
|
| 93 |
):
|
|
|
|
| 123 |
self.layer_args = layer_args
|
| 124 |
self.embedding_args = embedding_args
|
| 125 |
self.output_proj_args = output_proj_args
|
| 126 |
+
|
| 127 |
+
self.output_attentions = output_attentions
|
| 128 |
+
self.output_hidden_states = output_hidden_states
|
| 129 |
+
self.use_cache = use_cache
|
| 130 |
|
| 131 |
super().__init__(**kwargs)
|
| 132 |
|
|
|
|
| 218 |
_no_split_modules = ["DeepNetLayer"]
|
| 219 |
_supports_flash_attn_2 = True
|
| 220 |
_supports_sdpa = True
|
| 221 |
+
_supports_cache_class = True
|
| 222 |
+
_skip_keys_device_placement = "past_key_values"
|
| 223 |
|
| 224 |
def __init__(self, config):
|
| 225 |
super().__init__(config)
|
|
|
|
| 237 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 238 |
position_ids: Optional[torch.LongTensor] = None,
|
| 239 |
labels: Optional[torch.LongTensor] = None,
|
| 240 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 241 |
+
use_cache: Optional[bool] = None,
|
| 242 |
output_attentions: Optional[bool] = None,
|
| 243 |
output_hidden_states: Optional[bool] = None,
|
| 244 |
return_dict: Optional[bool] = None,
|
| 245 |
**kwargs,
|
| 246 |
) -> (Tensor, dict[str, Tensor]):
|
| 247 |
|
| 248 |
+
batch_size, seq_len = input_ids.shape
|
| 249 |
+
|
| 250 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 251 |
+
output_hidden_states = (
|
| 252 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 253 |
+
)
|
| 254 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 255 |
+
|
| 256 |
+
if use_cache:
|
| 257 |
+
# If legacy cache, convert to DynamicCache
|
| 258 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 259 |
+
if use_legacy_cache:
|
| 260 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 261 |
+
|
| 262 |
+
|
| 263 |
if self.gradient_checkpointing and self.training:
|
| 264 |
+
if use_cache:
|
| 265 |
+
logger.warning_once(
|
| 266 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 267 |
+
)
|
| 268 |
+
use_cache = False
|
| 269 |
gradient_checkpointing_func = self._gradient_checkpointing_func
|
| 270 |
else:
|
| 271 |
gradient_checkpointing_func = None
|
| 272 |
+
|
| 273 |
|
| 274 |
+
outputs = self.transformer_head(
|
| 275 |
input_ids=input_ids,
|
| 276 |
+
position_ids=position_ids,
|
| 277 |
+
output_attentions=output_attentions,
|
| 278 |
gradient_checkpointing_func=gradient_checkpointing_func,
|
| 279 |
+
past_key_values=past_key_values,
|
| 280 |
+
use_cache=use_cache,
|
| 281 |
+
output_hidden_states=output_hidden_states,
|
| 282 |
)
|
| 283 |
+
|
| 284 |
+
logits = outputs["logits"].float()
|
| 285 |
+
attentions = outputs["attentions"]
|
| 286 |
|
| 287 |
# Compute loss.
|
| 288 |
if labels is not None:
|
| 289 |
loss = self.loss_function(logits=logits, labels=labels, input_ids=input_ids)
|
| 290 |
else:
|
| 291 |
loss = None
|
| 292 |
+
|
| 293 |
+
# Convert back to legacy cache, if that's what we received
|
| 294 |
+
new_cache = outputs["past_key_values"]
|
| 295 |
+
if use_cache and new_cache is not None and use_legacy_cache:
|
| 296 |
+
new_cache = new_cache.to_legacy_cache()
|
| 297 |
|
| 298 |
+
return CausalLMOutputWithPast(
|
| 299 |
+
loss=loss,
|
| 300 |
+
logits=logits,
|
| 301 |
+
past_key_values=new_cache,
|
| 302 |
+
hidden_states=outputs["hidden_states"],
|
| 303 |
+
attentions=outputs["attentions"],
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# Implementation from Huggingface Transformers,
|
| 307 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral/modeling_mistral.py
|
| 308 |
+
# Note: We do not implement attention mask at present, so some of this code is not applicable
|
| 309 |
+
# TODO: Reenable attention mask support for batch inference..
|
| 310 |
+
def prepare_inputs_for_generation(
|
| 311 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 312 |
+
):
|
| 313 |
+
# Omit tokens covered by past_key_values
|
| 314 |
+
if past_key_values is not None:
|
| 315 |
+
if isinstance(past_key_values, Cache):
|
| 316 |
+
cache_length = past_key_values.get_seq_length()
|
| 317 |
+
past_length = past_key_values.seen_tokens
|
| 318 |
+
max_cache_length = past_key_values.get_max_length()
|
| 319 |
+
else:
|
| 320 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 321 |
+
max_cache_length = None
|
| 322 |
+
|
| 323 |
+
# Keep only the unprocessed tokens:
|
| 324 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 325 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 326 |
+
# input)
|
| 327 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 328 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 329 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 330 |
+
# input_ids based on the past_length.
|
| 331 |
+
elif past_length < input_ids.shape[1]:
|
| 332 |
+
input_ids = input_ids[:, past_length:]
|
| 333 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 334 |
+
|
| 335 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 336 |
+
if (
|
| 337 |
+
max_cache_length is not None
|
| 338 |
+
and attention_mask is not None
|
| 339 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 340 |
+
):
|
| 341 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 342 |
+
|
| 343 |
+
position_ids = kwargs.get("position_ids", None)
|
| 344 |
+
if attention_mask is not None and position_ids is None:
|
| 345 |
+
# create position_ids on the fly for batch generation
|
| 346 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 347 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 348 |
+
if past_key_values:
|
| 349 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 350 |
+
|
| 351 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 352 |
+
# NOTE: Injecting positional embeddings is not yet supported.
|
| 353 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 354 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 355 |
+
else:
|
| 356 |
+
model_inputs = {"input_ids": input_ids}
|
| 357 |
+
|
| 358 |
+
model_inputs.update(
|
| 359 |
+
{
|
| 360 |
+
"position_ids": position_ids,
|
| 361 |
+
"past_key_values": past_key_values,
|
| 362 |
+
"use_cache": kwargs.get("use_cache"),
|
| 363 |
+
"attention_mask": attention_mask,
|
| 364 |
+
}
|
| 365 |
+
)
|
| 366 |
return model_inputs
|
| 367 |
|
| 368 |
+
@staticmethod
|
| 369 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 370 |
+
reordered_past = ()
|
| 371 |
+
for layer_past in past_key_values:
|
| 372 |
+
reordered_past += (
|
| 373 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 374 |
+
)
|
| 375 |
+
return reordered_past
|
| 376 |
+
|
| 377 |
def _make_embedding(self, config):
|
| 378 |
embedding_cls = get_dynamic_class(config.embdding_cls)
|
| 379 |
return embedding_cls(config.vocab_size, self.d_model, config.pad_index, **config.embedding_args)
|
|
|
|
| 397 |
norm_cls = get_dynamic_class(config.norm_cls)
|
| 398 |
return norm_cls(self.d_model)
|
| 399 |
|
| 400 |
+
def _make_self_attention(self, layer_idx, config):
|
| 401 |
attention_cls = get_dynamic_class(config.attention_cls)
|
| 402 |
# Map HF _attn_implementation to attn_type
|
| 403 |
match config._attn_implementation:
|
|
|
|
| 418 |
d_model=self.d_model,
|
| 419 |
num_heads=config.num_attention_heads,
|
| 420 |
attn_type=attn_type,
|
| 421 |
+
layer_idx=layer_idx,
|
| 422 |
+
config=config,
|
| 423 |
**config.attention_args,
|
| 424 |
)
|
| 425 |
|
| 426 |
+
def _make_feedforward(self, layer_idx, config):
|
| 427 |
feedforward_cls = get_dynamic_class(config.feedforward_cls)
|
| 428 |
return feedforward_cls(
|
| 429 |
d_model=self.d_model,
|
| 430 |
feedforward_dim=config.dim_feedforward,
|
| 431 |
dropout=config.dropout,
|
| 432 |
activation=self._make_activation(config),
|
| 433 |
+
layer_idx=layer_idx,
|
| 434 |
**config.feedforward_args,
|
| 435 |
)
|
| 436 |
|
| 437 |
+
def _make_layer(self, layer_idx, config):
|
| 438 |
layer_cls = get_dynamic_class(config.layer_cls)
|
| 439 |
return layer_cls(
|
| 440 |
d_model=self.d_model,
|
| 441 |
dropout=self._make_dropout(config),
|
| 442 |
+
attention=self._make_self_attention(layer_idx, config),
|
| 443 |
+
feedforward=self._make_feedforward(layer_idx, config),
|
| 444 |
norm1=self._make_norm(config),
|
| 445 |
norm2=self._make_norm(config),
|
| 446 |
+
layer_idx=layer_idx,
|
| 447 |
**config.layer_args,
|
| 448 |
)
|
| 449 |
|
|
|
|
| 451 |
layer_stack_cls = get_dynamic_class(config.layer_stack_cls)
|
| 452 |
return layer_stack_cls(
|
| 453 |
layers=nn.ModuleList([
|
| 454 |
+
self._make_layer(layer_idx, config) for layer_idx in range(config.num_hidden_layers)
|
| 455 |
]),
|
| 456 |
**config.layer_stack_args,
|
| 457 |
)
|
|
|
|
| 487 |
self.sqrt_d_model = d_model**0.5
|
| 488 |
self.reset_parameters()
|
| 489 |
|
| 490 |
+
def forward(
|
| 491 |
+
self,
|
| 492 |
+
input_ids,
|
| 493 |
+
position_ids,
|
| 494 |
+
output_attentions,
|
| 495 |
+
gradient_checkpointing_func,
|
| 496 |
+
past_key_values,
|
| 497 |
+
use_cache,
|
| 498 |
+
output_hidden_states,
|
| 499 |
+
):
|
| 500 |
+
outputs = self.layer_stack(
|
| 501 |
+
self.positional_encoder(self.embedding(input_ids) * self.sqrt_d_model, position_ids),
|
| 502 |
+
output_attentions=output_attentions,
|
| 503 |
+
gradient_checkpointing_func=gradient_checkpointing_func,
|
| 504 |
+
past_key_values=past_key_values,
|
| 505 |
+
use_cache=use_cache,
|
| 506 |
+
output_hidden_states=output_hidden_states,
|
| 507 |
)
|
| 508 |
|
| 509 |
+
# Translate output states to logits.
|
| 510 |
+
outputs["logits"] = self.output_projection(outputs["last_hidden_state"])
|
| 511 |
+
del outputs["last_hidden_state"]
|
| 512 |
+
return outputs
|
| 513 |
|
| 514 |
def reset_parameters(self):
|
| 515 |
init.xavier_uniform_(self.output_projection.weight)
|
| 516 |
init.constant_(self.output_projection.bias, 0.)
|
| 517 |
init.normal_(self.embedding.weight, std=self.d_model**-0.5)
|
| 518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
# Converts a torch array of integers into their equivalent binary codes.
|
| 520 |
def binary_tensor(x, bits):
|
| 521 |
mask = 2**torch.arange(bits).to(x.device, x.dtype)
|
|
|
|
| 587 |
# walsh = (hadamard_walsh_matrix(k)[:bits,:d_embed] -0.5) * self.gain
|
| 588 |
self.register_buffer('walsh', walsh, persistent=False)
|
| 589 |
|
| 590 |
+
def forward(self, x, position_ids=None):
|
| 591 |
seq_len = x.size(-2)
|
| 592 |
|
| 593 |
# Get sequence of binary codes...
|
|
|
|
| 601 |
shift = torch.randint(self.max_seq - seq_len + 1, (1,)).item()
|
| 602 |
seq = self.binary_code[shift:seq_len + shift,:]
|
| 603 |
|
| 604 |
+
# When the cache is used for generation, after the first call, we are only passed a single token at a time,
|
| 605 |
+
# with the remaining tokens being in the cache. We need to make sure that the newly injected tokens have the
|
| 606 |
+
# correct relative position by indexing the codes with the position_ids.
|
| 607 |
+
elif position_ids != None:
|
| 608 |
+
seq = self.binary_code[position_ids, :]
|
| 609 |
+
|
| 610 |
# Disable shifting when not training. This does not appear to change the evaluation loss, but
|
| 611 |
# it does makes predictions easier to analyse when the attention weights are not shifting with each step.
|
| 612 |
else:
|
|
|
|
| 629 |
super().__init__()
|
| 630 |
self.layers = layers
|
| 631 |
|
| 632 |
+
def forward(
|
| 633 |
+
self,
|
| 634 |
+
hidden_states,
|
| 635 |
+
output_attentions,
|
| 636 |
+
past_key_values,
|
| 637 |
+
use_cache,
|
| 638 |
+
output_hidden_states,
|
| 639 |
+
gradient_checkpointing_func=None,
|
| 640 |
+
):
|
| 641 |
+
present_key_value = None
|
| 642 |
+
all_attentions = [] if output_attentions else None
|
| 643 |
+
all_hidden_states = [hidden_states] if output_hidden_states else None
|
| 644 |
+
|
| 645 |
for layer in self.layers:
|
| 646 |
if gradient_checkpointing_func is not None:
|
| 647 |
+
layer_outputs = gradient_checkpointing_func(
|
| 648 |
layer.__call__,
|
| 649 |
+
hidden_states,
|
| 650 |
+
output_attentions,
|
| 651 |
+
past_key_values,
|
| 652 |
+
use_cache,
|
| 653 |
+
use_reentrant=False,
|
| 654 |
)
|
| 655 |
else:
|
| 656 |
+
layer_outputs = layer(
|
| 657 |
+
hidden_states,
|
| 658 |
+
output_attentions,
|
| 659 |
+
past_key_values,
|
| 660 |
+
use_cache,
|
| 661 |
+
)
|
| 662 |
|
| 663 |
+
hidden_states = layer_outputs["hidden_states"]
|
| 664 |
+
|
| 665 |
+
if output_hidden_states:
|
| 666 |
+
all_hidden_states.append(hidden_states)
|
| 667 |
+
|
| 668 |
+
if use_cache:
|
| 669 |
+
present_key_value = layer_outputs["past_key_values"]
|
| 670 |
+
|
| 671 |
+
if output_attentions:
|
| 672 |
+
all_attentions.append(layer_outputs["attentions"])
|
| 673 |
+
|
| 674 |
+
return dict(
|
| 675 |
+
last_hidden_state=hidden_states,
|
| 676 |
+
past_key_values=present_key_value,
|
| 677 |
+
hidden_states=hidden_states,
|
| 678 |
+
attentions=all_attentions,
|
| 679 |
+
)
|
| 680 |
|
| 681 |
# DeepNet: Scaling Transformers to 1,000 Layers
|
| 682 |
# https://arxiv.org/abs/2203.00555
|
| 683 |
+
# Note: This is a type of Pre-Layer-Norm Transformer layer.
|
| 684 |
class DeepnetLayer(nn.Module):
|
| 685 |
def __init__(
|
| 686 |
self,
|
|
|
|
| 690 |
norm1,
|
| 691 |
norm2,
|
| 692 |
dropout,
|
| 693 |
+
layer_idx,
|
| 694 |
alpha=1.0,
|
| 695 |
):
|
| 696 |
super().__init__()
|
|
|
|
| 702 |
self.dropout = dropout
|
| 703 |
# Deepnet alpha
|
| 704 |
self.alpha = alpha
|
| 705 |
+
self.layer_idx = layer_idx
|
| 706 |
|
| 707 |
+
def forward(
|
| 708 |
+
self,
|
| 709 |
+
hidden_states,
|
| 710 |
+
output_attentions,
|
| 711 |
+
past_key_values,
|
| 712 |
+
use_cache,
|
| 713 |
+
):
|
| 714 |
# Keep input as residual
|
| 715 |
+
residual = hidden_states * self.alpha
|
| 716 |
|
| 717 |
# Compute attention
|
| 718 |
+
attn_outputs = self.attention(
|
| 719 |
+
hidden_states,
|
| 720 |
+
past_key_values=past_key_values,
|
| 721 |
+
use_cache=use_cache,
|
| 722 |
+
output_attentions=output_attentions
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
hidden_states = attn_outputs["hidden_states"]
|
| 726 |
|
| 727 |
# Add attention with residual and normalize.
|
| 728 |
+
hidden_states = self.norm1(residual + self.dropout(hidden_states))
|
| 729 |
|
| 730 |
# Keep output as next residual.
|
| 731 |
+
residual = hidden_states * self.alpha
|
| 732 |
|
| 733 |
# Pass through feedforward network.
|
| 734 |
+
hidden_states = self.feedforward(hidden_states)
|
| 735 |
|
| 736 |
# Combine residual and ff output, then normalize again.
|
| 737 |
+
hidden_states = self.norm2(residual + self.dropout(hidden_states))
|
| 738 |
|
| 739 |
+
return dict(
|
| 740 |
+
hidden_states=hidden_states,
|
| 741 |
+
attentions=attn_outputs["attentions"],
|
| 742 |
+
past_key_values=attn_outputs["past_key_values"]
|
| 743 |
+
)
|
| 744 |
|
| 745 |
# A vanilla MLP transfomer layer.
|
| 746 |
class FeedforwardLayer(nn.Module):
|
|
|
|
| 749 |
d_model: int,
|
| 750 |
feedforward_dim: int,
|
| 751 |
dropout,
|
| 752 |
+
layer_idx,
|
| 753 |
activation=nn.ReLU(),
|
| 754 |
beta=1.0,
|
| 755 |
bias=True,
|
|
|
|
| 772 |
init.constant_(self.linear1.bias, 0.)
|
| 773 |
init.constant_(self.linear2.bias, 0.)
|
| 774 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 775 |
class CausalSelfAttention(nn.Module):
|
| 776 |
def __init__(
|
| 777 |
self,
|
|
|
|
| 782 |
# torch: Use pytorch "scaled_dot_product_attention()"; faster; generally good compatibility; does not support returning attn weights.
|
| 783 |
# flash2: Use Flash-Attention2 implementation; fastest; limited to int16 and bfloat16 types; least memory usage.
|
| 784 |
attn_type,
|
| 785 |
+
layer_idx,
|
| 786 |
+
config,
|
| 787 |
beta=1.0,
|
| 788 |
dropout=0.1,
|
| 789 |
):
|
|
|
|
| 792 |
self.num_heads = num_heads
|
| 793 |
self.beta = beta
|
| 794 |
self.attn_type = attn_type
|
| 795 |
+
self.layer_idx = layer_idx
|
| 796 |
+
self.config = config
|
| 797 |
|
| 798 |
assert d_model % num_heads == 0, "d_model must be evenly divisible by num_heads"
|
| 799 |
|
|
|
|
| 824 |
init.constant_(self.in_proj.bias, 0.)
|
| 825 |
init.constant_(self.output_linear.bias, 0.)
|
| 826 |
|
| 827 |
+
# Project QKV input through input matrices, reshape to (batch_size, n_heads, seq_len, d_model), and apply cache.
|
| 828 |
+
def project_input(self, qkv, past_key_values):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 829 |
batch_size, seq_len, d_embed = qkv.shape
|
| 830 |
+
proj = self.in_proj(qkv)
|
| 831 |
+
query, key, value = proj.chunk(chunks=3, dim=-1)
|
| 832 |
|
|
|
|
|
|
|
|
|
|
| 833 |
# Split projections into multiple heads and swap position of sequence / heads dimension
|
| 834 |
query = query.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 835 |
key = key.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 836 |
value = value.view(batch_size, seq_len, self.num_heads, self.d_head).transpose(1, 2)
|
| 837 |
|
| 838 |
+
# Update the cache values.
|
| 839 |
+
if past_key_values is not None:
|
| 840 |
+
key, value = past_key_values.update(key, value, self.layer_idx)
|
| 841 |
+
return query, key, value
|
| 842 |
+
|
| 843 |
+
def forward(
|
| 844 |
+
self,
|
| 845 |
+
qkv,
|
| 846 |
+
output_attentions,
|
| 847 |
+
past_key_values,
|
| 848 |
+
use_cache,
|
| 849 |
+
):
|
| 850 |
+
attn_type = self.attn_type
|
| 851 |
+
if output_attentions and attn_type != "native":
|
| 852 |
+
logger.warning_once(
|
| 853 |
+
"CausalSelfAttention(output_attentions=True) and attn_type is not 'native': "
|
| 854 |
+
"Forcing native attention."
|
| 855 |
+
)
|
| 856 |
+
attn_type = "native"
|
| 857 |
+
|
| 858 |
+
if attn_type == "flash2":
|
| 859 |
+
if use_cache is None or use_cache == False:
|
| 860 |
+
return self.flash2_forward(qkv)
|
| 861 |
+
else:
|
| 862 |
+
return self.flash2_forward_cached(qkv, past_key_values)
|
| 863 |
+
|
| 864 |
+
# qkv: (batch_size, seq_len, d_embed)
|
| 865 |
+
batch_size, seq_len, d_embed = qkv.shape
|
| 866 |
+
|
| 867 |
+
# Feed the inputs through the K, Q, V matrices.
|
| 868 |
+
query, key, value = self.project_input(qkv, past_key_values)
|
| 869 |
+
kv_seq_len = key.shape[-2]
|
| 870 |
+
|
| 871 |
# Default to returning empty attention weights.
|
| 872 |
+
attentions = None
|
| 873 |
+
|
| 874 |
+
# https://github.com/pytorch/pytorch/issues/112577
|
| 875 |
|
| 876 |
+
if attn_type == "torch":
|
| 877 |
# This context manager can be used to force which implementation to use.
|
| 878 |
#with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
| 879 |
attended_values = F.scaled_dot_product_attention(
|
|
|
|
| 882 |
value,
|
| 883 |
attn_mask=None,
|
| 884 |
dropout_p=self.dropout.p if self.training else 0.0,
|
| 885 |
+
is_causal=(seq_len > 1),
|
| 886 |
scale=self.dot_product_scale
|
| 887 |
)
|
| 888 |
# "native" scaled-dot-product attention implementation.
|
|
|
|
| 891 |
scores = torch.matmul(query, key.transpose(-2, -1)) * self.dot_product_scale
|
| 892 |
|
| 893 |
# Mask future positions from the past
|
| 894 |
+
if seq_len > 1:
|
| 895 |
+
scores.masked_fill_(
|
| 896 |
+
torch.tril(
|
| 897 |
+
torch.ones(seq_len, kv_seq_len, dtype=torch.bool, device=qkv.device),
|
| 898 |
+
diagonal=0,
|
| 899 |
+
).logical_not(),
|
| 900 |
+
float('-inf'),
|
| 901 |
+
)
|
| 902 |
|
| 903 |
# Calculate the attention weights; avoid NANs that might emerge from zeros in softmax's denominator
|
| 904 |
+
attentions = self.dropout(torch.softmax(scores, dim=-1).clamp(min=1e-10))
|
| 905 |
del scores
|
| 906 |
|
| 907 |
# Use the attention weights to get a weighted combination of value vectors
|
| 908 |
+
attended_values = torch.matmul(attentions, value)
|
| 909 |
+
if not output_attentions:
|
| 910 |
+
del attentions
|
| 911 |
+
attentions = None
|
| 912 |
|
| 913 |
# Concatenate attention heads and project to original embedding size using the output linear layer
|
| 914 |
attended_values = attended_values.transpose(1, 2).contiguous().view(batch_size, seq_len, d_embed)
|
| 915 |
|
| 916 |
# Project the concatenated output through the output matrix.
|
| 917 |
attended_values = self.output_linear(attended_values)
|
| 918 |
+
return dict(
|
| 919 |
+
hidden_states=attended_values,
|
| 920 |
+
attentions=attentions,
|
| 921 |
+
past_key_values=past_key_values
|
| 922 |
+
)
|
| 923 |
+
|
| 924 |
+
# No cache support, but faster
|
| 925 |
+
def flash2_forward(
|
| 926 |
+
self,
|
| 927 |
+
qkv,
|
| 928 |
+
):
|
| 929 |
batch_size, seq_len, d_embed = qkv.shape
|
| 930 |
|
| 931 |
# Feed the inputs through the K, Q, V matrices.
|
| 932 |
# query : (batch_size, seq_len, d_model)
|
| 933 |
# qkv : (batch_size, seq_len, 3, num_heads, d_kq)
|
| 934 |
+
# Feed the inputs through the K, Q, V matrices.
|
| 935 |
+
# query : (batch_size, seq_len, d_model)
|
| 936 |
+
# qkv : (batch_size, seq_len, 3, num_heads, d_kq)
|
| 937 |
+
|
| 938 |
qkv = self.in_proj(qkv).unflatten(
|
| 939 |
-1,
|
| 940 |
(3, self.num_heads, self.d_head)
|
| 941 |
)
|
| 942 |
+
|
| 943 |
attended_values = flash_attn_qkvpacked_func(
|
| 944 |
+
self._downcast_to_float16(qkv)[0],
|
| 945 |
dropout_p=self.dropout.p if self.training else 0.0,
|
| 946 |
softmax_scale=self.dot_product_scale,
|
| 947 |
causal=True,
|
|
|
|
| 953 |
|
| 954 |
# Project the concatenated output through the output matrix.
|
| 955 |
attended_values = self.output_linear(attended_values)
|
| 956 |
+
return dict(
|
| 957 |
+
hidden_states=attended_values,
|
| 958 |
+
attentions=None,
|
| 959 |
+
past_key_values=None
|
| 960 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 961 |
|
| 962 |
+
# See https://github.com/huggingface/transformers/blob/main/src/transformers/cache_utils.py
|
| 963 |
+
#https://huggingface.co/docs/transformers/internal/generation_utils
|
| 964 |
+
def flash2_forward_cached(
|
| 965 |
self,
|
| 966 |
+
qkv,
|
| 967 |
+
past_key_values,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 968 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 969 |
batch_size, seq_len, d_embed = qkv.shape
|
| 970 |
|
| 971 |
# Feed the inputs through the K, Q, V matrices.
|
| 972 |
+
query, key, value = self.project_input(qkv, past_key_values)
|
| 973 |
+
query, key, value = self._downcast_to_float16(query, key, value)
|
| 974 |
+
|
| 975 |
+
# Expected inputs to flash2:
|
| 976 |
+
# q: (batch_size, seqlen, nheads, headdim)
|
| 977 |
+
# k: (batch_size, seqlen, nheads_k, headdim)
|
| 978 |
+
# v: (batch_size, seqlen, nheads_k, headdim)
|
| 979 |
+
query = query.transpose(1, 2)
|
| 980 |
+
key = key.transpose(1, 2)
|
| 981 |
+
value = value.transpose(1, 2)
|
| 982 |
+
|
| 983 |
+
attended_values = flash_attn_func(
|
| 984 |
+
q=query,
|
| 985 |
+
k=key,
|
| 986 |
+
v=value,
|
| 987 |
dropout_p=self.dropout.p if self.training else 0.0,
|
| 988 |
softmax_scale=self.dot_product_scale,
|
| 989 |
causal=True,
|
| 990 |
+
)
|
|
|
|
|
|
|
| 991 |
# attended_values: (batch_size, seqlen, nheads, headdim)
|
| 992 |
+
|
| 993 |
# Concatentate heads back into d_embed
|
| 994 |
attended_values = attended_values.view(batch_size, seq_len, d_embed)
|
| 995 |
|
| 996 |
# Project the concatenated output through the output matrix.
|
| 997 |
attended_values = self.output_linear(attended_values)
|
| 998 |
+
return dict(
|
| 999 |
+
hidden_states=attended_values,
|
| 1000 |
+
attentions=None,
|
| 1001 |
+
past_key_values=past_key_values
|
| 1002 |
+
)
|
| 1003 |
+
|
| 1004 |
+
def _downcast_to_float16(self, *args):
|
| 1005 |
+
if args[0].dtype != torch.float32:
|
| 1006 |
+
return args
|
| 1007 |
+
|
| 1008 |
+
if torch.is_autocast_enabled():
|
| 1009 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 1010 |
+
# Handle the case where the model is quantized
|
| 1011 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 1012 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 1013 |
+
else:
|
| 1014 |
+
target_dtype = self.output_linear.weight.dtype
|
| 1015 |
+
|
| 1016 |
+
logger.warning_once(
|
| 1017 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 1018 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 1019 |
+
f" {target_dtype}."
|
| 1020 |
+
)
|
| 1021 |
+
|
| 1022 |
+
return (arg.to(target_dtype) for arg in args)
|